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Abstract

Knowledge Graph (KG) Embedding methods
have been widely studied in the past few years
and many methods have been proposed. These
methods represent entities and relations in the
KG as vectors in a vector space, trained to dis-
tinguish correct edges from the incorrect ones.
For this distinction, simple functions of vec-
tors’ dimensions, called interactions, are used.
These interactions are used to calculate the
candidate tail entity vector which is matched
against all entities in the KG. However, for
most of the existing methods, these interac-
tions are fixed and manually specified. In this
work, we propose an automated framework for
discovering the interactions while training the
KG Embeddings. The proposed method learns
relevant interactions along with other parame-
ters during training, allowing it to adapt to dif-
ferent datasets. Many of the existing methods
can be seen as special cases of the proposed
framework. We demonstrate the effectiveness
of the proposed method on link prediction task
by extensive experiments on multiple bench-
mark datasets.

1

Knowledge Graphs (KGs) such as NELL (Mitchell
et al., 2015), Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007), etc. have been very
popular in supporting many Al applications like
Web Search Query Recommendation (Huang et al.,
2016), Question Answering (Yao and Van Durme,
2014), Visual Question Answering (Shah et al.,
2019) etc. KGs are multi-relational graphs con-
taining entities as nodes and typed relations be-
tween entity pairs as edges. These graphs store
real-world facts such as (Lionel Messi, plays-for-
team, Argentina National Football Team) as edges,
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Figure 1: Some examples of interactions between two
vectors. While additive and multiplicative interactions
depend only on the input vectors, the fully connected
(FC) interactions have trainable weights, allowing it to
adapt to different datasets. In this example, additive
interaction a + x can be achived by FC interaction by
setting w11 = wyg = 1 and wye = wi4 = 0. Similarly,
the multiplicative interaction ax can be achieved by set-
ting w11 = 0.5z and w13 = 0.5a and other weights as
Zero.

also called triples. In spite of their popularity, they
suffer from incompleteness (Dong et al., 2014), and
it becomes important to predict the missing edges
in the graph. The task of predicting missing edges
in a KG is called link prediction.

Knowledge Graph Embedding (KGE) methods
have been a popular approach for the link predic-
tion task. Most of these methods learn vectorial
representations for entities and relations in the KG.
A score function is then used to distinguish correct
triples from the incorrect ones. Given a triple of the
form (h, r, t) where h, r and ¢ are the head entity,
relation, and the tail entity, a score function assigns
a real-valued score to the triple. These score func-
tions depend upon the interactions of dimensions
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Figure 2: The block diagram of the Adaptive Interac-
tion Framework. The interaction layer extracts inter-
actions vy, from head entity v; and relation vector v,..
The prediction layer calculates a candidate tail entity
vector ¥y which is then matched with existing tail en-

tity vector v; using the matching layer to produce a real
valued score.
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of vectors for h and . Some examples of interac-
tions are given in Figure 1. TransE (Bordes et al.,
2013) uses the additive interactions while DistMult
(Yang et al., 2014) uses the multiplicative interac-
tions. However, these interactions are fixed for a
given method and are not learnable. This restricts
models’ capability to weigh entities and relations
differently, and hence, from adapting to different
datasets. For instance, relations in Freebase like
place_of _birth give much more information about
head and tail entities compared to relations like
_similar_to, _hypernym in WordNet. Thus, learn-
ing these interactions while training can enable the
model to adapt to different datasets.

We address this issue in this paper and propose
a novel adaptive framework that allows learning
these interactions directly from the data during
training. The proposed framework is capable of
weighing entities and relations differently by using
a fully connected interaction layer. It allows the
proposed method to adapt to different datasets by
learning dataset-specific interactions. By extensive
experiments on multiple benchmark datasets, we
show the effectiveness of the proposed method on
the link prediction task. We also demonstrate that
the proposed method assigns different weights to
entities and relations by learning dataset-specific
interactions.

In summary, we make the following contribu-
tions:

e We propose an adaptive interaction framework
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that can discover relevant interactions of em-
beddings from data. We show that many of
the existing methods can be seen as special
cases of the proposed framework.

