
Proceedings of the 17th International Conference on Natural Language Processing, pages 475–480
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

475

CLPLM: Character Level Pretrained Language Model for Extracting
Support Phrases for Sentiment Labels

Raj Ratn Pranesh
Birla Institute of Technology

Mesra, India
raj.ratn18@gmail.com

Sumit Kumar
Birla Institute of Technology

Mesra, India
sumit.atlancey@gmail.com

Ambesh Shekhar
Birla Institute of Technology

Mesra, India
ambesh.sinha@gmail.com

Abstract

In this paper, we have designed a character-
level pre-trained language model for extract-
ing support phrases from tweets based on the
sentiment label. We also propose a character-
level ensemble model designed by properly
blending Pre-trained Contextual Embeddings
(PCE) models- RoBERTa, BERT, and AL-
BERT along with Neural network models-
RNN, CNN and WaveNet at different stages
of the model. For a given tweet and associated
sentiment label, our model predicts the span
of phrases in a tweet that prompts the particu-
lar sentiment in the tweet. In our experiments,
we have explored various model architectures
and configuration for both single as well as en-
semble models. We performed a systematic
comparative analysis of all the model’s per-
formance based on the Jaccard score obtained.
The best performing ensemble model obtained
the highest Jaccard scores of 73.5, giving it
a relative improvement of 2.4% over the best
performing single RoBERTa based character-
level model, at 71.5(Jaccard score).

1 Introduction

Sentiment analysis has been a trendy topic for the
last some decades. Whether its a graphical image
or textual data, all types of an entity consists of
something that conveys the sentiment.

With the recent development in machine-
learning methods, new innovative and powerful
models have developed in the field on natural lan-
guage processing such heavy pretrained language
models.

We designed a novel character-level pretrained
language model framework which utilizes the trans-
formers and character-level language models to
extract sentiment phrases. The proposed model
works in four steps- (i) token-level span predic-
tion using transformer model, (ii) converting token-
level representation to character-level representa-

tion, (iii) precise character-level span prediction
using character-level neural network model, and
(iv) retrieving selected sentiment phrases. We also
proposed an ensemble character-level model that
surpassed the single transformer models. Despite
of being a simple idea, ensemble learning has al-
ways been successful in several tasks(Zhang and
Ma, 2012). We conducted extensive performance
analysis of various models and systematically pre-
sented our results in the paper.

The primary challenge was in the dataset. As
shown in the table 2, for the word such as likeeee,
the selected sentiment phrase can be like or likee
or likeee or likeeee. So, by predicting the start
and end tokens would not get us to the exact senti-
ment text span. So, we needed to consider the start
and end characters to predict the correct sentiment
phrase span. It motivated us to utilize the strong
contextual understating of transformers and precise
character-level text processing of character-level
neural network models for span detection based on
different sentiments. Through this study we aim
at generating some insights about what exactly a
person was thinking while generating any textual
content. For example, if a user complains or trolls
about a product then there is a need to understand
the core reason that dissatisfies that customer about
the product. Therefore extracting the phrases that
trigger the sentiment can play a significant role in
better understanding of the user-generated content.

2 Proposed Transformer Language
Models

In this section, we have sequentially discussed and
elaborated on the design of the proposed character
level pre-trained language models. We first talked
about the architecture and working of single Pre-
trained Contextual Embeddings (PCE) based char-
acter model. Then we talked about the construction



476

and functioning of the character level ensemble
model.

2.1 Character Level Transformer Model

The architecture of a character level pre-trained
language model divided into two levels. In the ex-
periment, we used 5-fold cross-validation(4-fold
data for training and 1-fold for testing) for each
PCE model for comparative analysis, but the over-
all design and workflow were usual in every single
PCE model. So we have provided a generalized
pipeline that is compatible with all PCE models.

