
Proceedings of the 17th International Conference on Natural Language Processing, pages 400–408
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

400

A Rule Based Lightweight Bengali Stemmer

Souvick Das
University of Calcutta

Kolkata, India
souvik.cs@hotmail.com

Rajat Pandit
West Bengal State University

Kolkata, India
rajatpandit123@gmail.com

Sudip Kumar Naskar
Jadavpur University,

Kolkata, India
sudip.naskar@gmail.com

Abstract

In the field of Natural Language Process-
ing (NLP) the process of stemming plays a
significant role. Stemmer transforms an in-
flected word to its root form. Stemmer sig-
nificantly increases the efficiency of Infor-
mation Retrieval (IR) systems. It is a very
basic yet fundamental text pre-processing
task widely used in many NLP tasks. Sev-
eral important works on stemming have
been carried out by researchers in English
and other major languages. In this pa-
per, we study and review existing works on
stemming in Bengali and other Indian lan-
guages. Finally we propose a rule based ap-
proach that explores Bengali morphology
and leverages WordNet to achieve better
accuracy. Our algorithm produced stem-
ming accuracy of 98.86% for Nouns and
99.75% for Verbs.

1 Introduction

Information retrieval is a very essential process
to extract relevant data or documents system-
atically from big data collections. Inverted in-
dex is a crucial data structure used in almost
all modern IR systems. All the words in the
entire data collection is stemmed first before
the inverted index is built. Thus stemming
plays a very important role in IR (Kowalski,
2007).
Stemming is the process of reducing inflec-
tional or derived variant forms of one word to
its root form. Two major components of IR
task is basically indexing and retrieval. Stem-
ming not only enhances the recall rate of IR
task but also reduces the index size signifi-
cantly. Thus, it increases the efficiency of the
information retrieval system.

Depending on the linguistic rules of a partic-
ular language, words of any natural language

can be inflected in many ways. Bengali is
one of the most morphologically decorated lan-
guages. Generally inflected words are gener-
ated from the root word by adding some suf-
fixes. It is observed that one root word in
Bengali may have more than 20 morphologi-
cal variants. Another challenge is in finding
root word from a compound word i.e a word
can be formed by conjunction of more than
one root words. A large number of notable
works have been done on stemming techniques
for different languages from the last couple of
decades. Most of the approaches were first
applied in English language and subsequently
adapted in other languages. Different stem-
ming approaches involve different techniques
such as longest suffix matching, dictionary
based look-up, co-occurrence computation etc.
Several works (Faili and Ravanbakhsh, 2010;
Urmi et al., 2016; Makhija, 2016) have been
done based on these techniques in different
languages. However, a very few papers uti-
lize these techniques in Bengali language but
failed to achieve over 95% of accuracy.

In this paper, we propose a rule based
technique that utilizes rich volume of Bengali
Grammar rules also involves Bengali Word-
Net (Dash et al., 2017) to achieve better accu-
racy. It is worth mentioning that we also verify
the extracted stem word from our rule based
algorithm with the help of modified WordNet.
The sole purpose of the modification of the
WordNet here is to reduce the complexity of
the approach by circumventing the unneces-
sary prefix suffix removal of the word. The
verification process and WordNet modification
thus help us to achieve next level of higher
accuracy. The following example helps to un-
derstand the proper usage of the WordNet in
this approach. Suppose a word সরাইখানা (Inn) is



401

the root word and within this word one of the
suffixes খানা is present. If we remove the suf-
fix from the word, it will mean something else.
Similar example can be seen for the word ፤বሑার
(Strong) where one of the suffix set র is present
within the word. In Bengali stemming, filter-
ing of root word and inflected word was a im-
mense challenge. We overcome this problem
by introducing the WordNet in the methodol-
ogy. In the subsequent section, we present sev-
eral cases where the modification of WordNet
plays an important role.

The rest of the paper is structured as follows:
Section 2 states the related works in this liter-
ature and brief review on them. Formation
of different types of inflections in Bengali lan-
guages are analyzed in section 3. Section 4
elaborates different techniques involved in the
proposed methodology and the entire method-
ology. Different resources that are used in the
evaluation of the algorithm is described in sec-
tion 5. Experiment and dataset used in the
experiment is detailed out in section 6. Eval-
uation and results are presented in section 7.
Finally we conclude this paper in section 8.

