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Abstract

We present a novel approach for improving
the performance of an End-to-End speech
recognition system for the Gujarati lan-
guage. We follow a deep learning based ap-
proach which includes Convolutional Neu-
ral Network (CNN), Bi-directional Long
Short Term Memory (BIiLSTM) layers,
Dense layers, and Connectionist Temporal
Classification (CTC) as a loss function. In
order to improve the performance of the
system with the limited size of the dataset,
we present a combined language model
(WLM and CLM) based prefix decoding
technique and Bidirectional Encoder Rep-
resentations from Transformers (BERT)
based post-processing technique. To gain
key insights from our Automatic Speech
Recognition (ASR) system, we proposed
different analysis methods. These insights
help to understand our ASR system based
on a particular language (Gujarati) as well
as can govern ASR systems’ to improve
the performance for low resource languages.
We have trained the model on the Mi-
crosoft Speech Corpus, and we observe a
5.11% decrease in Word Error Rate (WER)
with respect to base-model WER.

1 Introduction

ASR is the process of deriving the transcrip-
tion (word sequence) of an utterance, given
the speech waveform. Speech Recognition
has been an active area of research for many
decades. Initial work in ASR was based on
statistical modeling techniques like Hidden
Markov Model (HMM) (Baker, 1975) and used
phonemes to represent distinct sounds that
make up the word. With the rise of Deep
Learning based techniques and the increasing
availability of data, the End-to-End speech
recognition systems started showing compet-
itive results. Initial deep learning based ASR

models, based on Recurrent Neural Network
(RNN) and CTC (Graves et al., 2006), over-
came the issues of statistical systems and pro-
vided the mapping of variable length input to
output. With the further advancements in al-
gorithms and resources, various complex deep
learning architectures have been introduced
for an effective End-to-End speech recognition
system. End-to-End speech recognition for low
resource languages has not gained significantly
from the advancements in deep learning due to
lack of training data compared to other high
resource languages. Linguistic diversities! also
makes it difficult to adopt models across lan-
guages.

In this paper, we present a speech recogni-
tion system for the Gujarati Language. Gu-
jarati is a rich language consisting of 34 conso-
nants and 13 vowels. While the more number
of vowels may reduce the homophones, more
number of consonants may increase the ambi-
guity.

The key contributions of this paper are as
follows,

o We have adopted the state of the art ASR
model described in (Amodei et al., 2015)
for the Gujarati Language.

e We present a novel approach of combin-
ing two language models, 4-gram word-
level language model (WLM) and bi-gram
character-level language model (CLM) to
improve performance of prefix decoding.

e We propose a Spell Corrector BERT
based post-processing technique to cor-
rect erroneous prediction and further im-
prove the performance of the ASR Sys-
tem.

thttp://www.cs.cmu.edu/ ytsvetko/jsalt-part1.pdf
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The proposed system reduced the WER to
65.54% from the initial 70.65%. We analyzed
the system using the testing hypothesis and de-
rived many useful insights on the performance
of the system as well as the cause of the er-
rors in the hypothesis. We analyzed that the
errors produced in the Gujarati language are
mainly because of interchanging/mismatching
diacritics (‘[2:”, “2f1°, etc.), consonants (‘41”,
‘o’ “Y’, etc.), independents (‘11”7 @7, ‘¢,
‘g, etc.) and some homophones.

The remaining of the paper is organized as
follows, Section 2 describes the Literature Sur-
vey of ASR system architectures. The pro-
posed approach is described in Section 3. Sec-
tion 4 constitutes the experiments conducted
and its observations are followed in Section 5.
Section 6 provides the conclusion of our work.