Based on this framework, we propose two new
models FCE and FCConvE which outperform
the baseline models on link prediction task
across commonly used benchmark datasets.

We also present a method to analyse the fully
connected interactions and use it to compare
the interactions learned by FCConvE for dif-
ferent datasets.

Notations: A Knowledge Graph is represented by
G = (£,R,T) where £ is the set of entities, R
is the set of relations and 7 C £ X R x & is the
set of triples stored in the graph. Most of the KG
embedding methods learn vectors v, € R% for
e € & and v, € R% for r € R. Some methods
also learn projection matrices M, € R%*de for
relations. The correctness of a triple is evaluated
using a model specific score function score : £ x
R x € — R. For learning the embeddings, a loss
function £(7,7T";0), defined over a set of positive
triples 7, a set of (sampled) negative triples 7,
and the parameters 6 is optimized. I; denotes the
d x d identity matrix while 04 denotes the d x d
zero matrix. diag(v) denotes a diagonal matrix
created from vector v. All vectors are assumed to
be column vectors including the concatenation of
vectors [v1; v2; . . . vk]. In case of matrix, [M7; My
denotes the block matrix consisting of blocks M7
and M.

2 Related Work

The problem of learning KG Embeddings for link
prediction has been very popular in the last few
years. Based on the score function, these meth-
ods can be broadly grouped into three categories,
namely Additive, Multiplicative and Neural mod-
els.

2.1 Additive Models

This is the class of methods where the vectors inter-
act via additive operations after an optional projec-
tion operation. One of the simple and popular addi-
tive models is TransE (Bordes et al., 2013) where
the entity and relation vectors lie in the same vec-
tor space. The relation vector acts as a translation
from the head entity vector to the tail entity vector.
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Figure 3: Architecture diagrams for FCConvE (left) and FCE (right). Please refer to Section 3.3 and Section 3.4

for more details.

SE (Bordes et al., 2011) is another model that uses
relation specific similarity between head and tail en-
tity vectors. Following the ideas of translation and
projection, many different methods have been de-
veloped. These include TransH (Wang et al., 2014),
TransR (Lin et al., 2015), STransE (Nguyen et al.,
2016), ITransF (Xie et al., 2017), etc. These meth-
ods can only extract a restricted set of interactions
from the vectors.

2.2 Multiplicative Models

In this class of methods, the vectors interact via a
multiplicative operation. One of the initial mod-
els in this category is RESCAL (Nickel et al.,
2011), which is based on tensor factorization. It
models entities as vectors while relations as ma-
trices. DistMult (Yang et al., 2014) is a special
case of RESCAL where the relations matrices are
restricted to be diagonal. However, DistMult score
function is symmetric and hence it can not handle
asymmetric relations. To alleviate this issue, HolE
(Nickel et al., 2016) was proposed which uses cir-
cular correlation operation between head and tail
entity vectors. ComplEx (Trouillon et al., 2016)
addresses the same issue by modelling vectors in
the complex domain. The asymmetry of complex
dot product allows it to handle symmetric, asym-
metric as well as anti-symmetric relations with the
same score function. SimplE (Kazemi and Poole,
2018) is a more recent model based on tensor fac-
torization which can express all types of relations.
RotatE (Sun et al., 2019) is another model which
uses complex vectors for representation. It models
relation vectors as rotations from head to tail entity
vector and then uses L1-norm based distance as
score function. Similar to additive models, multi-
plicative models are also restricted in terms of the
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interactions they can extract.

