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Abstract

A major challenge in evaluating data-to-text
(D2T) generation is measuring the semantic ac-
curacy of the generated text, i.e. checking if
the output text contains all and only facts sup-
ported by the input data. We propose a new
metric for evaluating the semantic accuracy of
D2T generation based on a neural model pre-
trained for natural language inference (NLI).
We use the NLI model to check textual en-
tailment between the input data and the out-
put text in both directions, allowing us to re-
veal omissions or hallucinations. Input data
are converted to text for NLI using trivial tem-
plates. Our experiments on two recent D2T
datasets show that our metric can achieve high
accuracy in identifying erroneous system out-
puts.

1 Introduction

Neural models may reduce the effort for building
natural language generation (NLG) systems and
produce very natural outputs, at the cost of limited
control over the model outputs. State-of-the-art
neural D2T models are prone to omitting or halluci-
nating facts (Gehrmann et al., 2018; Castro Ferreira
et al., 2019; Dušek et al., 2020), which restricts
their real-world deployment. Recognizing these
errors is thus essential for proper system evaluation
and further research in D2T generation.

In general, evaluating the semantic accuracy of
D2T generation outputs requires full natural lan-
guage understanding. Minor changes in wording
may cause major differences in the meaning of the
text, making it difficult for handcrafted heuristics
to cover all edge cases. Human evaluation, on the
other hand, is expensive and difficult to scale.

We note that the task of checking if a gener-
ated sentence includes/entails a particular fact is
very close to the task of natural language inference
(NLI). NLI is a sequence classification task which

takes two inputs—a hypothesis and a premise—
and produces one of the possible outputs: the hy-
pothesis is entailed by (follows from) the premise,
contradicts the premise, or their relation is neu-
tral. Recently, neural models for NLI (Zhang et al.,
2020b; Liu et al., 2019a,b) reached near-human lev-
els of performance and NLI was used for evaluating
the output of abstractive summarization systems
(Maynez et al., 2020).

This brings a question: Can we use an NLI
model for evaluating the semantic accuracy of D2T
outputs? The main idea of our method is to check
with a general pretrained NLI model if the seman-
tic information implied by the input data and the
generated text is equal. We achieve this by using
the NLI model to check for entailment in two direc-
tions: By inferring input facts from the generated
text we can check for omissions, while the other
direction allows us to check for hallucinations.1

For instance, consider the two input facts from Fig-
ure 1: (Blue Spice | eat_type | pub), (Blue Spice
| area | riverside) and the generated text: “You
can bring your kids to Blue Spice in the riverside
area.” A NLI system should detect that the first fact
is not entailed by the text (there is no mention of
Blue Spice being a pub), but the text is also not
entailed by the facts (the information about kids is
hallucinated).

Applying NLI for the D2T task brings a problem:
The hypothesis for the standard NLI task is a natu-
ral language text, but the input for D2T generation
is structured. However, we show that we can easily
sidestep this issue by transforming the data into
text using a trivial template for each fact.

1This check in both directions is appropriate for D2T tasks
that do not include content selection, which are the focus of our
experiments in this paper. If the generator is supposed to select
just some of the input facts to verbalize (cf. e.g. Wiseman et al.,
2017), we can either only check for hallucinations or, if the
content selection is explicit, perform a two-way check with
the selected facts provided.
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We demonstrate that even without any human
references or in-domain training and with mini-
mal handcrafting, our approach achieves high ac-
curacy (>90%) on the E2E Challenge data (Dušek
et al., 2020), competitive with scripts specifically
handcrafted for the domain, and produces useful
results (>75% accuracy) on the more challenging
WebNLG dataset (Gardent et al., 2017). A manual
error analysis shows that some instances marked as
errors were in fact assessed correctly by our metric;
we also identified a few major sources of errors
that can be mitigated by in-domain tuning. The
experimental code for our metric is now available
on GitHub.2

2 Related Work

Automatic Evaluation of NLG NLG outputs
were traditionally evaluated by reference-based
metrics measuring n-gram overlap with a reference,
such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004) and METEOR (Lavie and Agarwal,
2007). Alternative, referenceless quality estima-
tion metrics based on language model scores (Kann
et al., 2018) or linguistic features (Tian et al., 2018)
focus on fluency and do not consider semantic ac-
curacy. Recent works try to estimate NLG output
quality with finetuned pretrained models (Zhou and
Xu, 2020; Zhang et al., 2020a; Sellam et al., 2020).
The score from these models can capture some
aspects of semantic accuracy, but only implicitly.