2 Related Work

Since the first ASR circuit developed by Bell
Laboratories (Davis et al., 1952) in the 1950s,
ASR has remained an active area of research.
In early 1960’s (Kenichi et al., 1966) pre-
sented a phoneme based speech recognition
which involved the first use of speech seg-
menter in different portions of the input ut-
terances. (Vintsyuk, 1968; Sakoe and Chiba,
1978) introduced the concept of the non-
uniform time scale for alignment of speech
patterns (dynamic wrapping). Both of these
works lead to the Viterbi Algorithm (Viterbi,
1967) which had been an indispensable tech-
nique in ASR for decades. By the mid-
1970s, the basic ideas of applying fundamen-
tal pattern recognition technology to speech
recognition, based on Linear Predictive Cod-
ing (LPC) (Atal and Hanauer, 1971) meth-
ods, were proposed by Itakura (Itakura, 1975).
CMU’s Harpy System (Lowerre and Reddy,
1976), was the first ever system to use the
Finite State Network (FSN) to reduce com-
putation for matching in Speech Recognition.
However, methods which optimized the result-
ing FSN did not come about until the early
1990’s (Mohri, 1997), which were limited to
small to medium vocabulary electronic based
solutions for ASR.

The earlier approaches of Electronics based
ASR were eventually replaced by statistical ap-
proaches with the introduction of HMM based

speech recognition. The basic implementation
of HMM based speech recognition model was
first published in 1975 by Baker (Baker, 1975)
at CMU. Further work on HMM continued
with the introduction of first ever use of HMM
for continuous speech recognition in 1976 (Je-
linek, 1976). As the research continued, the
HMM model was tried with various machine
learning techniques including the HMM/ANN
architecture in 1990 (Bourlard and Wellekens,
1990), HMM/GMM architecture in 1997 (Ro-
driguez et al., 1997) and HMM/SVM architec-
ture in 1998 (Golowich and Sun, 1998). This
wave for HMM continued till the introduction
of RNN based approaches in early 2005.

The above approaches had major drawbacks
such as

o It requires high task-specific knowledge,
e.g. to design the state models for HMMs.

e It requires fairly complex parameter tun-
ing as the pipeline contains multiple con-
figurations.

(Graves et al., 2006) introduced a novel
method for training RNNs to label un-
segmented sequences directly, using CTC,
thereby eliminating the above drawbacks and
creating an End-to-End ASR system. With
further enhancements in algorithms and re-
sources, deep learning based End-to-End ASR
systems got better and better and they
started outperforming traditional ASR sys-
tems (Graves and Jaitly, 2014; Hannun et al.,
2014). End-to-End ASR systems with encoder-
decoder have shown competitive results (Chan
et al.,, 2016). The RNN encoder-decoder
paradigm uses an encoder RNN to map the
input to a fixed-length vector and a decoder
network to expand the fixed-length vector into
a sequence of output predictions (Cho et al.,
2014; Sutskever et al., 2014). Adding an at-
tention mechanism to the decoder greatly im-
proves the performance of the system, partic-
ularly with long inputs or outputs.

As we saw End-to-End ASR gives great re-
sults but at the cost of large data required
to train it, which is not feasible for low re-
source languages. According to Interspeech
2018, Low Resource Automatic Speech Recog-
nition Challenge?, TDNN-based systems (Ped-

2https:/ /tiny.cc/Interspeech2018
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Figure 1: End-to-End Automatic Speech Recogni-
tion Process

dinti et al., 2015) are efficient in modelling long
temporal context and performed well even
in the low-resource setting (Fathima et al.,
2018; Pulugundla et al., 2018). Even with the
smaller amount of data, with some enhance-
ments, End-to-End systems showed promising
results (Billa, 2018).

The work similar to our approach are pre-
sented in speech recognition primer3, and Gu-
jarati Automatic Speech Recognition®. The
first approach is based on a combination
of CNN (Chua and Yang, 1988) and BiL-
STM (Schuster and Paliwal, 1997) the latter
approach uses a combination of 3 Gated Re-
current Units (GRUs). The first approach is
designed for English, while the second is for
Gujarati.

Our approach differs from the above two as
follows,

e The model architecture described in our
paper constitutes 1 CNN - 3 BiLSTM - 3
Dense layers.

e We present a more effective approach to
decode the output using the prefix beam
search algorithm along with the combina-
tion of the language model.

e Our approach introduces a post-
processing technique to improve the
performance of the system even more.