2.3 Neural Models

There are many models that use various neural
network architectures for learning KG Embed-
dings. Some of these models are NTN (Socher
etal., 2013), ER-MLP (Dong et al., 2014), CONV
(Toutanova et al., 2015), ProjE (Shi and Weninger,
2017), R-GCN (Schlichtkrull et al., 2017), ConvE
(Dettmers et al., 2018), R-MLP-2n (Ravishankar
et al., 2017), KG-BERT (Yao et al., 2019), Inter-
actE (Vashishth et al., 2020), etc. Unlike other
methods, KG-BERT uses word embeddings for en-
coding entities and relations. Therefore, the interac-
tions of entity and relation vectors are not directly
clear. Among the rest of the models, ProjE can
extract interactions only from entity or relation vec-
tors but not both. ConvE can extract interactions
from both, entity as well as relation vectors, but
they are extracted using predefined permutations.
InteractE exploits more sophisticated interactions
using feature permutation, checkered reshaping,
and circular convolution resulting in improved per-
formance. However, these methods depend on a
fixed set of interactions defined by the model and
can not adaptively learn these interactions during
training.

As described in the next section, the models pro-
posed in this paper are neural models that can adap-
tively learn the interactions from the entity as well
well as relation vectors using a fully connected
interaction layer.

3 Proposed Method

3.1 The Adaptive Interaction Framework

As shown in Figure 2, it consists of the following
three components



Type Model Score Function o (h,7,t) Interactions
SE (Bordes et al., 2011) — || M on — vath Manual
Additive TransE (Bordes et al., 2013) —llvn +vr — v, Manual
TransR (Lin et al., 2015) — [[Mron + vr — Mrve||, Manual
STransE (Nguyen et al., 2016) — ||M£vh + vy — vat ||p Manual
DistMult (Yang et al., 2014) (vr, (vh, © V) Manual
Multiplicative HolE (Nlckél et al., 2016) (vr, (vn * vt)>7 Manual
ComplEx (Trouillon et al., 2016) Real((vy, (vr © %)) Manual
RotatE (Sun et al., 2019) — v © vp — vt||p Manual
Neural ER-MLP (Dong et al., 2014) o((B,0(A X [vn;vr;ve]))) Automatic
ConvE (Dettmers et al., 2018) (o(vec(o(T(vnr) * Q)U), ve) Manual
Adaptive Interactions Models FCE (This Paper) (oW x [n; or]), vr) Automat%c
FCConvE (This paper) (o(vec(o(T(a(W X [vp;vr])) * Q))U),ve)  Automatic

Table 1: Summary of various Knowledge Graph (KG) embedding methods mentioned in the paper. Here vy, v.., v¢
denote the head entity, relation and tail entity vectors respectively. M,., M, M? represent the relation specific
projection matrices. |-, denotes the L1-norm (p = 1) or L2-norm (p = 2). (-, -), ®, + and * represent the inner
product, the Hadamard product, circular correlation and convolution operations respectively. A and [ represent
the first and second layer weight matrices in ER-MLP respectively. {2 represents the convolution filters while U
represents the final projection matrix in ConvE. 7(vy,.) is a reshaped permutation of [vy,; v,.] with optional repetition.
vec denotes vectorization step followed by an activation function o. Please refer to Section 2 for more details.

3.1.1 Interaction Layer

This layer extracts the interactions between the
head entity and relation vectors which are later
used for predicting tail entities. The interactions
are extracted using a fully-connected (FC) layer:

(D

Vpr = o(W, X [op; o)),

where o is an activation function. In the general
case, W, is R x(detdr) where d; 1s the dimension
of the interaction layer. A special case of interac-
tion layer is when W, = W,V r € R which avoids
over-parameterization. We use this special case for
our experimentations.

3.1.2 Prediction Layer
This layer predicts a vector v; for the candidate tail
entity as

2)

where the function g depends on the method. Many
of the methods like TransE and DistMult use iden-
tity function. For our experiments, we use ConvE’s
(Dettmers et al., 2018) architecture for this step.

QA}t = g(vhr)a

3.1.3 Matching Layer

This is the final layer where the predicted tail entity
is matched against a given tail entity producing
the final score for the triple. The score function is
given as

score(h,r,t) = f(0g,v¢).

3)
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Again, the matching function f is method depen-
dent. We use the vector dot product for matching.

3.2 Existing models as special case

In this section, we demonstrate how the proposed
framework generalizes many of the existing mod-
els. The score functions for these models can be
found in Table 1.

