A Graph Convolution Network-based System for Technical Domain
Identification

Alapan Kuila, Ayan Das and Sudeshna Sarkar
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur,
Kharagpur, WB, India-721302
{alapan.kuila, ayan.das, sudeshnal}@cse.iitkgp.ac.in

Abstract

This paper presents the IITKGP contribu-
tion at the Technical DOmain Identification
(TechDOfication) shared task at ICON 2020.
In the preprocessing stage, we applied part-of-
speech (PoS) taggers and dependency parsers
to tag the data. We trained a graph convo-
lution neural network (GCNN) based system
that uses the tokens along with their PoS and
dependency relations as features to identify the
domain of a given document. We participated
in the subtasks for coarse-grained domain clas-
sification in the English (Subtask 1a), Bengali
(Subtask 1b) and Hindi language (Subtask 1d),
and, the subtask for fine-grained domain classi-
fication task within Computer Science domain
in English language (Subtask 2a).

1 Introduction

Text classification is the task of assigning a cate-
gory to a given piece of text based on its content
from a predefined set of categories (Aggarwal and
Zhai, 2012; Kowsari et al., 2019). It is a fundamen-
tal natural language processing (NLP) task with
several downstream applications such as sentiment
analysis, topic labeling and machine translation.

The ICON 2020 shared task on technical do-
main identification is essentially a text classifica-
tion problem which involves identification of the
technical domain in which a document belongs to
a fixed set of domains. In this task, the participants
are expected to develop a system that automatically
identifies the technical domain of a given text (a
small passage) in specified language.

We participated in the following subtasks:

1. Subtask 1a: Coarse grained domain classifi-
cation in English.

2. Subtask 1b: Coarse grained domain classifi-
cation in Bengali.

6

3. Subtask 1d: Coarse grained domain classifi-
cation in Hindi.

4. Subtask 2a: Fine grained domain classifica-
tion within Computer Science domain in En-
glish.

We applied PoS tagging and dependency parsing
on the training and test data using PoS taggers and
dependency parsers in the corresponding languages.
We have used the PoS tags and the dependency
relations of the tokens with their parent nodes in
the dependency trees as features of the tokens in
our system.

In the domain identification stage, the techni-
cal domain of a document is predicted from the
representation of the document obtained using a
GCNN, that takes the contextual representations of
the constituent tokens of the document and a graph
representation of the document as input. The con-
textual representations of the tokens are obtained by
using a multi-layer bi-directional long-short term
memory (LSTM) (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997) that takes the
representations of the tokens as input.

Corresponding to each subtask we submitted sin-
gle runs of the systems.

2 Our Proposed Model

In this section, we will discus our proposed tech-
nical domain identification system in detail. The
steps for predicting the domain of a given docu-
ment are as follows.

S1. We partitioned the document into constituent
sentences and tokenized each sentence into its
constituent words.

S2. We PoS tagged and dependency parsed each
sentence.

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 6—10
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

S3. We obtained the contextual representation of
each token in the document by applying a
multi-layer bi-directional LSTM on the repre-
sentations of the tokens where we considered
the entire document as a single sequence.

S4. We used the contextual representations of the
tokens obtained in the previous step and the
graph representation of the document as input
to a GCNN to obtain the final feature repre-
sentation of each word.

S5. We combined the final feature representations
of the tokens to derive the document represen-
tation.

S6. We passed the document representation as
input to a multi-layer perceptron (MLP) fol-
lowed by a softmax layer to predict domain of
the document.

2.1 Partitioning of Document into Sentences
and Tokenization

We derived the sentences from the documents by
partitioning the document on the following charac-
ters: ., “?” and “!”. The sentences were tokenized
based on spaces. The tokens are essentially the
space separated word in the sentences.

2.2 PoS Tagging and Dependency Parsing of
Sentences

Before training or testing we PoS tagged and de-
pendency parsed the sentences. We PoS tagged
and parsed the English sentences in the subtasks
la and 2a using the SpaCy library (Honnibal and
Johnson, 2015; Honnibal and Montani, 2017). The
Bangla and Hindi sentences for the subtasks /b and
1d respectively were PoS tagged and dependency
parsed using a LSTM based sequence tagger (Qi
et al., 2018) and a bi-affine graph based depen-
dency parser (Dozat et al., 2017). The Bangla tag-
ger and parser were trained using a Bangla treebank
developed in our institute. The Hindi tagger and
parser were trained using the Universal Dependen-
cies v2.0 Hindi treebank (Nivre et al., 2016).