2 Related Work

There are two types of approaches in stemming
mechanism. The first approach is called stem-
ming in which affixes and suffixes are removed
in order to extract the root word. The second
approach is called lemmatization. Lemmati-
zation requires a sound knowledge of the re-
searcher in the particular language. As an ex-
ample the word “Good” in English language
has its variants “Better” and “Best”. In order
to get the lemma (root word) “Good” we need
lemmatization. Lemmatization involves dictio-
nary look up to solve this kind of unusual case
of extracting root words.

Stemming technique for English language is
well studied and several techniques have been
developed. The very first stemming technique
Lovins stemmer was proposed by Julie Beth
Lovins in 1968 (Frakes and Fox, 2003). Lovins
stemmer removes a suffix just in two major
steps. It maintains 294 endings, 29 condi-
tions and 35 transformation rules. Later, well
known rule based Porters stemming (Porter,
1980) technique was proposed in 1980 which is
basically a rule based algorithm. In its 8 steps

it handles different cases of morphological and
inflexional endings in different steps. An ex-
tension of the Lovins algorithm is known as
Dawson stemmer (Jivani et al., 2011) was pro-
posed which covers wide range of list of 1200
suffixes.
These above mentioned algorithms work very
well for English language but we are more
interested in different stemming algorithms
for Indian languages. Ramanathan and Rao
(2003) proposed a lightweight stemmer for
Hindi in 2004 which removes the suffixes based
on the longest suffix matching from a list of
suffixes. They also developed a suffix list in
Hindi language to enhance the performance
of the stemming. Akram et al. (2009) pro-
posed an affix-exception list based stemmer for
Urdu language. They omit prefix and suffix
from the word based on looking up the excep-
tion list of prefixes or suffixes. This stemmer
finds the stem word based on lexical look up
method. A successful look up ignores the strip-
ping off of the prefix and suffix of a word. Hus-
sain et al. proposed a stemming mechanism
for Urdu language based on n-gram stripping
model (Durrani and Hussain, 2010). Kumar
and Rana (2011) developed a brute force al-
gorithm to strip off suffixes in order to find
stem words in Punjabi language. They have
overcome the problem of over-stemming and
under-stemming. The suffix stripping is re-
placed sometimes by suffix substitution. Islam
et al. (2007) proposed a lightweight stemmer
which strips off suffixes and finds the stem
word for Bengali. The fundamental idea of
this algorithm is to remove suffixes based on
the longest suffix matching. They also main-
tain a list of possible suffixes for Bengali lan-
guage. Paik et al. (2011) reported a simple cor-
pus based unsupervised stemmer for Bengali
Language. The algorithm uses some statistics
collected from corpus analysis based on the
co-occurrences between word variants. They
generate a graph where nodes are the vari-
ants of word and an edge between them rep-
resents a co-occurrence. Das and Mitra (2011)
used the Porter stemming technique in Bengali
language. Majumder et al. (2007) developed a
stemming technique based on statistical clus-
tering based approach to discover equivalence
classes of root words using some set of distance



402

Table 1: Comparison of different stemming techniques in Indian languages

Year Language Method Author(s) Description Accuracy
2004 Hindi A lightweight stemmer Ramanathan et al. Strip off the words endings

from a suffix list on a ‘longest
match’ basis.

88%

2009 Urdu Affix-exception list
based stemmer

Qurat-Ul-Ain Akram et
al.

Stems the Urdu words using
lexical lookup method (Assas-
band).

91.20%

2012 Urdu Unsupervised ap-
proach to develop
stemmer

Shahid Husain et. al. n-gram stripping model 95.8%

2010 Punjabi Brute Force
Technique

Dinesh Kumar, Prince
Rana

Suffix Stripping 80.73%

2007 Bengali Yet Another Suffix
Stripper

Majumder et al. Statistical clustering based ap-
proach to discover equivalence
classes of root words using
some set of distance measures.

91.56%

2009 Bengali A lightweight stemmer Islam et. al. Suffix Stripping 90.80%
2011 Bengali A Fast Corpus-Based

Stemmer
Jiaul H. Paik and Swa-
pan Kumar Parui

A purely corpus based tech-
nique finds the equivalence
classes of variant words in an
unsupervised manner.