2.1.1 Level 1
At phase 1, we will discuss the transformer’s ar-
chitecture and training procedure along with the
conversion of token level predictions to character
level predictions. Following are the steps involved
in phase 1:

Language Model Processing: We separately
used following Pre-trained Contextual Embedding
(PCE) models to build Level 1 model: BERT-
base-uncased(Devlin et al., 2018a), BERT-large-
uncased-WWM(Devlin et al., 2018a), ALBERT-
large-v2, ALBERT-base-v2(Lan et al., 2019),
RoBERTa-base(Liu et al., 2019) and RoBERTa-
large. All the pre-trained models were fine-tuned1

on SQuAD2.0(Rajpurkar et al., 2018) dataset. The
training data was consist of two components-
tweet text(t) and sentiment label(s). For an
input in the PCE model, the data was struc-
tured by concatenating t and s with separator to-
ken and classification token added at the begin-
ning. So for BERT and ALBERT the input se-
quence was [CLS]s[SEP]t[SEP] whereas for
RoBERTa it was <s>s</s></s>t</s>. We ex-
tracted AvgPool by performing average pooling
and MaxPool by performing max-pooling over
the output values from hidden states at the same
index of each (n-1) layer(except the embedding
layer). The AvgPool and MaxPool were con-
catenated together to form a combined linear vec-
tor which was then passed to two fully connected
layers, one of size 1024 with tanh activation and
next one of size 128. Followed by a multi-sample
dropout(Inoue, 2019) layer and finally a softmax
activation layer. The model outputs the probabil-
ities of tokens for being start and end of the sen-
timent phrases span in the tweets. Custom loss

1Pre-trained models are available at
https://huggingface.co/models

as described here 3.3 was used by modifying the
cross-entropy loss. The Jaccard score was calcu-
lated on test data to measure the performance of
the trained model using the test data as described
here 3.1.

Character Level Prediction: Once the trans-
former finished training we had five train models
weight because of 5-fold cross-validation. We took
the mean start/end token level predictions of all
five models on the whole dataset(train+test)b. To
make the token level predictions compatible with
character-level neural network model we converted
the token level start/end predictions to character
level start/end predictions. This is done by firstly
removing the padding and sentiment label tokens
and then assigning each of the characters in the
tweet their respective token probabilities received
from the transformer(PCE) model.

2.1.2 Level 2

Character Level Neural Network: We de-
signed three character-level neural network models
for processing the character level probabilities, and
during the experiment3 each model was tested sep-
arately. As shown in figure 1, all three models take
three inputs: start/end char probabilities, character
stream(character level tokens of input tweet), and
sentiment label. The models working are described
sequentially. (i) In recurrent neural network (RNN)
model, we parallelly passed the start/end char prob-
abilities(2 features) through a BiLSTM layer of
size 32 along with the characters and sentiment
label were through separate embedding layers of
each size 32. The three outputs were then concate-
nated and passed through two BiLSTM layers with
a size of 64 each. The output from two BiLSTM
were then concatenated with skip connection and
passed through a fully connected layer(size=64)
and multi-sample dropout(Inoue, 2019)(p=0.5). Fi-
nally, a softmax layer that outputs the character
level start and end probabilities. (ii) In convolu-
tional neural networks(CNN) model the start/end
char probabilities(2 features) were passed into a 1D
convolution layer with batch normalization and the
characters and sentiment label were through sepa-
rate embedding layers of each size 32. All three out-
puts were concatenated and passed through four 1D
convolution layer of size 64 with batch normaliza-
tion, followed by a fully connected layer(size=64)
and multi-sample dropout(Inoue, 2019)(p=0.5) and
finally a softmax layer. (iii) In the WaveNet

https://huggingface.co/models


477

model, similar to CNN model the start/end prob-
ability vector, character vector and sentiment vec-
tor after concatenation were passed through three
WaveBlocks(size=64) with batch normalization,
followed by a fully connected layer(size=64) and
multi-sample dropout(Inoue, 2019)(p=0.5) and fi-
nally a softmax layer.

Retrieving Prediction: The final step in extract-
ing sentiment phrases from the tweet was to convert
the character-level start/end probabilities received
from the character-level neural network model into
the start/end indexes which represent the span of
the selected phrases. Once we have the start
index and end index, our model outputs the
selected phrases between the start index and
end index. During training, we found that
sometimes the start index > end index,
means that our model was unable to extract any
phrases so in output we return the entire tweet as
the selected phrase. During training custom loss
3.3was used, and Jaccard scores3.1 was calculated
over test data.

2.2 Character Level Ensemble Model

For building the ensemble model, we stacked to-
gether with a set of pre-trained language models
and character-level neural network models together
blended in such a manner that it outperformed
all the baseline single character-level model. As
shown in figure2 ensemble design is similar to char-
acter level transformer model and divided into fol-
lowing two levels:

2.2.1 Level 1
At level 1, we trained each character level
transformer model separately following the prior
method and stacked the predictions to form a sin-
gle start/end character level prediction. Following
were the steps:

Ensemble Language Model Processing: After
training each character level transformer model
using 5-fold cross-validation, we had five trained
model weights from each transformer model. We
predicted a mean token level start/end probabilities
using all five model weights and stored them.