BERT is a neural network-based technique
for natural language processing pre-training.
The pre-trained BERT model can be fine-
tuned with just one additional output layer

3https://github.com/apoorvnandan/speech-
recognition-primer

“https://github.com/niteya-shah/Gujarati-
Automatic-Speech-Recognition
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to create state-of-the-art models for a wide
range of tasks, such as question answering
and language inference, without substantial
task-specific architecture modifications (De-
vlin et al., 2018). Multilingual-BERT uses a
representation that is able to incorporate infor-
mation from multiple languages (Pires et al.,
2019).

3 Proposed Approach

Figure 1 describes the End-to-End speech
recognition system proposed in the paper.
This section describes the processing involved
in the various stages.

3.1 Audio feature

We have used mel-frequency cepstral coeffi-
cients (MFCC) (Motlicek, 2002) as features
to represent the input audio signal. We con-
vert the input audio signal into MFCC. The
dimension of these features are (Time_ Steps,
MFCCs) and for the given batch size it is of di-
mension (Batch_Size, Time_Steps, MFCCs).
These features serve as the input to the deep
learning model.

3.2 Model Architecture

The model architecture incorporates four ma-
jor components: CNN layer, BiLSTM layer,
Dense Layer, and CTC. Each component has
its own importance and components like CNN
layer, BILSTM layer, and Dense layer have to
be tuned as per the size of the input data.

Convolutions in frequency and time do-
mains, when applied to the spectral input
features prior to any other processing, can
slightly improve ASR performance (Abdel-
Hamid et al., 2012; Sainath et al., 2013). It
also attempts to model spectral variance due
to speaker variability, which is another reason
to use the first layer as convolution (Amodei
et al., 2015). We have used a single 1D-
convolution layer with 200 filters with ReLU
activation function with kernel size 11 and
stride value as 2. Features extracted are then
passed to a deep BiLSTM RNN (Schuster and
Paliwal, 1997).

We have used 3 BiLSTM layers, each layer
consisting of 200 BiLSTM units (400 LSTM
units) and tanh as the activation function of
each unit. When provided input from the con-
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Figure 2: Working of decoding algorithm using
WLM and CLM

volution layer, the BILSTM layer gives us out-
put as (Batch_Size, Convolved__Time__Steps,
LSTM _blocks). Features extracted are then
passed to a DNN (Hinton et al., 2006), which
consists of 3 layers where the first 2 layers con-
sist of 200 units. The number of units in the
last layer is equal to the number of characters
in the languages.

While training, a common technique for
mapping variable-length audio input to
variable-length output is the CTC algo-
rithm (Graves et al., 2006) coupled with an
RNN. The CTC-RNN model performs well in
End-to-End speech recognition with grapheme
outputs (Graves and Jaitly, 2014; Hannun
et al., 2014; Maas et al., 2014, 2015). Given the
network outputs, CTC maximizes the proba-
bilities of the correct labelings. The CTC ob-
jective function is differentiable thus the net-
work can then be trained with standard back-
propagation through time (Werbos, 1990).

3.3 Decoding

We propose an enhanced language model
based prefix decoding which uses our cus-
tom built 4-gram word-level language model
(WLM) and a bi-gram character-level language
model (CLM) (Brown et al., 1992). Here we
refer to it as Prefix with LMs’. Both of these
models were created using the whole Gujarati
Wikipedia®. Using prefix decoding with two
language models (WLM and CLM) makes de-
cent corrections, as it introduces language con-
straints at both word and character scope. We
have compared this approach with greedy de-
coding (Maas et al., 2014) and prefix decod-
ing (Maas et al., 2014).

As shown in the figure 2, the output from

Shttps://gu.wikipedia.org/wiki/
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the network is passed through the prefix de-
coding algorithm which incorporates a WLM
and a CLM. The WLM will score the last word
given in the prefix word sequence. This score’s
influence can be controlled by WLM weight
(wlm). Similarly, CLM will score the last char-
acter to be appended given its previous char-
acter. This score’s influence on the new prefix
is controlled by CLM weight (cIm). We en-
compassed the insertion bonus by multiplying
the count of words in prefixes to avoid bias
towards shorter prefixes. To control the influ-
ence of insertion bonus we used beta ().