95%

2011 Bengali Porter stemming tech-
nique

Suprabhat Das and
Pabitra Mitra

Suffix Stripping 96.27%

2014 Bengali Rule Based Bengali
Stemmer

Redowan Mahmud.
MD et. al.

Rule based suffix removal tech-
nique without using any list of
suffixes.

88%

2016 Bengali Bengali Lemma-
tizer(BenLem)

A. Chakrabarty and U.
Garain

Reverse transformation based
lemmatizer from surface
words.

81.85%

2016 Bengali A Neural Lemmatizer
for Bengali

A. Chakrabarty et. al. Neural network based lem-
matizer using word2vec and
CBOW

69.57%

measures. Mahmud et al. (2014) developed a
rule based Bengali stemmer in 2014. This pa-
per identify the occurrences of different inflec-
tions and their pattern. They developed rules
to remove suffix from a inflected word with-
out using any list of suffix list. Chakrabarty
and Garain (2016) have designed a Bengali
Lemmatizer (BenLem) which is able to handle
both inflection and derivational morphology in
Bengali language. In this approach, they used
the FIRE Bengali News Corpus. It achieved
81.85% of accuracy in terms of resolving the in-
flected and derived words. Chakrabarty et al.
(2016) proposed a neural network based lem-
matizer which achieved 69.57% of accuracy.
Thangarasu and Manavalan (2013) presented
a literature review on stemming techniques for
the Indian languages. Patel and Shah (2016)
presented a literature review on unsupervised
stemming techniques.

Table 1 shows different stemming tech-

niques for Indian languages. In this compar-
ison Das and Mitra (Das and Mitra, 2011)
shows the highest accuracy of 96.27% for Ben-
gali language with respect to other Indian
languages and the lowest accuracy is 80.73%
for Punjabi language proposed by Kumar and
Rana (Kumar and Rana, 2011).

3 Inflections of words in Bengali
language

Inflection of word is a process in which a word
takes different forms. It may be based on
tense, number and person. Different forms
of the actual word are called inflected words.
Bengali is one of the most morphologically dec-
orated languages due to its wide range of in-
flected words. In this language inflections are
mainly observed for verbs and nouns. Adjec-
tives in Bengali can take only two suffixes -
তর and তম, marking comparative and superla-
tive adjectives, respectively, while adverbs in



403

Table 2: Possible Suffixes for Bengali Language

Tense 1st Person &
2nd Person

2nd Person (Formally,
Informally)

2nd Person (In-
formally for Ju-
nior Persons)

3rd Person
(Formally)

3rd Person
(Informally)

Past Indefinite লাম ሏল, ሏলন িল ሏলন লা, ሏলা
Past Continuous িছলাম িছেল িছিল িছেলন িছল
Past Perfect এিছলাম এিছেল, এেয়িছেল, ইেয়িছেল

এেয়িছেলন, এিছেলন, ইেয়িছেলন
ইেয়িছিল, এিছিল, এেয়িছিল এিছেলন, এেয়িছেলন,

ইেয়িছেলন
ইেয়িছল, এেয়িছল,
এিছল

Present Indefinite ই এন ইস এন এ
Present Continu-
ous

ি኎, ছ ኎,ছ , ሏ኎ন, এেছন ি኎স, এিছস ሏ኎ন, এেছন ሏ኎, এেছ

Present Perfect এিছ এছ, এেছন এিছস এেছন এেছ
Present Perfect
Continuous

Not Applicable এন Not Applicable উন উক

Future Indefinite ব (ሏবা) ሏব, ሏবন িব ሏবন ሏব
Future Continuous ሏতথাকব ሏতথাকেবন ሏতথাকিব ሏতথাকেবন ሏতথাকেব
Future Perfect এথাকল থাকেব এথাকিব এথাকেবন এথাকেব
Future Perfect
Continuous

Not Applicable ሏবনওএন িতস ሏবন ሏব

Habituatal Past তাম ሏত, ሏতন িতস ሏতন ত

Bengali do not get suffixed. In this section we
address the inflections of verbs and nouns. We
also analyze the rules of inflections.