Character Level Prediction: As described in
the above character level transformer model, we
converted the stored token level start/end proba-
bilities from each transformer model into char-
acter level start/end probabilities which were

then stacked and concatenated together to form
character-level ensemble probabilities(CharE1).
While concatenating, we made sure that the proba-
bilities corresponding to the same tweet were com-
bined together.

2.2.2 Level 2
At level 2, the character-level neural network en-
semble comes in play. The character-level en-
semble model was trained using a 5-fold cross-
validation method. Following are the steps involved
in level 2:

Character Level Ensemble Neural Network:
At this step, we created an ensemble of character-
level neural networks using three models: RNN,
CNN, and WaveNet. Each of the three char-
acter level neural network parallelly receives
three inputs: (i) character-level ensemble start/end
probability(CharE1), (ii) character stream, and
(iii) sentiment label. Each outputs the character-
level start/end probabilities which were then again
concatenated and averaged to form a final character-
level ensemble start/end probability(CharE2)

Retrieving Prediction: As discussed above
2.1.2, the start/end probability(CharE2) was used
to extract the sentiment phrases from the tweet.
Custom loss and Jaccard scores were used here.

3 Experiment

In this section, we have discussed the dataset, and
it’s preprocessing step along with the evaluation
matrix used in our experiment. We have sequen-
tially explained the experiment setup and model
configuration in detail.

3.1 Evaluation Methods
For the evaluation of our proposed single and en-
semble character-level pre-trained language mod-
els, we used the Jaccard score as evaluation met-
rics. For a given model in training, in each val-
idation fold, Jaccardscore was calculated using
the predicted string and ground-truth string and
then at the end of the training mean Jaccard score
Jaccard scoremean of k validation fold was calcu-
lated which was used as the final model score.

Jaccard score =
1

n

n∑
i=1

jaccard(gti, dti)

where, n is the number of tweets in a set, gti
is the ith ground truth and dti is the ith predicted
value.



478

3.2 Dataset

We used Tweet Sentiment Extraction competition
dataset2 publicly available on the Kaggle3 website.
The dataset is comprised of three parts2- (i) tweets
(ii) one of the three sentiment classes(Positive, Neg-
ative, and Neutral) associated with each tweet (iii)
the phrases/words extracted from each tweet that
support the sentiment label in the tweet. The to-
tal number of tweets in the dataset were 27,481,
consisting of 10,992 neutral tweets/8,244 positive
tweets/8,245 negative tweets. For the experiment,
we used 5 fold stratified cross-validation in which 4
folds i.e. 80%(21,985 tweets) data was for training
and 1 fold i.e. 20%(5,496 tweets) data used for
validation.

3.3 Experiment Setting

Model training: At level 1: (i) each model was
trained separately using 5-fold cross-validation
method for five epochs with the batch size
of 64(BERT-base, RoBERTa-base), 32(ALBERT-
large, Distil-RoBERTa-base) and 16(BERT-large-
WWM, RoBERTa-large), (ii) the tokenized input
sequence was truncated or padded up to the max
length of 100 and Adam(Kingma and Ba, 2014)
optimizer was used with learning rate = 3e-5 and
weight decay = 0.001. At level 2: (i) character-level
model were trained using 5-fold cross-validation
for five epochs, (ii) each model had following con-
figurations: max sequence length = 150, training
batch size = 128, validation batch size of 512.
Trained for five epochs with learning rate of 5e-3,
(iii) character-level ensemble model was trained us-
ing 5 fold cross-validation for five epochs with the
batch size = 8, learning rate = 5e-4 and character-
level model configuration was same.
Custom loss (Jaccard-based Soft Labels): Since
Cross-Entropy does not optimize Jaccard directly,
we tried different loss functions to penalize far pre-
dictions more than close ones. We developed a
custom loss function that modifies cross-entropy
label smoothing by computing Jaccard on the token
level. We then use this new target labels and opti-
mize Kullback–Leibler (KL) divergence(Kullback
and Leibler, 1951). Alpha here is a parameter to
balance between usual cross-entropy and Jaccard-
based labelling. On top of this, we used Stochastic
Weight Averaging (SWA)(Izmailov et al., 2018)

2Dataset is available at https://www.kaggle.com/c/tweet-
sentiment-extraction/data

3https://www.kaggle.com/

for better generalization to improve the training
stability.