Semantic Accuracy To our knowledge, there is
no generally accepted automatic metric for explic-
itly measuring semantic accuracy of NLG outputs.
The closest commonly used metric is the slot error
rate, which is typically based on pattern match-
ing tailored for a given dataset (Reed et al., 2018;
Mi et al., 2019; Dušek et al., 2020). Recently,
Goodrich et al. (2019) introduced a metric based
on training a neural model on named-entity recog-
nition and fact extraction.

Faithful NLG Some recent neural NLG systems
train specifically for semantic accuracy (Nie et al.,
2019; Tian et al., 2019; Kedzie and McKeown,
2019). Similarly to us, Harkous et al. (2020) use
a pretrained neural model as a classifier to detect
inaccurate output, finetuning the classifier on man-
ually augmented domain-specific data.

Unlike previous works, we use a pretrained neu-
ral model finetuned for NLI which we do not fur-

2https://github.com/ufal/nlgi_eval

ther train on any domain-specific data.

3 Method

3.1 NLI Model
We use pretrained RoBERTa (Liu et al., 2019b)
as implemented in the Transformers library (Wolf
et al., 2020) for our NLI model. Specifically, we
use the roberta-large-mnli3 checkpoint, which
was finetuned on the MultiNLI dataset (Williams
et al., 2018). We use the model as is, without any
further training. Given a premise text and a hy-
pothesis text, the NLI model produces a probability
distribution over three results: contradiction, neu-
tral and entailment (cf. Section 1). We consider a
NLI check as passed if the probability for entail-
ment is the highest of the three.

3.2 Data Preparation
The input to our metric is a set of facts (the input
for a D2T system) and the corresponding verbaliza-
tion of these facts (the output from a D2T system).
In our setup, the facts are RDF-like triples in the
subject-predicate-object form.

We convert each triple to natural language using
a trivial template. We consider two cases:
(1) Default: The templates can be handcrafted or

extracted from the NLG systems’ training data
for each predicate.

(2) Backoff: We use only a single, universal “back-
off” template for all the facts, in the form: The
<predicate> of <subject> is <object>.

Hereinafter, a fact refers to a template filled with
the values from the triple.

3.3 Evaluation Process
The generated text is said to be correct if it men-
tions all and only the input facts. We check if the
text contains any omissions or hallucinations in two
steps (see Figure 1 for an example):
(1) To check for omissions, we use the whole gen-

erated text as a premise and sequentially feed
each fact as a hypothesis to the NLI model.
Any failed NLI check is considered an omission.
While we could use all concatenated facts in a
single NLI check, our approach gives us further
information about which facts are omitted.

(2) To check for hallucinations, we use a concate-
nation of all facts as a premise and feed the
generated text as a hypothesis to the NLI model.
If this NLI check fails, the text is considered to
3https://huggingface.co/roberta-large-mnli

https://github.com/ufal/nlgi_eval
https://huggingface.co/roberta-large-mnli
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(Blue Spice | eat_type | pub)

(Blue Spice | area | riverside)

eat_type: < subj>  is a < obj> .

area: < subj>  is located in 
the < obj> .

Input data

You can bring your kids 
to Blue Spice in the 
riverside area.

P: You can bring your kids to Blue Spice in the riverside area.

H: Blue Spice is a pub. H:  Blue Spice is located in the riverside.

C: 0.87 N: 0.09 E: 0.04 ?  omission C: 0.01 N: 0.02 E: 0.97 ?  OK

Generated text

P:  Blue Spice is a pub. Blue Spice is located in the riverside.

H: You can bring your kids to Blue Spice in the riverside area.

C: 0.72 N: 0.17 E: 0.11 ?  hallucination

NLI model

Templates

Result

omission
+ hallucination

OK confidence

0.04

Omitted facts

(Blue Spice | 
eat_type | pub)

Figure 1: An example of evaluating the output from a D2T system with our metric. The generated text is used as a
premise (P) to check for omissions and as a hypothesis (H) to check for hallucinations. The NLI model generates
probabilities for contradiction (C), neutral (N) and entailment (E).

contain hallucination. This step cannot be split
into simpler NLI checks.

The final output of our metric is either 4-way (de-
noted as FINE): OK (i.e., all NLI checks passed),
omission, hallucination or omission+hallucination
(based on the failed checks), or 2-way (denoted as
ROUGH) where the latter three results are collapsed
into not_OK. The FINE 4-way output is more useful
for system evaluation (we can distinguish whether
the system tends to hallucinate or omit informa-
tion). The ROUGH 2-way output corresponds more
to a usage inside an NLG system for output rerank-
ing or filtering: any output that is not_OK should
be penalized/filtered out. Additionally, we compute
a confidence score of the model as the minimum of
all the entailment probabilities.