2.3 Generation of Contextual Representation
of Tokens

We obtained the contextual representation of the
tokens in a document by passing the distributed
representations of the tokens in the document as
input to a 3-layer bi-directional LSTM. Here we
treated the entire document as a sequence. Each

token is represented as the concatenation of the
embedding of the token, the embedding of its PoS
tag, the embedding of its dependency relation with
its parent in the dependency tree of the sentence,
and, the character-level representation of the word
obtained by applying a convolutional neural net-
work (Goodfellow et al., 2016) on the embeddings
of the constituent characters of the token.

All the embeddings were randomly initialized
and updated during training phase.

2.4 Graph Convolution Neural Network to
Generate the Document Representation

In this section, we discuss the implementation of
GCNN (Kipf and Welling, 2016) used in our sys-
tem.

2.4.1 Input Layer

The input to the the GCNN comprises of the contex-
tual representations of the tokens in the document
and the directed graph representation of the docu-
ment in the form of an adjacency matrix.

2.4.2 Graph Construction

The number of nodes |V| in the document graph is
the total number of tokens contained in the docu-
ment and the graph edges are represented by var-
ious intra- and inter-sentence dependency edges
which are discussed below.

* Syntactic dependency edges: The edge set
comprises of the edges between all token pairs
that are linked by head-dependent relations in
the dependency tree of the corresponding sen-
tence. To consider that the information flows
in both forward and backward directions of
syntactic dependency arcs, we included both
forward and backward edges in the graph edge
set. More precisely, if there is an arc from a
token ¢; to a token ¢; in the dependency tree,
then A(4,j) = 1 and A(j,7) = 1.

* Adjacent sentence edges: In order to keep
sequential information flows through the con-
secutive sentences we also connected the root
nodes of the neighbouring sentences. There-
fore, Aqqgi(i,7) = 1 and Agq(j,i) = 1, if
the tokens ¢; and ¢; are the root nodes of the
consecutive sentences.

* Self-node edges: We also include self node
edges in the graph. Therefore, for all the to-
kens ¢; in the document, A i, i)=1.

2.4.3 GCNN Layer

GCNN is an advanced version of CNN operating
on graphs that induce the node features based on
the properties of their neighbouring nodes. GCNN
with one layer of convolution can capture informa-
tion of only immediate neighbours. When multiple
GCNN layers are stacked, information from larger
neighbourhoods are accumulated. Let A be the
adjacency matrix of the text-graph. A contains the
edges as stated in Section 2.4.2 and the adjacency
matrix is of the dimension |V| x |V, where |V| is
the number of tokens in the document. After stack-
ing k GCNN layers we get the adjacency matrix for
the k-th-order text graph A*, where, A*¥ = (A)*.
AF holds all the k-hop paths in the text-graph. The
ith word representation of the (k + 1)-layer text-
graph (A¥) is calculated as:

hi = g(hi, A")

where, g(.) refers to the graph convolution function
and + indicates element wise summation operation.
The function g(.) is defined as:

4

g (nt.A) = a(jzzjlm’“(z‘,j)(vvﬁ EA))

Here, o indicates the ReLLU activation function.
Wk and b% are the weight matrix and bias item for
Ak,

The initial value of the representation of the i
token h? is the contextual representation of the
token ¢; from the output of the LSTM (Section 2.3).

In our system we have trained a stacked GCNN
of 3 blocks. The model architecture is shown in
Figure 1.

