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Abstract

Word emphasis in textual content aims at
conveying the desired intention by chang-
ing the size, color, typeface, style (bold,
italic, etc.), and other typographical fea-
tures. The emphasized words are ex-
tremely helpful in drawing the readers’ at-
tention to specific information that the au-
thors wish to emphasize. However, per-
forming such emphasis using a soft key-
board for social media interactions is time-
consuming and has an associated learning
curve. In this paper, we propose a novel
approach to automate the emphasis word
detection on short written texts. To the
best of our knowledge, this work presents
the first lightweight deep learning approach
for smartphone deployment of emphasis se-
lection. Experimental results show that
our approach achieves comparable accu-
racy at a much lower model size than ex-
isting models. Our best lightweight model
has a memory footprint of 2.82 MB with a
matching score of 0.716 on SemEval-2020
(shallowLearner, 2020) public benchmark
dataset.

Index terms: emphasis selection, mo-
bile devices, natural language processing, on-
device inferencing, deep learning.

1 Introduction
Emphasizing words or phrases is commonly
performed to drive a point strongly and/or to
highlight the key terms and phrases. While
speaking, speakers can use tone, pitch, pause,
repetition, etc. to highlight the core of a
speech in the minds of an audience. Similarly,
while writing or messaging, authors can em-
phasize the words by customizing the format-
ting like typeface, font size, bold, italic, font
color, etc. as illustrated in Figure 1. With the

Figure 1: Prominent words in a message are being
emphasized (Bold + Italic) automatically

explosion of social media and messaging plat-
forms, word emphasis has become more criti-
cal in engaging readers’ attention and convey-
ing the author’s message in the shortest possi-
ble time.

Emphasis selection of text has recently
emerged as a focus of research interest in nat-
ural language processing (NLP). The goal of
emphasis selection is to automate the identifi-
cation of words or phrases that bring clarity
and convey the desired meaning. Automatic
emphasis selection can help in better graphic
designing and presentation applications, as
well as can enable voice assistants and digi-
tal avatars to realize expressive text-to-speech
(TTS) synthesis. High-quality emphasis selec-
tion models can enable automatic design assis-
tance for creating flyers, posters and acceler-
ate the workflow of design programs such as
Adobe Spark (Adobe, 2016), Microsoft Pow-
erPoint, etc. These emphasis selection mod-
els can also empower digital avatars like Sam-
sung Neon (NEON, 2020) to achieve human-
like TTS systems. Understanding emphasis se-
lection is also crucial for many downstream ap-
plications in NLP tasks including text summa-
rization, text categorization, information re-
trieval, and opinion mining.
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In the current work, we propose a novel
lightweight neural architecture for automatic
emphasis selection in short texts, which
can perform inference in a low-resource con-
strained environment like a smartphone. Our
proposed architecture achieves near-SOTA
performance, with as low as 0.6% of its model
size.

2 Related Work

Prior work in NLP literature towards identify-
ing important words or phrases have focused
widely on keyword or key-phrase extraction.
Considerable progress has been made in key-
word or key-phrase extraction systems for long
documents such as news articles, scientific pub-
lications, etc. (Rose et al., 2010). The core op-
eration procedure of these systems is to extract
the nouns and noun phrases. To achieve these,
researchers have used statistical co-occurrence
(Matsuo and Ishizuka, 2004), SVM (Zhang
et al., 2006), CRF (Zhang, 2008), graph-based
extraction (Litvak and Last, 2008), etc. Re-
cent efforts have even expanded the idea from
a set of documents to social big data (Kim,
2020). However, in the context of short texts
like text messages, headlines, or quotes, key-
word extraction systems often mislabel most
nouns as important without considering the
essence of the text, thus performing poorly at
the task.

Emphasis selection aims to overcome this
by scoring words which properly capture the
essence of a text by focusing on subtle cues of
emotions, clarifications, and words that cap-
ture readers’ attention, as seen in Table 1. Re-
cent research interest towards these tasks of-
ten uses label distribution learning (Shirani
et al., 2019). MIDAS (Anand et al., 2020)
uses label distribution as well as contextual
embeddings. One drawback of using label dis-
tribution learning is the requirement of an-
notations, which are not readily available in
most datasets. Pre-trained language model
has also been used to achieve emphasis selec-
tion (Huang et al., 2020). Singhal et al. (Sing-
hal et al., 2020) achieves significantly good per-
formance with (a) Bi-LSTM + Attention ap-
proach, and (b) Transformers approach. To
achieve their modest performances, these ar-
chitectures produce huge models. For instance,