4 Experimental Setup

We experiment with two recent English data-to-
text datasets with a triple-like format: WebNLG
(Gardent et al., 2017) and E2E (Novikova et al.,
2017).4 Since both of them were used in shared
tasks, sets of system outputs and measures of se-
mantic accuracy are available (see Supplementary
for details).

For WebNLG, we compare our metric with
crowdsourced human ratings of semantic adequacy
(Shimorina et al., 2019). Human annotators used a
three-point Likert scale (1 = Incorrect, 2 = Medium,
3 = Correct) and answers are averaged over mul-
tiple annotators. In our experiments discussed in
Section 5.1, we consider a sentence correct if it
achieved human rating 2.5 or higher (we also tried
a threshold of 2.0, with slightly worse results).

For the E2E dataset, the challenge results were

4E2E data use attribute-value pairs relating to a restaurant;
we convert them to triples where the restaurant is the subject.

checked for semantic accuracy using a handcrafted
automatic script (Dušek et al., 2020),5 we there-
fore use this automatic script as the ground truth
for evaluating our metric in Section 5.2. We fur-
ther use small sets of system outputs and human-
written texts with expert annotation (provided by
Dušek et al., 2019) to evaluate our approach against
gold-standard annotation and to compare to exist-
ing semantic accuracy classifiers for E2E data in
Section 5.3.

We evaluate the Default and Backoff approaches
to acquiring templates as described in Section 3.2.
The Default setup works with one custom tem-
plate per predicate type. For WebNLG, we ob-
tained templates by delexicalizing human refer-
ences for single-triple examples from WebNLG
training data.6 For E2E, we handcrafted 8 tem-
plates. The templates are filled with values from
individual input triples and concatenated for multi-
triple inputs as described in Section 3.3.

5 Results Analysis

We evaluate our metric in terms of accuracy, preci-
sion, recall, and F1-measure (where not_OK sam-
ples are treated as positive since we focus on de-
tecting errors). We additionally perform a manual
error analysis on a random sample of 100 error ex-
amples for each dataset, i.e. examples where our
metric gave a different assessment from the ground
truth (provided by crowdsourced annotation for
WebNLG and by a handcrafted classification script

5While the E2E challenge did include crowdsourced evalu-
ation of semantic accuracy, the results were unreliable, overes-
timating the number of errors (Dušek et al., 2020). Note that
unlike our metric, such a handcrafted approach to evaluating
semantic accuracy is only viable for limited domains such as
E2E.

6For each predicate, we choose randomly if more templates
are found and use the backoff if no templates are found.
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A R P F1 ρ

Default 0.775 0.772 0.796 0.784 0.628
Backoff 0.768 0.760 0.793 0.776 0.637

Table 1: WebNLG dataset results, compared to crowd-
sourced human ratings (A = accuracy, R = recall, P =
precision, F1 = F-measure, ρ = Spearman correlation
of confidence scores with human scores).

Af Ar R P F1

Default 0.911 0.933 0.895 0.910 0.903
Backoff 0.846 0.874 0.913 0.768 0.834

Table 2: E2E dataset results, compared to the automatic
evaluation script (Af = FINE accuracy, Ar = ROUGH
accuracy, R = recall, P = precision, F1 = F-measure).

for E2E as described in Section 4). In general, the
results are high above the random baseline (0.5 for
the ROUGH metric and 0.25 for the FINE metric)
but differ between the datasets, which we discuss
below.

5.1 WebNLG Analysis

The overall scores for the WebNLG dataset are
summarized in Table 1. To further check whether
the size of the input affects performance, we com-
puted Spearman correlation of the number of input
triples with metric errors. The resulting very low
value of -0.05 (p = 0.02, Default setting) shows
that the metric holds its performance even for more
complex WebNLG examples.

On the other hand, the overall scores show that
our metric deviates quite a lot from the human judg-
ments. Our manual error analysis indicates several
reasons for that (see Supplementary for examples):
(1) The annotation is somewhat noisy and using
a threshold is not ideal—many correctly rendered
outputs do not reach the 2.5 threshold (while some
incorrect ones do). (2) Imprecise templates can
confuse the NLI (e.g., for the predicate national-
ity, our extracted template is <subj> was <obj>,
which works well with values such as French, but
not with United States). This is currently a weak
point of our metric, as illustrated by the very small
performance difference between the Default and
Backoff setups; however, the issue can be mitigated
by a better selection of the templates from training
data, e.g. using language-model scoring. (3) The
human annotators tend to give lower scores to ac-
curate but ungrammatical or poorly organized texts.
Our metric tends to rate these texts as OK. Overall,

our re-examination shows that almost half of the er-
ror examples (42 out of 100) were in fact correctly
classified by our metric (i.e. their crowdsourced
human annotation was incorrect), so the true per-
formance is most likely higher than the reported
numbers.