TransE: In TransE, the entities and relations lie
in the same d. = d, = d dimensional space RA.
The interaction matrix is W, = [Iy; I;] with iden-
tity activation while the tail prediction function
Uy = g(vpy) = vp, is the identity function. The
matching function takes the form of a vector norm
=119 = vell -

STransE: STransE (Nguyen et al., 2016) general-
izes many translation-based models like TransH
(Wang et al., 2014) and TransR (Lin et al., 2015)
by using two relation specific projection matrices,
M} for head and M? for tail entities. The inter-
action matrix is W, = [M}; I, ] while the acti-
vation and prediction functions are identity func-
tions. The matching function takes the form of
o~ M2,

DistMult: For DistMult (Yang et al., 2014), the
interaction matrix is W, = [diag(v,), 04] while
the activation and prediction functions are identity
functions. Vector dot product between o, and vy is
used as matching function.

ConvE: ConvE (Dettmers et al., 2018) is a recent



FBISK FB15K-237 WNI18 WNISRR

#Entities 14,941 14,541 40,943 40,943
#Relations 1,345 237 18 11
#Train 483,142 272,115 141,441 86,835
#Validation 50,000 17,535 5,000 3,034
#Test 59,071 20,466 5,000 3,134

Table 2: Details of the datasets used in our experiments

model which uses a convolution network for ex-
tracting features from the interactions and then pre-
dicting the tail entity. Here, the interaction matrix
is a fixed and manually specified permutation ma-
trix, used for dimension shuffling in ConvE. Please
note that the interaction matrix is shared among all
relations. The prediction function is the 2D convo-
lution network applied on the interactions vector
vy, while dot product between 0, and v; is used for
matching.

Based on the proposed framework, we present
two new models FCConvE and FCE in the follow-
ing sections. Their architecture can be found in
Figure 3.

3.3 FCConvE

One issue with the existing methods is that the inter-
actions are either fixed or it requires to be specified
manually. For example, in the case of ConvE the
permutations are specified by the user. This leaves
the choice of interactions to the user and also does
not specify which ones are better than others. Also,
the performance on the link prediction task varies
with different choices of permutations in ConvE.
Hence it will be useful if the optimal interactions
can be learned directly from the dataset.

FCConvE addresses this exact issue and allows
the model to learn the appropriate interactions
while training. It achieves this by using interac-
tion matrix W, = W,Vr € R as model parame-
ter. Since many of the existing interactions can be
achieved using different VW matrices, the proposed
model is capable of choosing the optimal interac-
tions by itself. The score function for FCConvE
can be given as follows:

score(h,r,t) = (o(vec(a(T(vp,) * Q)U), ve),
“4)
where vy, is given by (1). As compared to ConvE,
FCConvE contains approximately O(d; x (2d +
d,)) more parameters due to the interaction and
projection layers weights.
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34 FCE

We experiment with a modification of DistMult
named DistMult-BCE which uses Binary Cross En-
tropy (BCE) loss instead of margin-based ranking
loss used in (Yang et al., 2014). We also introduce
its adaptive interactions variant FCE (Fully Con-
nected Embedding) which uses an FC layer as in
(1) for interactions instead of Hadamard product
between vy, and v,.. The score function for FCE
can be given as follows:

score(h, Ty t) = <U(W X [Uh; UT])’ Ut>' (5)

We use ReLLU for the activation function . Please
note that, similar to DistMult, entity and relation
vectors lie in same d. = d, = d dimensional space
R The interaction vector vy, also lies in the
same space RY (ie. d; = d). Unlike DistMult,
the interaction matrix W € R%*? is shared across
relations. In terms of model size, FCE contains
di X (de +d,) = 2d% more parameters as com-
pared to DistMult.