3.4 Post Processing

We propose a BERT based post-processing
technique to improve the output of speech
recognition systems. The BERT model is used
to correct the spelling of the predicted out-
put words. Here we term this technique as
Spell Corrector BERT. Figure 3 describes the
working of sentence correction algorithm using
BERT. For a sentence, we iterate through all
the words during which we find the replace-
ments for the current word by finding its cor-
responding zero, one, or two edit substitutes
from the Wikipedia corpus. Using the list pro-
duced by this approach, we can verify that if
the word predicted is correct, it would be al-
ready present in the list and needs not to be
replaced.

If the current word is not present in the
replacements list, then that word is replaced
with [M AS K] and the sentences are generated
by replacing the [M ASK] with the word re-
placements from the replacements list. Fur-
ther, the sentences are tokenized and passed
to the BERT model. As an output, BERT
returns the list of replaced words and their
respective probabilities w.r.t. the sentence.
From this list, we select K word replace-
ments with the highest probability and ap-
pend this list of word replacements to the
output__list. Once all the words are iterated, a
final output_ list is generated which contains a
list of all words with at most K replacements
for each word. Given a sentence containing
3 words, HAHEIYIER AU U where HHEIUIER
and A1E are incorrect, this process gives the
output_list= | [RAHEIUIE, AHHEIYIEHA],...]
[IRUI, UI2,...] , [U?] ]. This output_list
is passed to a combinator which generates sen-
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Figure 3: Working of Spell Corrector BERT

[[RAHELLE,
WULIGIEHL, .,
RARLE, ulg, 1

tences by combining the words. If there is a
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== Train Loss == Valid Loss

200

150

then various combinations are produced using
the combinator. The output of this process 100
will be output_sentences= [AHEIUIE AIE

UR | AHEIYIE Ul U |, AHEIYIEH] DRUIE UR =
,...]. To select the best sentence out of all the
sentences, a WLM is used for sentence scoring 5 10 1 2
and the sentence with the highest score is se- e

lected as the final output = AHEIUIE A1
Y.

Figure 4: Training and Validation Loss for the
model

4 Experiments
4.2 Training

4.1 Dataset The training data, as well as validation data,

was divided into 7 batches and the model was
trained for 24 epochs and 92 hours on T4 GPU
with 16 GB of GPU-memory. The model con-
sists of 2,744,676 total parameters. We used
Adam optimizer for gradient descent, and for
calculating the loss we used CTC loss function.

We have used Microsoft Speech Corpus avail-
able for Gujarati® which contains approxi-
mately 22,807 training examples and 3,075
testing examples. The dataset contains an
eclectic collection of speakers where the length
of a single audio utterance is 6.35+2.33 sec-
onds. Out of 22,807 training examples, we
have used 16,000 utterances (~28.2 Hours) for
training and 4,807 (~8.5 Hours) utterances
for validation and all the testing examples i.e.
3,075 (=5.4 Hours) utterances for inferencing.

4.3 Decoding

We have used Gujarati data scraped from
Wikipedia containing 2,501,841 words with a
vocabulary size of 163,170 words. We used this
corpus to create the statistical word-level lan-
guage model and produced 1,570,614 4-grams.

Shttps://msropendata.com/datasets/7230b4b1-
We also used the same corpus to create the sta-

912d-400e-beb8-184e0512985¢
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Table 1: Sentence and its corresponding output through various decoding techniques.