Regularization setting: At level 1: Based on the
experiments, the best regularization parameters for
every architecture were selected. For improving
generalization and accelerating training, we used
Multi-Sample Dropout(Inoue, 2019)(MSD). Each
Transformer had an MSD layer with a probabil-
ity of 0.5 except for RoBERTa-large, which was
0.6. We add the Gaussian Noise, with = 0.02,
to the output layer of the transformers. Based
on BERT-paper(Devlin et al., 2018b) we assigned
attention probability dropout(0.1) to every trans-
former. At level 2: As discussed here 2.1.2, for
each character-level NN model in the ensemble we
used MSD(Inoue, 2019) with the dropout probabil-
ity value = 0.5.

4 Result and Discussion

In this section, we have discussed the experiment
results and presented a performance analysis of
character-level transformer models and ensemble
models. During our experiment, we combined
the level 1 model, with every level 2 model pair-
wise. As a result, we found out that the RNN
based model surpassed other models by achiev-
ing a higher Jaccard score during testing. As a
result, table1 contains the Jaccard scoremean of
each transformer combined with the RNN model
as Level 2 character-NN model.

According to the table 1, among various sin-
gle transformer models, the RoBERTa-large model
shows good results by having a Jaccard scoremean
of 71.5%. RoBERTa-base achieved a score
of 71.4%, which was very close to RoBERTa-
large. Other models also shows promising results,
like BERT-large-uncased-WWM and ALBERT-
large-V2 had equal Jaccard scoremean of 71.1%,
whereas the ALBERT-base-V2 and BERT-base-
uncased achieved the Jaccard scoremean of 70.5%
and 71.0% respectively.

Our proposed ensemble model outperformed
all the single transformer by an average of 2.4%.
With a perfect blending of transformer mod-
els, the ensemble model was able to achieve a
Jaccard scoremean of 73.5%.

5 Conclusion

In this paper, we proposed a character-level lan-
guage model consisting of a pre-trained language

https://www.kaggle.com/c/tweet-sentiment-extraction/data
https://www.kaggle.com/c/tweet-sentiment-extraction/data
https://www.kaggle.com/


479

model and character-level neural network for ex-
tracting sentiment support phrases from human-
generated tweets based on the associated senti-
ment labels. We also designed a stacking ensemble
model by carefully blending multiple PCE trans-
former models like BERT, RoBERTa, ALBERT,
and character-level neural network models like
CNN, RNN, and WaveNet. We conducted a com-
parative performance analysis of all character-level
transformer models and ensemble models. We
found that with the optimal combination of trans-
former models and character-level neural network
models, the ensemble architecture generalizes bet-
ter and outperforms the single transformer models
at every level. The ensemble model showed promis-
ing results, having a Jaccard Score of 73.5%, which
is better than any single transformer model.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Hiroshi Inoue. 2019. Multi-sample dropout for ac-
celerated training and better generalization. arXiv
preprint arXiv:1905.09788.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Models Jaccard Scoremean

BERT-base-uncased 71.0
BERT-large-uncased-WWM 71.1
ALBERT-base-V2 70.5
ALBERT-large-V2 71.1
RoBERTa-base 71.4
RoBERTa-large 71.5
Ensemble-Model 73.5

Table 1: Models’ Scores(in %) on Test Data

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Cha Zhang and Yunqian Ma. 2012. Ensemble machine
learning: methods and applications. Springer.

6 Appendix



480

Figure 1: Level 2 Character Level Neural Network (a)Recurrent Neural Network (b)WaveNet (c)Convolution
Neural Network

text(given) sentiment(given) selected text(target)
I really really likeeee the song
Love Story by Taylor Swift

positive likee

I need to get my computer
fixed

neutral
I need to get my computer
fixed

Sooo SAD I will miss you
here in San Diego

negative Sooo SAD

Table 2: Dataset: texts(given) represents tweets, sentiment(given) represents associated sentiment, se-
lected text(target) represents extracted phrases.

Figure 2: The proposed architecture: Ensemble Model. In level 1, all the transformer models are placed parallelly.
In level 2, char-NN models are placed parallelly.