3.5 Analysing Interactions using NAIW

In this section, we introduce a novel method to
analyse fully connected interactions. As mentioned
in previous sections, the interaction weight matrix
W in FCConvE as well as FCE is shared among
all relations i.e. W, = W,Vr € R. This inter-
action weight matrix can be split into two parts,
W = [W‘S;WR],WS c RdiXde,WR c R xd-r
corresponding to the head entity and the relation
vectors respectively. The equation for the interac-
tion layer can be re-written as follows:

vpr = o(WEu, + WR,). (6)

The values in W¢ and W™ represent the im-
portance of various dimensions of the head entity
and relation vectors. We use the absolute values
of these weights for comparing the importance of
entity and relation. Specifically, we use the Nor-
malized Absolute Interaction Weights (NAIW) as
defined below for comparing the weights corre-
sponding to entities and relations.

d

Ve = Z AbsoluteValue(W¢[:, 5]),
j=1 (7)
Vg
NAIWS = ——
max(V€)’

where V€ € R% is a vector containing sum of
absolute interaction weights across dimensions of



FB15K-237 WN18RR

Model MR| MRR?T HitsT MR| MRR?T Hits?

@1 @3 @10 @1 @3 @10
DistMult (Yang et al., 2014) 254 24.1 155 263 419 5110 43.0 39.0 44.0 490
ComplEx (Trouillon et al., 2016) 339 24.7 158 27.5 428 5261 44.0 41.0 46.0 51.0
R-GCN (Schlichtkrull et al., 2017) - 24.8 153 258 41.7 - - - - -
ConvE (Dettmers et al., 2018) 244 32.5 237 356 50.1 4187 43.0 40.0 44.0 52.0
DistMult-BCE 318 30.1 21.6  33.0 469 7037 41.0 38.6 41.6 46.0
FCE 331 30.6 21.7 337 48.6 4732 41.3 38.2 422 475
FCConvE 255 35.5 264 391 540 4103 46.1 42.8 47.7 52.7

FB15K WN18

Model MR| MRR?T HitsT MR| MRR? Hits?

@1 @3 @10 @1 @3 @10
TransE (Bordes et al., 2013) - 46.3 29.7 57.8 749 - 49.5 11.3  88.8 943
DistMult (Yang et al., 2014) 97 65.4 546 733 824 902 82.2 728 914 936
ComplEx (Trouillon et al., 2016) - 69.2 599 759 84.0 - 94.1 93.6 93.6 94.7
R-GCN (Schlichtkrull et al., 2017) - 69.6 60.1 76.0 84.2 - 81.4 69.7 929 964
ConvE (Dettmers et al., 2018) 51 65.7 55.8 723 83.1 374 94.3 93.5 946 956
DistMult-BCE 115 73.3 66.8 778 849 671 83.9 748 92,6 947
FCE 108 74.6 67.8 79.5 86.1 516 94.2 93.6 945 952
FCConvE 67 71.7 63.4 773 85.6 440 94.8 943 951 955

Table 3: Link prediction results on benchmark datasets. Here 1 indicates higher values are better while | indicates
lower values are better. The adaptive interaction versions of the models FCConvE and FCE outperform the cor-
responding baseline models ConvE and DistMult-BCE in all the datasets. They also outperform other methods
across all datasets. Results for the baseline models except TransE were taken from (Dettmers et al., 2018). For
TransE, we have taken the results from (Nickel et al., 2016). We have also included results for a modification of
DistMult called DistMult-BCE. Please refer to Section 4.2 for more details.

head entity. It denotes the importance of the head
entity for each unit in the interaction layer. We
normalize this vector such that the values lie in
[0, 1] range. This allows us to compare this value
across datasets. Similarly, we can calculate V™ and
NAIW™ which denote the importance of relation
for units in the interaction layer.

Each value in the NAIW vector represents the
importance of entities (for NAIW® ) or relations
(for NAIW™) for the link prediction task. Thus,
comparing these values helps us understand the
relative importance of entities and relations for dif-
ferent datasets. Since a comparison of individual
interaction units may be inconclusive, we compare
their distributions. We estimate the distributions'
of NAIW¢ and NAIW™" and compare them across
multiple datasets. These distributions allow us to
compare the importance of the entity and relation
for the link prediction task.

"We use gaussian_kde function from SciPy library for
estimating distributions.

65

4 Experiment Results

In this section, we evaluate the proposed method
on the link prediction task and compare it against
the baselines. The details of the datasets used for
evaluation are given in Table 2. We provide the
implementation details followed by the results in
the following sections.