Table 1: Keyword Extraction (MonkeyLearn, 2020)
vs. Emphasis Selection

Input Text Keywords/Key
phrases Detected

Emphasis Selec-
tion

A simple I love you
means more than
money

A simple I love you
means more than
money

A simple I love you
means more than
money

Traveling – It leaves
you speechless then
turns you into story
teller

Traveling – It leaves
you speechless then
turns you into story
teller

Traveling – It leaves
you speechless then
turns you into story
teller

Challenges are what
make life more inter-
esting and overcom-
ing them is what
makes life meaning-
ful

Challenges are
what make life more
interesting and
overcoming them
is what makes life
meaningful

Challenges are
what make life more
interesting and
overcoming them
is what makes life
meaningful

IITK model (Singhal et al., 2020) takes up
469.20 MB in BiLSTM + Attention approach,
while requiring almost 1.5 GB in Transform-
ers approach. This is partly due to the use
of embeddings like BERT (1.2 GB) (Devlin
et al., 2018), XLNET (1.34 GB) (Yang et al.,
2019), RoBERTa (1.3 GB) (Liu et al., 2019),
etc. General-purpose models that emphasize
on model size still consume significant ROM:
200 MB (for DistilBERT (Sanh et al., 2019))
and 119 MB (for MobileBERT (Sun et al.,
2020b) quantized int8 saved model and vari-
ables; sequence length 384). Thus, in spite of
the performance benefits, these emphasis se-
lection systems with high-memory footprints
are not suitable for the storage specifications
of mobile devices.

Thus, while keyword extraction systems are
not suitable for short text content, emphasis
selection systems perform much better at such
tasks. However, most existing architectures
of the latter are not light-weight, and thus,
not suitable for on-device inferencing on low-
resource devices. This motivates us to propose
EmpLite, which (a) outperforms keyword ex-
traction systems by using emphasis selection
for use with short texts, and (b) differs from
existing emphasis selection architectures by en-
suring a very light-weight model for efficient
on-device inferencing on mobile devices. Our
decisions towards achieving low model size in-
clude using a subset of GloVe (Pennington
et al., 2014) word embeddings, thus, reduc-
ing embedding size from 347.1 MB to 2.5 MB,
which we discuss in section 4.1.
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Table 2: A short text example from dataset along with its nine annotations

Word A1 A2 A3 A4 A5 A6 A7 A8 A9 Freq [B|I|O] Emphasis Prob (B+I)/(B+I+O)
Kindness B B B O O O B B B 6|0|3 0.666

is O O O O O O I I O 0|2|7 0.222
like O O O O O O I I O 0|2|7 0.222

snow O O B O O O I I O 1|2|6 0.333

3 Data Collection
We use the officially released SemEval-2020
dataset (RiTUAL-UH, 2020), which is the
combination of Spark dataset (Adobe, 2016)
and Wisdom Quotes dataset (Quotes, 2020).
The dataset consists of 3,134 samples labeled
for token-level emphasis by multiple annota-
tors. There are 7,550 tokens with fewer than
10 words in a sample and they are randomly di-
vided into training (70%), development (10%),
and test (20%) sets by the organizers. Table
2 shows a short text example from the train-
ing set, annotated with the BIO annotations,
where ‘B (beginning) / I (inside)’ and ‘O (out-
side)’ represent emphasis and non-emphasis
words, respectively, as decided by an anno-
tator. The last column shows the emphasis
probability for a word, computed as (B+I) di-
vided by the total number of annotators, i.e.
9. We generate data labels for model train-
ing using emphasis probabilities by assigning 0
to low emphasis words (having probability <
thresholdprob) and 1 to high emphasis words
(probability ≥ thresholdprob). We experiment
with different values for thresholdprob and ob-
serve that 0.4 yields the best results.

3.1 Evaluation Metric
The evaluation metric for our problem is de-
fined as follows:

Matchm (shallowLearner, 2020): For each
instance x in the test set Dtest, we select a set
S
(x)
m of m ∈ (1..4) words with the top m prob-

abilities with high emphasis according to the
ground truth. Analogously, we select a predic-
tion set Ŝ

(x)
m for each m, on the basis of the

predicted probabilities. We define matching
score, or Matchm, as:

Matchm =

∑
x∈Dtest

∣∣∣S(x)
m ∩ Ŝ

(x)
m

∣∣∣/m

|Dtest|
(1)

Then, we compute the average rank score by
averaging all possible Matchm scores:

Average Score =

∑
m∈(1..4)

Matchm

4
(2)

3.2 Data Augmentation
There are only 3,134 annotated samples in the
training data, which makes it difficult to im-
prove the accuracy with our neural model. So,
to enlarge the amount of training data, we ex-
periment with four data augmentation strate-
gies (Sun et al., 2020a):

1. Randomly removing ≤ 1 word per sen-
tence,

2. Randomly removing ≥ 1 word per sen-
tence,

3. Upper-casing a word randomly, and

4. Reversing the sentence.

The effect of these techniques on our accu-
racy metric is presented in Section 5.1.