Actual HHEIYIE AYIE UR R 10l def dH1H dAIZIA 53]
ISTE R
Greedy VHEIYIER UR URI A& IR0 dgal aHy 2 53

AN &

Prefix with LMs’

HHEIYIER U YRI YR 10l dFal dHa 52 83] ¥d1
&

Prefix with LMs’ & Spell Corrector BERT

HHEIUIE UR VLI YR2Ia defal dHIH 52 s3] %1
&

Table 2: Distribution of single letter error words

Technique Consonants Diacritic Independents
Greedy 66.41% (1,962) 28.23% (834)  5.34% (158)
Prefiz with LMs’ 66.52% (1,824) 27.97% (767)  5.5% (151)
Prefix with LMs’ & Spell Corrector BERT — 52.90% (829)  38.67% (606)  8.4% (132)

Table 3: Techniques and their corresponding WER

Techniques Word Error Rate (%)
Greedy 70.65
Prefix without Language Model 69.95
Prefix with WLM 69.53
Prefix with CLM 68.64
Prefiz with LMs’ 68.23

Prefiz with LMs’ € Spell Corrector BERT 65.54

tistical character-level language model to cre-
ate bi-grams for each alphabet of the Gujarati
language. For prefix decoding, the beam width
was taken as 50 and all other parameters were
decided using cross-validation. The algorithm
of Prefiz with LMs’ recorded a 2.42% decrease
in WER w.r.t. system using greedy decoding
technique.

4.4 Post Processing

Spell Corrector BERT is used to further im-
prove the output produced by Prefix with
LMs’. We have used a pre-trained BERT mul-
tilingual model by Google” combined with a
4-gram WLM as the core components of Spell
Corrector BERT. The algorithm of Spell Cor-
rector BERT recorded a 2.69% decrease in
WER w.r.t. standalone Prefiz with LMs’. The
table 3 shows the comparison of WER for dif-
ferent techniques.

"https://github.com/google-
research /bert /blob/master /multilingual.md

5 Observation

5.1 Comparison of various decoding
and post-processing techniques

We have tested the performance of the decod-
ing technique and post-processing by observ-
ing the distribution and frequency of the sin-
gle letter error words. Table 1 shows a sam-
ple testing sentence as well as the hypothe-
sis generated by our model using various de-
coding techniques and post-processing tech-
niques. Table 2 describes the distribution of
single-letter error words observed in different
approaches. Here, the count of errors due to
consonants/diacritics/independents w.r.t. the
total count of single-letter error words in each
decoding technique is shown as a percentage.
It shows that, Prefix with LMs’ and Pre-
fix with LMs’ & Spell Corrector BERT post-
processing, both help in reducing single letter
error words.

Table 2 also shows count of single letter er-
ror words. Subsequently, from this count we
can conclude that, percentage decrease of the
error in consonant, diacritic and independents
using Prefix with LMs’ is 7%, 8% and 4% re-
spectively w.r.t greedy decoding, while using
Prefiz with LMs’ € Spell Corrector BERT, the
percentage decrease of the error in consonant,
diacritic and independents is 57.74%, 27.00%
and 16.45% respectively w.r.t. greedy decod-
ing.

We observe that, with a lesser number of
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incorrect characters, Spell Corrector BERT ei-
ther retains WER or in the majority of the
cases, will improve WER significantly. Table
4 shows sample sentences with a different num-
ber of erroneous words for comparison of the
performance of Spell Corrector BERT.

5.2 System Analysis

The system analysis is performed on the model
hypothesis decoded using Prefix with LMs’
& Spell Corrector BERT. We have evalu-
ated the performance of the proposed model
on 3,075 test examples. Out of total erro-
neous words, 7.19% words have one letter er-
ror with similar sounding alphabets of letters
interchange. e.g. ‘1 — ‘A, ‘¢ - L
, ‘27 = ‘¢’ The interchange of con-
sonants/diacritics/independents is due to the
factors like, noise, channel variability, speaker
variability, anatomy of the vocal tract, speed
of speech, regional and social dialects, homo-
phones (Forsberg, 2003). Any incorrect word
in the sentence is replaced on the basis of prob-
ability and hence WLM, CLM, or BERT is not
solely responsible for the selection of any word,
it is the combination of the probabilities that
results in the final output.