4.1 Implementation details

In our experiments, we use 200-dimension embed-
dings for both entity as well as relations. For select-
ing other hyper-parameters, we use cross-validation
using the MRR on validation split of the data. Sim-
ilar to ConvE, we use dropouts and batch normal-
ization at input, convolution and final projection
layer. The corresponding dropout probabilities are
selected from [0.1, 0.2, 0.3], [0.2, 0.3, 0.4] and [0.4,
0.5, 0.6] respectively. For the interaction layer, we
use 5000 dimensions reshaped to 25 x 10 x 20
before applying convolution. Unlike ConvE, FC-
ConvE uses depthwise group convolution. The
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Figure 4: Distributions of the Normalized Absolute Interaction Weights for entities and relations learned by FC-
ConvE on different datasets. The means of these distributions are shown as a dashed (for Entity) or dotted (for
Relation) vertical lines along with their values. The datasets are arranged according to decreasing order of number
of relations from left to right. As we can see, for lower number of relations, the difference in weights for entities
and relations are much higher. Please refer to Section 4.3 for more details.

filter size for convolution is selected from [3 X 3,
5 x b]. For optimization, we use Adam optimizer
with an initial learning rate of 0.001. We use early
stopping using MRR on validation split with the
maximum number of epochs set to 100. The best
model is then run for 1000 epochs? and final per-
formance is reported. We use 500 negative samples
per correct triple. For head entity prediction, we
follow ConvE and use reversed relations during
training as well as evaluation. The embeddings are
trained using binary cross-entropy loss.

4.2 Link Prediction

Given a test or validation triple, we score the head
entity and relation against all entities and report the
rank of the correct tail entity. A similar strategy is
used for head entity prediction except that we use
reverse relation vectors. The model’s performance
is evaluated on both head as well as tail entity pre-
diction and the average performance is reported.
Similar to previous work, we use filtered setting,

>We pick the model from the epoch with the best validation
split MRR, and it need not be the final epoch.
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i.e., we exclude all triples appearing in train, test
or validation split while ranking. We report Mean
Reciprocal Rank (MRR), Mean Rank (MR) and
Hits@k for k=1, 3, 10 on test split. The results can
be found in Table 3.

For comparison, we use a few representative
baselines from each category of the models. Specif-
ically, we use TransE for additive models, DistMult
and ComplEx for multiplicative models, and R-
GCN and ConvE for neural models. Please note
that our goal is to compare a model with its adap-
tive interaction version, instead of comparing all
available models.

We observe from the results that the proposed
adaptive interaction versions of the models out-
perform the corresponding baseline models in all
the datasets. FCConvE significantly outperforms
ConvE in all the datasets except WN18 where the
performance is comparable. Similarly, FCE signifi-
cantly outperforms DistMult-BCE in WN18 while
showing marginal improvements is other datasets.
Also, they outperform other methods on the link
prediction task across all the datasets suggesting



that the proposed approch is able to adapt to dif-
ferent datasets resulting in performance improve-
ments.

It should be noted that ConvE would struggle
to differentially weigh entity and relation vector
dimensions due to the sharing of convolution fil-
ters. Adding an FC interaction layer allows it to
prioritize between entity and relation vectors result-
ing in better performance of FCConvE. We also
observe that the DistMult-BCE model significantly
outperforms the DistMult model in FB15K and
FB15K-237 which suggests the BCE loss with mul-
tiple negative samples improves performance.

Among the metrics used in Table 3, MR is more
sensitive to outliers (i.e., large values of ranks) than
others. We observe that the proposed approaches
achieve improvements in MRR and Hits @k, but
not MR for many datasets. It suggests that the
proposed methods are effective in bringing more
cases into the high-rank region, which could be a
desirable property in many applications.

4.3 Interactions Analysis

In this section, we analyse the interactions learned
by FCConvE on different datasets. We use the
distributions of NAIW¢ and NAIW™, as defined
in Section 3.5 and compare them. The results are
shown in Figure 4.