3.1 Inflections for Verbs

In Bengali language a verb is formed from the
root-verb by joining some suffixes. As an ex-
ample the root-verb of verb বেলেছন (Told) is বল
and the suffix is এেছন. The inflections in verbs
are varied according to tenses and the persons.
The deviation of verb form according to the
tense can be observed easily. For example the
word বলেছ (Telling), বেলেছন (Told) is deviation of
actual root word বলা (Tell). Inflections are also
noticed in case of informal and formal commu-
nications. For example the verb (Go) in the
sentence “you (addressing younger one) are go-
ing” is presented as যাি኎স and the verb (Go) in
the sentence “you (addressing elder/ respected
one) are going” is presented as যাে኎ন. Both of
these words are infected form of যাওয়া (Go) and
the root-verb is যা. One important point is es-
sential to notice that the deviation of word
যাওয়া (Go) is িগেয়িছেলন (Went) where there is no
such linguistic interpretation. In such cases
we maintain a mapping between root-verb and
its possible deviations. We have listed out a
number of possible suffixes in table 2 that are
used to deviate a verb from its stem form. We
apply rule based stemming mechanism to ex-
tract root-verb by omitting suffixes from the
inflected word. A detailed procedure is illus-
trated in section 4. It is worth mentioning

that the length of the root-verb in Bengali lan-
guage is maximum 3. Root-verbs of different
length is also presented in the table 3

3.2 Inflections for Noun
Noun inflections in Bengali language are lim-
ited. In case of verbal inflections the stem
words can be changed sometimes but in case
of Nominal inflection the stem word cannot
be changed. Noun inflections are occurred
to mention singular and plural forms of an
object. Limited number of suffixes (Bhat-
tacharya et al., 2005) such as `িট', `টা' ,`রা', `খানা',
`খািন', `ፙেলা', `ፙিল', `এরা', `রািজ', `রািশ', `পুኙ', `সমূহ' etc. are
added to the stem words. These suffixes are
also added according to the representation of
human being or other living things or non-
living things. A number of noun inflections
are presented in table 4. Example of different
Noun inflections can be ሏছেলিট (The boy), বইፙিল
(Books), বቷৃািদ (Trees), পবሑতমালা (Mountain range)
etc.

4 Proposed Methodology

We have discussed about various verb and
noun inflections in Bengali Language till now.
We also mentioned possible suffixes for devia-
tion of a word and the different root-verb of
different lengths of verbs. In this section, we
illustrate our methodology to find stem of a
verb.

It is easily observable that the number of
rules for formation of different length of root-



404

Table 3: Different Types of Root-Verbs available in Bengali

Length Category Root-Verbs
1 Single Letter হ, ቷ, ল, ঘ
1 Letter + আ খা, ধা, পা ,যা, গা
1 Letter + ই িদ, িন
1 Letter +◌ু ᎀ, ধু, নু, etc
2 2 Letters কর, কম, গড়, চল, পড়, জম etc around 100 root-verbs
2 letter + হ কহ, সহ, বহ etc
2 ◌্ is addded at last কাᎥ, গাঁᎫ, চাᎶ, আঁ᎛, কাঁᎬ, বাঁᎭ, িল᎜, িকᎮ, িজᎪ, িঘᎵ, িফᎵ, িভᎵ, িচᎮ, উᎦ, ᎀᎮ, ফুᎥ, খুঁᎢ, খুᎶ,

উᎻ etc almost 200 root-verbs
2 Ꮊ is added at last গাᎺ, বাᎺ, নাᎺ, চাᎺ etc
2 ◌া is added at last চড়া, কাটা, লাফা, চরা, ছড়া, ছরা, আগা, চালা, নাহা, গাহা, িফরা, িছটা, িশখা, িঝমা, িপটা, িমটা,

লুকা, ঘুরা, কুড়া, উঁচা, পুঁড়া, ধুয়া, ሏধায়া, ሏশায়া, ሏখায়া, ሏখাঁচা, ሏগাছা, ሏপৗঁছা, ሏদৗড়া etc around
250 root-verbs

3 ◌া is added at last চটকা, সমঝা, কচলা, ধমকা, িছটকা, িহঁচড়া, িসটকা, িবগড়া, ፤মড়া, মুচড়া, উলটা, উপচা, ሏছাবলা,
ሏকাঁচকা, ሏকাঁকড়া etc almost 150 root-verbs