The Spearman correlation of our model’s con-
fidence scores with the average human scores is
around 0.63 (p <1e-10). This is similar to n-gram-
based metrics on this data (Shimorina, 2018 reports
0.59 for BLEU and 0.73 for METEOR), but un-
like these metrics, our approach does not require
human-written reference texts.

5.2 E2E Analysis
The results for the E2E dataset (shown in Table 2)
are very good compared to the WebNLG dataset,
with over 90% agreement with the handcrafted
script. This can be attributed to lower lexical vari-
ability and less noisy texts, as well as to the better
quality of the handcrafted templates (the difference
between the Default and Backoff setups is much
more pronounced here). Again, we observe only a
very slight drop in performance for more complex
E2E inputs (Spearman correlation of metric errors
with the number of input triples is -0.08, p <1e-10
for the Default setting).

The main issues identified by our error analysis
are: (1) Problems in the interpretation of some val-
ues, e.g., price range=less than £20 is verbalized
as “cheap” or family-friendly=no as “adult-only”.
These cases are classified as not_OK by the NLI
model. (2) Missing or over-greedy patterns in the
slot error script, causing annotation errors. (3) Edge
cases: some expressions cannot be interpreted in
a straightforward way, e.g. “high restaurant” for
pricerange=high is deemed OK by the NLI but not
by the slot error script. (4) Expressions in the out-
puts that do not correspond to input facts, such as
“with full service”, are considered hallucinations
by the NLI, but ignored by the slot error script.
Again, we consider about half of the error exam-
ples (45 out of 100) as correctly classified by our
metric (see Supplementary for details), and thus
our metric’s performance is probably higher than
the reported values due to erroneous annotation
from the handcrafted script.

5.3 E2E MR Classifier Comparison
We used expert-annotated E2E data samples
(cf. Section 4) to compare our approach to other
accuracy classifiers in the E2E domain:
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Human-written (E2E training set) System outputs (TGen)
Af Ar R P F1 Af Ar R P F1

Slug2Slug aligner 0.685 0.765 0.550 0.800 0.652 0.995 1.000 1.000 1.000 1.000
E2E slot error script 0.820 0.885 1.000 0.777 0.874 0.995 0.995 1.000 0.950 0.974
TGen reranker 0.110 0.435 0.975 0.413 0.579 0.220 0.278 1.000 0.116 0.208

Default 0.600 0.700 0.625 0.625 0.625 0.978 0.978 0.947 0.837 0.888
Backoff 0.530 0.640 0.675 0.540 0.600 0.833 0.833 0.974 0.359 0.525

Table 3: Semantic classifiers evaluated on expert human annotation on E2E data (see Table 2 for metrics legend).

• Slug2Slug slot aligner (Juraska et al., 2018) is
based on keyword matches. It is carefully tuned
but not designed to detect hallucination; it only
checks for presence of facts from the input MR.

• E2E slot error script (used in Section 5.2) is
based on regular expressions; it is also able to
detect irrelevant facts.

• TGen reranker is an LSTM-based model
trained on the E2E training data to rerank outputs
of the TGen system (Dušek and Jurčíček, 2016)
based on their semantic accuracy.
The results for all classifiers (in Table 3) are

much weaker on human-written data, which ex-
hibit much more variability than system outputs.
The TGen reranker is very weak when required to
detect all facts properly. Our approach is slightly
less precise than both handcrafted scripts, but the
difference is small on system outputs (97.8% vs.
99.5% accuracy). If we disregard the value eat-
Type=restaurant, which is generally noisy, we get
76.5% accuracy and 97.6% recall on the human-
written data. Moreover, our approach requires
much less handcrafting and is more general.

6 Conclusions and Future Work

We described an automatic metric for evaluating
semantic accuracy of D2T generation. With just a
basic setup, without human references or training
and with minimum handcrafting, our metric is able
to detect omissions or hallucinations in generated
texts, with results competitive with crowdsourced
human ratings or handcrafted scripts customized
for particular domains.

While our metric seems to scale well to more
complex inputs in our experiments on the WebNLG
and E2E data, we note that these datasets are
still relatively limited. Further experiments are
needed to evaluate this approach on long text gener-
ation and tasks where content selection is required,
which we reserve for future work. We also plan to
integrate our metric as a reranker into an NLG sys-
tem and apply small-scale in-domain finetuning in

order to further improve results. Following our find-
ings from the error analysis on WebNLG, which
showed that human ratings of semantic correctness
are influenced by grammaticality, we would like to
investigate the possibilities for combining our met-
ric with a fluency/grammaticality checker (Kann
et al., 2018; Tian et al., 2018), as well as ways to
better separate these two criteria in human evalua-
tion.
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