4 System Overview
We begin with a basic model and enhance
that model with contextual information (in
the form of pre-trained embeddings, char-level
embeddings, Parts of Speech Tag concatena-
tion, etc.). We describe the key components
(layers) of our final EmpLite neural network
architecture, as illustrated in Figure 2.

4.1 Character and Word level features
A combination of word-level and character-
level input representations has shown great
success for several NLP tasks (Liang et al.,
2017). This is because word representation is
suitable for relation classification, but it does
not perform well on short, informal, conversa-
tional texts, whereas char representation han-
dles such informal texts very well. To take the
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Figure 2: The proposed EmpLite Model Architec-
ture

best of both representations, our proposed Em-
pLite model employs a combination of word
and character encodings for a robust under-
standing of context.

We used two layers of CNN (Ma and Hovy,
2016) with 1D convolutional layers of filter
sizes 3 and 5 that extracts multiple character-
level representations and handles misspelled
words as well as models sub-word structures
such as prefixes and suffixes. We use the same
number of filters for both convolutional lay-
ers: 16, selected on the basis of experimental
results for optimal accuracy.

The character level embeddings obtained
are then concatenated with pre-trained GloVe
(Pennington et al., 2014) 50-dimensional word
embeddings. Here, we use a subset of the
GloVe embeddings corresponding to training
set vocabulary (4331 words), bringing the em-
bedding size down to 2.5 MB. We do not use
ELMo (Peters et al., 2018) or other deep con-
textual embeddings, as it is not feasible to port
these heavy pre-trained models for on-device
inferencing. In order to handle words not part
of training vocabulary, we use a representa-
tion, <UNK> token. We set the word embedding
layer as trainable as that yields the best score
due to fine-tuning of layer weights on our task.
The ith word encoding, owi , is computed as:

Figure 3: Percentage distribution of top POS tags
in training data and for words with emphasis prob-
ability greater than threshold

owi = concat
(
ewi ,CNN1 (ec1 , ec2 , ..., ecn) ,

CNN2 (ec1 , ec2 , ..., ecn)
)

(3)

where, ewi is the word embedding for each
word, wi, in the dataset and eci is the character
embedding for the input character ci.

4.2 Word level BiLSTM
The concatenated word representations ob-
tained are then passed through a BiLSTM
(Hochreiter and Schmidhuber, 1997) layer with
16 units. The BiLSTM layer extracts the
features from both forward and backward di-
rections and concatenates the output vectors
from each direction. Also, regular and recur-
rent dropouts with value 0.2 are applied to
reduce model overfitting. Let −→r and ←−r be
the forward and backward output states of the
BiLSTM. Then, the output vector, rb, is de-
fined as:

rb =
−→r ⊕←−r (4)

4.3 Part of Speech (POS) Tag feature
Figure 3 illustrates occurrence of top 10 POS
Tags (Marcus et al., 1994) in our training data.
We can infer that POS acts as an important
input modeling feature as words with POS
Tag: Noun (NN, NNP, NNS), Adjective (JJ)
or Verb (VB, VBP, VBG) usually have high
emphasis probability whereas Pronouns (PRP)
and Prepositions (IN) are less likely to be em-
phasized. Therefore, we use 16-dimensional
embedding to encode POS tag information,
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Table 3: Comparison of different model architectures

Model Model Size (MB) Matchm Average Score
m = 1 m = 2 m = 3 m = 4

Base: Word_Emb + BiLSTM + Dense
Layer 1.10 0.479 0.639 0.731 0.785 0.659

Concat[LSTM(Char_Emb) +
Word_Emb] + BiLSTM + Dense Layer 1.10 0.473 0.658 0.739 0.786 0.664

Concat[LSTM(Char_Emb) +
Word_GloVe (Non-trainable)] + BiL-
STM + Dense Layer

1.02 0.514 0.660 0.748 0.795 0.679

Concat[CNN(Char_Emb) + Word_GloVe
(Non-trainable)] + BiLSTM + Dense Layer 1.04 0.523 0.669 0.754 0.801 0.687

Concat[CNN(Char_Emb) + Word_GloVe
(Trainable)] + BiLSTM + Dense Layer 2.70 0.538 0.680 0.766 0.811 0.699

Concat[CNN1 (Char_Emb) + CNN2

(Char_Emb) + Word_GloVe (Train-
able)] + BiLSTM + Dense Layer

2.77 0.528 0.690 0.771 0.810 0.701

Above Model + Attention 2.80 0.549 0.684 0.779 0.817 0.707

EmpLite: Above Model + POS Feature
Concatenation 2.82 0.541 0.698 0.782 0.823 0.711

which is concatenated with the output of the
Bi-LSTM layer (obtained from Equation 4):

−→
h = concat (rb, epos) (5)

where, epos is the POS feature embedding
for the sequence.