Table 4: Different types of Noun Inflections

Objects Singular Plural
Human Beings টা, টােক, িট, টার, র, ሏ◌র, ሏক etc ፙেলা, ፙিল, ፙেলার, ፙিলর, রা, ሏদর, ሏদরেক etc
Other Living or
Non-Living Things

টা, টােক, িট, টার, র, টােত, িটেত, ሏ◌র, ሏ◌
etc

ፙেলা, ፙিল, ፙেলার, ፙিলর, এরা, জন, ፙিলেত,
ፙেলােত, রািজ, রািশ, পুኙ, সমূহ, বণሑ, ব ৃመদ, বগሑ,
মালা, িদ etc

verbs are limited. We can generate root-verbs
of different length from an inflected word by
applying the mentioned rules. For example
from the inflected word ሏখেয়েছন (ate) we can
generate possible root-verbs of different length
upto 3. If we consider length 3 we get খয়ছা,
খুয়ছা, িখয়ছা etc about 6 words. Similarly for
length 2 we can generate words like খয,় খহ,খাᎽ,
িখয়, খুᎽ etc about 8 words and finally for length
1 we have খ, খা, িখ, খু . Out of these all possible
root-verbs only one will be matched with
valid one (খা) and corresponding verb(খাওয়া)
(eat) will be retrieved.

At this point we would like to illustrate our
proposed methodology for stemming. The al-
gorithm is presented in Algorithm 1. This al-
gorithm takes one word possibly an inflected
word IW and access Bengali WordNet. Before
doing any kind of suffix removal it checks the
word in the WordNet to confirm that the word
is inflected or not. In some cases suffixes are
present in a word and creates a new word. Re-
moving this suffix from the word changes the
intended meaning of the word. For example

আধার (Dark), if we remove ‘র’ from the word, it
will be আধা (Half or Half pieces). On the other
hand if we consider word গাধার (Donkey’s) and
if we remove `র' then it will be গাধা (Donkey)
which is valid suffix removal. So before doing
suffix removal we should search that particular
word in the WordNet. In the next stage, al-
gorithm perform the stemming mechanism ac-
cording to its category (Noun or Verb). In this
phase root form of the verb is generated. The
function G() generates the root-verb according
to the lengths ranging from 3 to 1. It gener-
ates all possible root-verbs based on the first 3
letters of the inflected word by applying rules
mentioned in table 3. If it does not find any
matching valid root-verb, it continues to gener-
ate all possible root-verbs of length 2 and so on.
As the number of rules are constant and very
few, it does not take too much amount of time.
If a match found then the corresponding verb
of the root-verb is returned. In the previous
step we have already filtered the root words
having some suffixes within those root words.
In this stage we can emphasis that the words
will have intentional suffixes merged with its



405

Algorithm 1 Stemming Algorithm
Input IW is the word that is the inflected form of a

verb or noun along with its parts of speech tagged. We
maintain a database for list of nouns and verbs. ND is
the database containing nouns and VD is the database
containing verbs. We maintain a list of root-verbs, root
form of Nouns are in RND database and RVD accordingly.
SF is the set of suffixes used to inflect a Noun.

OutputAfter applying the following procedure ac-
tual root word will be assigned to RW.
1: procedure Stemmer(IW)
2: WPOS ← P(IW)
3: if WPOS = NOUN then
4: if S(IW,ND) = true then
5: RW ← IW
6: return(RW)
7: else
8: i← 0
9: while i > 4 do

10: RWP ← R(IW, SF[i])
11: if S(RWP,RND) = true then
12: RW ← RWP
13: return(RW)
14: end if
15: i← i+ 1
16: end while
17: end if
18: end if
19: if WPOS = V ERB then
20: if S(IW,VD) = true then
21: RW ← IW
22: return(RW)
23: else
24: length← 3
25: while length > 0 do
26: RVð ← G(length, IW)
27: for each RG in RVð do
28: if S(RG ,RVD) = true then
29: RW ← GRV(RVð,RVD)
30: return(RW)
31: end if
32: end for
33: length← length− 1
34: end while
35: end if
36: end if
37: end procedure

root. So we generate all possible root-verbs of
length 3 then of length 2 and finally length of
1. It is worth mentioning that according to the
Bengali grammar, the length of the root-verbs
never exceed its length by 3. The next stage
is set up for the Nouns.