As we can see from Figure 4, the distributions
of NAIW? and NAIW® varies across different
datasets. Furthermore, we make the following ob-
servations.

e The difference between the means of NAIW®
and NAIW™ increases with decreasing num-
ber of relations. Among the datasets used,
FB15K has the most number of relations (i.e.
1,345) while WN18RR has the least number
of relations (i.e. 11). This number is cor-
related with the difference of the means of
NAIW¢ and NAIW" with WN18RR having
the highest difference, while FB15K having
the lowest difference. This suggests that when
a dataset has a small number of relations, enti-
ties have more distinguishing capability than
the relations.

The relations in Freebase datasets (i.e. FB15K
and FB15K-237) have more distinguishing ca-
pability than relations in WordNet datasets
(i.e. WN18 and WN18RR). For example, rela-
tions like place_of_birth in Freebase restricts
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candidate entity types for head and tail enti-
ties. On the other hand, relations in Wordnet
(e.g. _similar_to, _hypernym) are not very spe-
cific to some type of entities. This behavior
is reflected in the distributions of NAIW® and
NAIW?™ with relations getting more weights
in Freebase datasets as compared to WordNet
datasets.

4.4 Effect of various interactions on ConvE

To further understand the advantages of adaptive
interactions, we compare its performance with var-
ious fixed interactions (as used in (Vashishth et al.,
2020)). As mentioned in Section 3.2, ConvE can
use a permutation matrix for generating interac-
tions. For demonstration, let’s assume a head entity
vector vy, = [v,ll, vi, v%, v;‘;, v%, vg] and a relation
vector v, = [v}, 02, v3, vt v2 v8]. These vectors
are concatenated, permuted and then reshaped into
a4 x 3 matrix before passing it to the convolution
layer. As shown in Figure 5, the following are some
of the candidate permutations.

Plain: A plain concatenation and reshaping of the
vectors.

Alternate Rows: Alternate rows of head entity and
relation vectors dimensions.

Alternate: Strictly alternating dimensions of head
entity and relation vectors.

1 2 3 1 2 3 1 1 2

v, v, Uy v, v vy v, Uy Uy

4 5 6 1 2 3 2 3 3

v, v, Uy v, Uy U vy v, Uy

1 2 3 4 5 6 4 4 5

v, Up Uy v, v vp v, U, Up

4 5 6 4 5 6 5 6 6

v, U U, v, Uy U v, vp Uy
(a) Plain (b) Alternate Rows (c) Alternate

Figure 5: Some example permutations of two 6-

dimensional vectors vy, and v,..

As we can see, Plain method allows entity-
relation interactions only at the boundary region
while Alternate Rows and Alternate allow deeper
interactions.

We run the best hyper-parameters settings of
ConvE with these three permutations on all the
datasets and compare the MRR of the link predic-
tion task. As seen from the results in Table 4, the
Alternate Rows and Alternate permutation schemes
achieve better results compared to Plain permuta-
tion scheme. However, since FCConvE can learn



Permutation FB15K FB15K-237 WNI18 WNI18RR
Plain 63.2 32.7 94.3 43.2
Alternate Rows 63.6 333 94.8 44.3
Alternate 63.9 33.3 94.8 44 .4
FCConvE 71.7 35.5 94.8 46.1

Table 4: The effect of various permutation schemes on
the performance of ConvE. We report the MRR in link
prediction task across various datasets. As we can see,
the performance of ConvE is dependent on the choice
of permutation scheme and using Alternate or Alternate
Rows permutation improves the performance of ConvE.
Please refer to Section 4.4 for more details.

the interactions while training, it achieves better or
comparable MRR on all the datasets.

5 Conclusions and Future Work

We presented an adaptive interaction framework for
learning KG Embeddings and proposed two new
models based on the framework. We demonstrated
that the proposed models are capable of learning
relevant interactions across different datasets. We
also demonstrated how some of the existing KG
Embedding models can be seen as special cases of
the proposed framework.

In the future, we would like to further analyze
the interaction layer and its correlation with more
dataset properties.
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