4.4 Attention Layer
We add the attention (Vaswani et al., 2017)
layer to effectively capture prominent words in
the input text sequence. The attention weight
is computed as the weighted sum of the output
of the previous layer, as shown below:

Z = softmax
(
wT

(
tanh

(−→
h1,
−→
h2, ...,

−→
hi , ...,

−→
hn

)))
(6)

where, −→hi represents output vector of the
previous layer, and wT is the transpose of the
trained parameter vector.

The attention layer output is then passed
through two time-distributed dense layers
with 12 and 1 units, respectively, with sigmoid
activation function to output emphasis proba-
bility with respect to each word.

5 Experimental Settings & Results
We attempt numerous small changes to our
model to enhance the performance. We
choose the hyperparameters to optimize ac-
curacy while maintaining a small model size.

As the proposed solution is for mobile devices,
we have also captured a system-specific met-
ric, the model size in MB. We use the Tensor-
flow framework (Abadi et al., 2016) for build-
ing the models. Table 3 shows the comparison
of Matchm scores across different variants of
lightweight models evaluated on test data.

The total number of trainable parameters
vary in the range of 21,574 to 238,620 for all
the model results reported in Table 3. We
train the models with 32 batch-size and com-
pile the model using Adam optimizer (Kingma
and Ba, 2014). We observe that using CNN
gives a better score as compared to LSTM be-
cause varying the size of kernels (3 and 5) and
concatenating their outputs allow the model
to detect patterns of multiple sizes.

We can also infer that using 50-dimensional
GloVe embeddings and setting it as trainable
improves the overall matching score. This
is because we are utilizing language semantic
knowledge acquired from the pre-trained em-
beddings and then fine-tuning it for our task.
However, there is an increase in model size
due to more number of trainable parameters.
Furthermore, we observe marginal gains in the
matching score by adding POS tag as a feature
followed by an attention layer as these help in
a better identification of prominent keywords
based on the context.
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Figure 4: Emphasis Heatmap for test set samples with word probabilities from EmpLite

Table 4: Comparison with SOTA (Singhal et al.,
2020)

Model Matchm Size (MB)
IITK: BiLSTM + Attention
Approach 0.747 469.20

IITK: Transformers Approach 0.804 1536.00

EmpLite 0.716 2.82

Figure 4 presents the Emphasis Heatmap for
some examples from the test set using our fi-
nal model. In Table 4 we benchmark our Em-
pLite model with the state-of-the-art solution
by IITK (Singhal et al., 2020) which utilized
huge pre-trained models like ELMo, BERT
(Devlin et al., 2018), RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). These
models require huge RAM/ROM for on-device
inferencing making it unsuitable for edge de-
vices where resources are constrained.

Table 5: Data Augmentation Analysis

Augmentation Dataset Matchm

Approach modified (%) Score
None 0 0.711

Word removal
(≤1 per sentence)

20 0.705
50 0.702
100 0.716

Word removal
(≥1 per sentence)

20 0.711
50 0.704
60 0.712
70 0.705

Upper-casing a word 30 0.687

Reversing the sentence 10 0.704
100 0.707

5.1 Data Augmentation Analysis
Table 5 shows that there is a little score gain by
applying data augmentation techniques. For
each strategy, we experiment by applying the

augmentation approach to different percent-
ages of the total training data and calculated
Matchm score. We observe that word upper-
casing strategy results in a significant drop
in the score due to model overfitting whereas
word removal strategy (maximum 1 word per
sentence) on entire training data gives highest
Matchm score of 0.716.

6 Conclusion

Modeling lightweight neural models that can
run on low-resource devices can greatly en-
hance the end-user experience. In this work,
we propose a novel, lightweight EmpLite
model for text emphasis selection that can run
on edge devices such as smartphones for choos-
ing prominent words from short, informal text.
We approach the emphasis selection problem
as a sequence labeling task and multiple exper-
iments have shown consistent improvement in
the accuracy. Our experimental results show
the impact of the attention layer and of using
POS as an additional feature in boosting the
matching score. Our best performing model
achieves an overall matching score of 0.716
with a size of 2.82 MB, proving its effective-
ness to run on low-resource edge devices.

Future work includes increasing the vocabu-
lary with commonly used words in English and
exploring thin versions of BERT like Distil-
BERT (Sanh et al., 2019), MobileBERT (Sun
et al., 2020b), and TinyBERT (Jiao et al.,
2020) for modeling emphasis.
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