We define an array of possible suffixes for
Noun words mentioned in table 5 . Based on
utilization of suffixes, we define a suffix strip-
ping rules. Let us consider an inflected word
ሏছেলፙেলােদরেক (to the boys). In this word multi-
ple suffixes are applied. So in general we first
search for suffixes like ሏক, ሏত and remove those
suffixes if present in the inflected word. Here

in this example the inflected word ሏছেলፙেলােদরেক
becomes ሏছেলፙেলােদর. Now after that we search
ሏ◌, র ,এরা, য,় রা and remove those suffixes if avail-
able. Now the word becomes ሏছেলፙেলােদ. Again
we search for ሏদ, কা, টা, িট and remove the one is
present in the word. So the word is now ሏছেলፙেলা
(Boys). After that the algorithm searches for
জন, ፙেলা, ፙিল, খানা and removes the appropriate
one. In this stage we get ሏছেল (Boy) which
is the root word. Furthermore, the algorithm
will search for রািজ, রািশ, বণሑ, পুኙ, ব ৃመদ, বগሑ, সমূহ but at
any stage if the word can be found in the Word-
Net we return that word as the root form of
the inflected word.

Another major notable limitation of Ben-
gali WordNet is that, WordNet does not con-
tain deviated words a lot. It is certainly much
difficult to identify all linguistic deviation of a
word and store them all in WordNet. A word
can be spoken or written in different way and
that is deviated from one region to another
region of a country. As an example, the de-
viated form of the word বলা (Telling) can be
বলেত or বলতা. Inhabitants of various regions of
West Bengal (A state of India) use the word
‘বলেত’ and on the other hand some inhabitants
of some regions of West Bengal use the word
‘বলতা’.
At this point we briefly illustrate the steps in-
volved in the proposed algorithm. The algo-
rithm takes inflected word (IW) as input. In
the next step function P() extracts the parts of
speech (WPOS) of IW. If it is a “NOUN” then a
function S() searches the Noun database (ND)
for a match. If a match found, it means the in-
flected word has a meaning itself hence there is
no need of stemming. Otherwise we can strip
off different suffixes depending upon the pres-
ence of suffixes within the inflected word. We
iterate through the suffix set SF and a function
R() searches different possible suffixes within
the inflected word and removes them. R() re-
turns a word RWP in every iteration that does
not contain ith suffix set of SF. RWP then
searched in the “Root Noun” database RND
using function S(). Whenever a match found
the word is returned as the root form of the
inflected word.

If WPOS is “VERB” then again the search
function S() searches the word in verb
database (VD) for a match. A match indicates



406

Table 5: Suffix Array

Index 1 2 3 4 5
Suffixes ሏক, ত� ሏ◌, র ,এরা, য,় রা ሏদ, কা, টা, িট জন, ፙেলা, ፙিল, খানা রািজ, রািশ, বণሑ, পুኙ, ব ৃመদ, সমূহ

that the word has its own meaning. So we
return the word as it was. Otherwise a func-
tion G() will generate all possible root-verb
from the inflected word and store them in set
RVð. In first iteration it takes first 3 charac-
ters of the inflected word and make all possible
root-verbs using the predefined rules. Then it
takes 2 characters and so on. As in Bengali
grammar root-verbs can have of length maxi-
mum of three, we start finding root-verbs in
descending order. Every element within the
set RVð is checked in the root-verb database
RVD. At any point if a match found then the
corresponding stem verb (RW) is returned.

5 Resources Used

Bengali WordNet: Bengali WordNet is a
part of IndoWordNet1. Bengali WordNet is a
lexical database for Bengali words and it con-
tains around 61 thousand Bengali words along
with the Synsets. We imported the Bengali
WordNet in MySQL database. We created
a separate table for all the root-verbs corre-
sponding to the Bengali verbs.

TDIL Corpus: For the corpus, we used
the Technology Development for Indian Lan-
guages (TDIL) corpus (Jha, 2010) in this
work.