5.2.1 Error due to conso-
nants/independents/diacritics

Table 5 displays examples of words which have
a single-letter error due to consonants, inde-
pendents, and diacritics. Ref. depicts the ac-
tual word in the sentence, Hyp. denotes the
output word, Ref. Freq. shows the count of ref-
erence word in the corpus, Hyp. Freq. is the
count of hypothesis word in the corpus, Ref.
— Hyp. shows the character that is replaced
and Type shows the type of error in the infer-
ence word. From this table, we can observe
that, despite the hypothesis word being infre-
quent in the corpus, the similar sounding let-
ters in the reference word gets replaced. This
advocates the idea that the replacement of the
similar sounding letters from the words is also
one of the factors inducing the errors in the
system, irrespective of the words’ frequency in
the corpus.

Out of the total 1,567 one letter error words,
52.90% errors are due to single consonant mis-
match. The top three incorrectly predicted

[3 b [ 11 b . .
consonants are § , 2, d , with frequencies
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102, 92, and 79 respectively. Together they
contribute to 32.93% of total errors due to con-
sonants.

In figure 5, the connection between two
consonants represents the error of interchang-
ing/misplacing these consonants with each
other. For example, the connection be-
tween ‘1" and ‘A’ indicates that these con-
sonants are generally interchanged/misplaced
with each other, in a word predicted by the
system.

Out of the total 1,567 one letter error words,
8.40% errors are due to single-independent
mismatch. The top three incorrectly pre-
dicted independents are ‘o, ‘Y7, ¥, with
frequencies 81, 21, and 13 respectively. To-
gether they contribute to 87% of total errors
due to independents. We observe that ([‘¢’,
‘g’],[‘G”, “GI’]) are more vulnerable to being
misplaced /interchanged.

Out of the total 1,567 one letter error words,
38.67% errors are due to single-diacritic mis-
match. The top three incorrectly predicted
independents are ‘zf17, ‘37, “o:’, with fre-
quencies 213, 120, and 76 respectively. We
observe that frequency of diacritic ‘]’ and
‘¥’is greater than the sum of the frequencies
of remaining diacritics, and they constitute to
67% of total incorrectly predicted diacritics.

The output ([*13, A43],[2Isl, 2101 ],[ SIe,
é‘ﬂ?ﬂ]) are interesting cases as the hypothe-
sis words are not present in the corpus. The
predicted output misplaced ([ ‘?1°, s’, ‘¢’ ])
with similar sounding ([ 217, ‘@’, ‘¥’ ]) re-
spectively without any prior knowledge of the
word. This is due to the character by character
prediction approach of our model.

gl

|
NV
\

S 1|¢—<L A—

A
0n—=z 2l
g—el—H

Figure 5: Interchanging consonants which results
in erroneous prediction.



Table 4: Sample sentences for comparing performance of BERT

Actual AHHEIYIE ARUIE UR YR2lIal A I dJIZ]A s3]
eI 8

At most one error per word AHEIYE AUIE UR YR21IA A ddlal AU %3]
AL

Spell Corrector BERT Output AUHEIYIE AIRUIE UR 2ol Al dHIH duIR]A s3]
eI D

At most two errors per word

Spell Corrector BERT Output

UHEY! AU UR AR210l def dH du] §3] €4 &
AHHEIYIE RIS UR YR8l A ddl duRlA s3]

g &
At least 1 word with error greater than 2 AHHEIGIER U URI Y2HIviol dFal dHH 2 s3]
*¥qIIRA &
Spell Corrector BERT Output AUHEIYIE UR LI R2llal dgfol dHIH 32 s3] ¥
&

Table 5: Examples of words which have single letter error

Ref. Hyp. Ref. Freq. Hyp. Freq. Ref.—Hyp. Type

I3 23 282 0 Al — A Consonant
AR SAUR 377 15 d—s Consonant
aRlef aRlg 9 15 g— ¢ Independent
@aq?i Gaq?i 11 (€ Y€ Independent
IEIRE yRells 4 0 (2 — o] Diacritic
el JeellHi 50 12 S} Diacritic

5.2.2 Error due to homophones

Out of a total of 606 words that had a sin-
gle diacritic error, only 2.97% of errors were
due to homophones which is a small fraction
of the total amount of errors in the inference
from the ASR system. This might be because
Gujarati is mostly a phonetic language with
only a few exceptions. Also, the number of al-
phabets (vowels and consonants) in Gujarati
are more than that in English. By reducing
diacritic errors, we can resolve errors due to
homophones. This helps us to understand that
our system is not much affected by error due
to homophones. Table 6 shows the incorrectly
predicted homophones.