Intermediate
Input word hidden

vectors representation

at

second 3 layer 3 layer graph MLP
stage Bi-LSTM +
the network Softmax
nal
class

data

becomes

quantitative

1 1

Figure 1: Block diagram of our proposed model

Sub- cl # of docs.
task asses Train Dev | Test
cse, che,
physics,
la law, math 23962 | 4850 | 2500
bioche, mgmt,
com_tech,
1b phy, cse 58500 | 5842 | 1921
other, mgmt, phy,
com_tech, cse,
1d math, bioche 148445 | 14338 | 4211
ca, se, algo, cn,
2a pro, ai, dbms 13580 1360 | 1929

Table 1: Statistics of datasets for the different subtasks

Training settings
Cross-entopy over
Loss function the domain classes
Adam (Ir=1e-4,
Optimizer eps=0.1)
System settings
Token embeddings 140
PoS embeddings 20
Relation embeddings 20
Character embeddings 20
of char CNN kernel 3
of char CNN filter 30
LSTM layers 3
LSTM hidden size 100
GCNN stack 3
GCNN size 500, 200, 200
Dropout rate 0.25

Table 2: System settings and hyper-parameters

2.5 Document Representation and Domain
Prediction

A representation of the document is obtained as
the point-wise mean of the token representations
obtained as the output of the GCNN (Section 2.4).
Finally, the document representation is passed as
input to a MLP layer followed by a softmax layer.
The output of the softmax layer is a probability
distribution over the possible domain classes. The
class label with the highest probability value is
predicted as the class of the document.

3 Data Description

The statistics of the data corresponding to the dif-
ferent subtasks in which we have participated are
summarized in Table 1.

Subtask Accuracy Precision Recall F1-score
GCN Best GCN Best GCN Best GCN Best
Subtask-la | 0.6564 | 0.8156 | 0.6850 | 0.8155 | 0.6564 | 0.8156 | 0.6560 | 0.8144
Subtask-1b | 0.6878 | 0.8335 | 0.7432 | 0.8420 | 0.7023 | 0.8515 | 0.6897 | 0.8353
Subtask-1d | 0.4656 | 0.6117 | 0.4706 | 0.6478 | 0.4523 | 0.5989 | 0.4523 | 0.6044
Subtask-2a | 0.7029 | 0.8252 | 0.7021 | 0.8265 | 0.7034 | 0.8252 | 0.7008 | 0.8244

Table 3: Performance of our system for the different subtasks and comparison with overall best performing systems.
The column heading GCN indicates our system and Best indicates overall best performing system.

4 Training Setup

In this section we present the settings and hyper-
parameters used in our domain prediction system.
In Table 2 we summarize the system settings.

5 Results

In this section, we present the performance of our
systems corresponding to the different subtasks. In
Table 3 we present the performance of our systems
in terms of their accuracy, precision, recall and F1-
score on the test data and compare them with the
best results achieved for that subtask.

the contextual information from those single
sentences. For example:

* S3: Why that is what is the reason why?

System has failed to classify the domain of
these sentences properly. From these errors,
it is evident that the problem of domain selec-
tion (among highly related classes) is really a
challenging task. The accuracy and F-1 score
of our system are also lower than the best sys-
tem submitted. In future we will apply some
other data processing techniques and smarter
machine learning models to improve our per-

formance.
6 Error Analysis
We have inspected the outputs of our system on the
development set. Thorough error analysis has re- References

vealed several type of errors. Aside from the errors
propagated from the PoS tagger and dependency
parser, some of the errors generated in the output
are discussed bellow:

1. As some of the classes are very related and
lots of common terms exist in some of these
classes, the system has confused to detect the
correct class.

* S1: and so we have shown e i square of
xiseiof x forall x .

* S2: so, grad f at r t naught is a vector ,
whose dot product with any tangent vec-
tor is 0.

These instances are from Subtask la. S1
is detected as physics (actual class: math)
where as S2 is detected as math (actual class:
physics). Same errors happen in case of Sub-
task 1b for classes: cse (Computer Science)
and com_tech(Communication Technology)

2. Most of the candidate texts are single sen-
tences. Sometimes system has failed to iden-
tify the correct class as it could not understand

Charu C. Aggarwal and ChengXiang Zhai. 2012. A
survey of text classification algorithms. pages 163—
222.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735-
1780.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373—-1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

http://dblp.uni-trier.de/db/books/collections/Mining2012.html#AggarwalZ12b
http://dblp.uni-trier.de/db/books/collections/Mining2012.html#AggarwalZ12b
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura E. Barnes, and Don-
ald E. Brown. 2019. Text classification algorithms:
A survey.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji¢, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659-1666, Por-
toroZ, Slovenia. European Language Resources As-
sociation.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160-170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673-2681.

http://arxiv.org/abs/1904.08067
http://arxiv.org/abs/1904.08067
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093