6 Experiment

6.1 Dataset
We tested our algorithm on a testset of ran-
domly chosen 500 sentences from the TDIL
Bengali corpus of health and tourism domain
articles. In this test dataset there are 2,756
unique content words containing 1304 Nouns,
1230 Verbs, 54 Adverbs and 168 Adjectives.
Since in Indian languages, nouns and verbs
get highly inflected, we concentrated on the
stemming of nouns and verbs in Bengali. We
used the Stanford Bengali POS Tagger to as-
sign POS tag to each word of the testset. Fi-
nally we manually verified the POS tags and
corrected the wrongly assigned tags.

1http://tdil-dc.in/indowordnet/

Table 6: System performance

Category #Words #Correctly
Stemmed Accuracy

Noun 1274 1234 96.86
Verb 1230 1227 99.75

6.2 Implementation
We implemented our algorithm in Python 3.6
and MySQL. In the very first step each sen-
tence of the corpus is scanned by our python
script. The Natural Language Tool Kit (nltk)
package has been used to accomplish the nec-
essary preprocessing tasks. Within the nltk
package we have used Stanford Bengali POS
Tagger to tag parts of speech for each word
of the sentence. Then the sentence is tok-
enized into set of words. Another python
script has been used to remove stop words
listed by TDIL. At this point we use our actual
python program to implement our proposed al-
gorithm. It takes the tokenized words along
with tagged parts of speech. We have used
MySQL to store the Bengali WordNet. When-
ever a searching in the WordNet is required,
a particular module is responsible to search a
particular word in the WordNet.

7 Result and Analysis

Our algorithm works for Verbs and Nouns.
Out of 1230 verbs it successfully stems 1217
Verbs. In the other hand it successfully stems
1274 Nouns. Our algorithm fails for 43 words
due to lack of words in Bengali WordNet. The
accuracy of our algorithm shows 96.86% for
the Verbs and 99.75% for Nouns. The accu-
racy of our algorithm is shown in table 6. The
comparison of accuracy of different stemming
techniques are presented in Figure-1. In figure-
1 it is shown that our technique gives better ac-
curacy than state-of-art stemming techniques
in Bengali language.

In our approach we validate inflected words
before applying our proposed rule based suffix
removal technique. This validation technique



407

 

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00% 90.80% 95%

81.85%

69.57%

96.27% 91.56% 88%
96.86% 99.75%

A
C

C
U

R
A

C
Y

STEMMING MECHANISMS

Figure1
Comparison of Accuracy of Different Stemming Techniques

is done by searching the word in the Word-
Net to check whether the word is inflected or
not. We incorporate the rules of Bengali gram-
mar to understand how verbs are formed from
the root-verbs. Subsequently we observed that
there are very limited rules for inflections of
nouns. We extract the root-verbs from the
inflected verbs by finding the combinations
of suffixes and root-verbs of different lengths.
Root words are also extracted from inflected
nouns by applying step by step suffix removal.

The mechanism extracts actual root word
from the inflected word and verifies it with
the WordNet entry. There are some advan-
tages and disadvantages in this approach. One
of the major advantages is that the extracted
root word will always be correct. This valida-
tion enhances the correctness of the extraction
of root words.

One vital limitation of this entire mecha-
nism is that, our algorithm rely on WordNet.
There may be a situation where our algorithm
extracts correct root word but it is not present
in the WordNet and the extracted root word
will be discarded.

8 Conclusions and Future Work

We have proposed a rule based algorithm for
stemming verbs and nouns in Bengali. Incor-
poration of WordNet adds an extra degree in
validation and extracting root words from in-

flected words. Bengali grammar rules have
been used to find root-verbs of verbs efficiently.
We have covered almost all kinds of root-verbs
and possible suffixes to create a root word from
an inflected verb.

References
Qurat-ul-Ain Akram, Asma Naseer, and Sarmad

Hussain. 2009. Assas-band, an affix-exception-
list based urdu stemmer. In Proceedings of the
7th workshop on Asian language resources, pages
40–46. Association for Computational Linguis-
tics.

Samit Bhattacharya, Monojit Choudhury,
Sudeshna Sarkar, and Anupam Basu. 2005.
Inflectional morphology synthesis for bengali
noun, pronoun and verb systems. In Proc. of the
National Conference on Computer Processing
of Bangla (NCCPB 05), pages 34–43.