5.2.3 Effect of word frequency on error

To understand the effect of frequency on error,
we calculated the frequency of the predicted
words in the test dataset. We categorized the
words into three different categories based on
the correctness of the word referenced to their

occurrence in the testing dataset. The three
different categories are,

« ACPW: Words that are always predicted
correctly.

e AIPW: Words which are always predicted
incorrectly

e CAIPW: Words which are predicted cor-
rectly as well as incorrectly at times.

Count of ACPW, AIPW and CAIPW is
1,069, 7,809 and 1,604 respectively. Mean fre-
quencies/occurrences of ACPW, AIPW and
CAIPW is 1.11, 1.34, and 15.38 respectively.
Words which are ACP, AIP and CAIP in test-
ing, are shown in training with a mean fre-
quency/occurrence of 4.75, 4.86, and 77.81 re-
spectively with a count of 857, 5,764 and 1,594
respectively. This gives us a rationalization for
the fact that our system is able to learn from
the utterances shown in the training and can
infer unseen examples too.

416



Table 6: Examples of words which are incorrectly predicted homophones

Reference Word sdl (Actor)

209 (Sun) Jldi (Drinking)

Hypothesis Word $2dl (Than)

2d] (Winter Crop)  Mdl (Father)

Table 7: Sample words which are predicted correctly as well as incorrectly

Words in Testing Total Count Wrong count Right count Correctness(%)
AIY 81 32 49 60.49
2l%sl2all 2 1 1 50.00
disid 2 1 1 50.00
GICIE] 7 4 3 42.86
419 67 24 43 64.18
Average 53.50

We also analyzed the correctness of the
words from the set CAIPW. 8.32 out of 15.38
mean frequencies of CAIPW are correct and
the remaining 7.06 out of 15.38 are incorrect.
Table 7 shows some examples of the correctly
as well incorrectly predicted words with the
amount of correctness. This gives an explana-
tion for how words are predicted correctly as
well as incorrectly with the same proportion.

5.2.4 Error due to half-conjugates

This type of error occurs due to the mismatch
in the speed of utterance. The fast-conjugate
error occurs when a word is uttered too quickly
but the hypothesis word is predicted slow, e.g.,
(HUY — HuRY). When a word is uttered
slowly but the hypothesis word is predicted
fast then this type of error is called slow-
conjugate error (2141 — 91). Out of total erro-
neous predicted words, 2.4% of them have half-
conjugate error and out of those 2.4% words,
10% words consist of pure half-conjugate erro-
neous words. This justifies the fact that the er-
ror due to half-conjugate is trivial and thus the
variation in speaker speed is not a significant
factor due to which error occurs in inference
by our system.

6 Conclusion

In this paper, we have presented an End-to-
End speech recognition system for Gujarati.
We propose a prefix decoding technique that
uses two language models to improve the per-
formance of the system. We have also used
a BERT based spelling corrector model in a
post-processing step to further improve the

performance. We observe that the proposed
approach reduces the overall WER by 5.11%.

While deep learning models require a lot
of training data for better results, in this pa-
per we showed that without increasing the
training data we can improve the performance.
This is particularly important for a resource-
constrained language like Gujarati. We are
optimistic that with an increase in data our
optimizations would perform even better.

We explored and analyzed the inferences
from our ASR system to gain key insights
which consist of checking the correctness of the
word error due to consonants, diacritics, in-
dependents, half-conjugates, and homophones.
These insights can help to understand our ASR
system based on a particular language (Gu-
jarati) as well as can govern ASR systems’ to
improve the performance for low resource lan-
guages.
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