Abhisek Chakrabarty, Akshay Chaturvedi, and Ut-
pal Garain. 2016. A neural lemmatizer for ben-
gali. In Proceedings of the Tenth International
Conference on Language Resources and Evalua-
tion (LREC’16), pages 2558–2561.

Abhisek Chakrabarty and Utpal Garain. 2016.
Benlem (a bengali lemmatizer) and its role in
wsd. volume 15, pages 1–18. ACM New York,
NY, USA.

Suprabhat Das and Pabitra Mitra. 2011. A rule-
based approach of stemming for inflectional and
derivational words in bengali. In Students’
Technology Symposium (TechSym), 2011 IEEE,
pages 134–136. IEEE.



408

Niladri Sekhar Dash, Pushpak Bhattacharyya, and
Jyoti D Pawar. 2017. The wordnet in indian
languages. Springer.

Nadir Durrani and Sarmad Hussain. 2010. Urdu
word segmentation. In Human Language Tech-
nologies: The 2010 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 528–536. Asso-
ciation for Computational Linguistics.

Heshaam Faili and Hadi Ravanbakhsh. 2010. Affix-
augmented stem-based language model for per-
sian. In Proceedings of the 6th International
Conference on Natural Language Processing and
Knowledge Engineering (NLPKE-2010), pages
1–4. IEEE.

William B Frakes and Christopher J Fox. 2003.
Strength and similarity of affix removal stem-
ming algorithms. In ACM SIGIR Forum, vol-
ume 37, pages 26–30. ACM.

Md Islam, Md Uddin, Mumit Khan, et al. 2007. A
light weight stemmer for bengali and its use in
spelling checker. BRAC University.

Girish Nath Jha. 2010. The tdil program and
the indian langauge corpora intitiative (ilci). In
LREC.

Anjali Ganesh Jivani et al. 2011. A comparative
study of stemming algorithms. volume 2, pages
1930–1938.

Gerald J Kowalski. 2007. Information retrieval
systems: theory and implementation, volume 1.
Springer.

Dinesh Kumar and Prince Rana. 2011. Stemming
of punjabi words by using brute force technique.
volume 3, pages 1351–1357.

Md Redowan Mahmud, Mahbuba Afrin, Md Ab-
dur Razzaque, Ellis Miller, and Joel Iwashige.
2014. A rule based bengali stemmer. In Ad-
vances in Computing, Communications and In-
formatics (ICACCI, 2014 International Confer-
ence on, pages 2750–2756. IEEE.

Prasenjit Majumder, Mandar Mitra, Swapan K
Parui, Gobinda Kole, Pabitra Mitra, and
Kalyankumar Datta. 2007. Yass: Yet another
suffix stripper. volume 25, page 18. ACM.

Sangita D Makhija. 2016. A study of different
stemmer for sindhi language based on devana-
gari script. In 2016 3rd International Confer-
ence on Computing for Sustainable Global Devel-
opment (INDIACom), pages 2326–2329. IEEE.

Jiaul H Paik, Dipasree Pal, and Swapan K Parui.
2011. A novel corpus-based stemming algorithm
using co-occurrence statistics. In Proceedings of
the 34th international ACM SIGIR conference
on Research and development in Information Re-
trieval, pages 863–872. ACM.

Miral Patel and Apurva Shah. 2016. An unsuper-
vised stemming: A review. volume 14, page 476.
LJS Publishing.

Martin F Porter. 1980. An algorithm for suffix
stripping. volume 14, pages 130–137. MCB UP
Ltd.

Ananthakrishnan Ramanathan and Durgesh D
Rao. 2003. A lightweight stemmer for hindi. In
the Proceedings of EACL.

M Thangarasu and R Manavalan. 2013. A liter-
ature review: stemming algorithms for indian
languages.

Tapashee Tabassum Urmi, Jasmine Jahan Jammy,
and Sabir Ismail. 2016. A corpus based unsu-
pervised bangla word stemming using n-gram
language model. In 2016 5th International Con-
ference on Informatics, Electronics and Vision
(ICIEV), pages 824–828. IEEE.


