
Proceedings of the 17th International Conference on Natural Language Processing, pages 373–378
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

373

Leveraging Alignment and Phonology for low-resource Indic to
English Neural Machine Transliteration

Parth Patel1, Manthan Mehta2, Pushpak Bhattacharyya1 and Arjun Atreya1

{parthpatel, pb, arjun}@cse.iitb.ac.in, f20170408@pilani.bits-pilani.ac.in
1Department of Computer Science & Engineering

Indian Institute of Technology Bombay, Mumbai, India
2 Department of Computer Science & Information Systems

Birla Institute of Technology & Science, Pilani, India

Abstract

In this paper we present a novel translitera-
tion technique based on Orthographic Syl-
lable (OS) segmentation for low-resource
Indian languages (ILs). Given that align-
ment has produced promising results in
Statistical Machine Transliteration sys-
tems and phonology plays an important
role in transliteration, we introduce a new
model which uses alignment representa-
tion similar to that of IBM model 3 to
pre-process the tokenized input sequence
and then use pre-trained source and tar-
get OS-embeddings for training. We ap-
ply our model for transliteration from ILs
to English and report our accuracy based
on Top-1 Exact Match. We also compare
our accuracy with a previously proposed
Phrase-Based model and report improve-
ments.

1 Introduction

The process of transliteration is defined in
Zhang et al. (2012) as “the conversion of a
given name in the source language (a text
string in source script) to a name in the target
language (another text string in target script),
such that the target language name is: (i)
phonemically equivalent to the source name,
(ii) conforms to the phonology of the target
language, and (iii) matches the user intuition
of the equivalent of the source language name
in the target language, considering the culture
and orthographic character usage in the tar-
get language”. This definition of translitera-
tion is apt in the context of Machine Transla-
tion since it employs transliteration as a sub-
system to handle Named Entities (NEs). We
are interested in solving the transliteration
problem for Indian to English language pairs
and in this paper, we demonstrate the use of
OS and pre-trained embeddings to overcome

the data sparsity problem that arises in low-
resource languages.
The structure of the paper is as follows: Sec-
tion 2 presents the state of the art on machine
transliteration. In section 3 and 4, we describe
some background and our proposed approach.
Then, in section 5, we present our experiments
and results. Finally, in section 6, we present
our conclusions and in section 7, we express
gratitude to our supporters.

2 Related Work

Arbabi et al. (1994) proposed the very first
transliteration system for Arabic to English
transliteration. In 1998, Knight and Graehl.
(1998) proposed a statistical based approach
that back transliterates English to Japanese
Katakana which was later adopted for Ara-
bic to English back transliteration by Stalls
and Knight. (1998). In 2000, three inde-
pendent research teams proposed English-to-
Korean transliteration models. Other series of
work on transliteration has focused on char-
acter as a unit of transliteration and using
Recurrent Neural Networks. Neural network-
based system in the 2016 was proposed by
Finch et al. (2016) for multiple language pairs.
They used Bi-directional LSTMs for good pre-
fix and suffix generation and were able to sur-
pass the state-of-the-art results of previous
systems on the same datasets. Kunchukuttan
et al. (2018); Le et al. (2019) used standard
encoder-decoder architecture (with attention
mechanism (Bahdanau et al., 2014)). Until
recently, the best-performing solutions were
discriminate statistical transliteration meth-
ods based on OS-based statistical machine
transliteration (Atreya, 2016) for Indian to
English language pairs. We focus on apply-
ing OS as a transliteration unit on encoder-
decoder architecture (with attention) (Luong



374

et al., 2015).

3 Background Knowledge
We first describe the Orthographic syllables,
which form the essence of this transliteration
module, introducing a new technique for word
segmentation, following which we will formu-
late the probabilistic model for Grapheme-to-
Grapheme alignment, explaining the method
to position each orthographic syllable in the
word.

3.1 Orthographic Syllables
Indic languages possess greater grapheme to
phoneme consistency as compared to En-
glish(Atreya, 2016). However, the syllable
boundary identification for segmentation of an
Indic language word into a list of syllables is
extremely challenging because of the presence
of Schwa (short ’a’ vowel preceded by a con-
sonant unless specified otherwise) and diph-
thongs (sound formed by combination of two
vowels) in the syllable unit. In this work,
we have used a variant of Syllable as a unit,
called Orthographic Syllable which essentially
is ‘Syllable −(minus) Coda’ (See Figure:1).
The algorithm used for the OS segmentation
is presented in Algorithm 1.

Syllable

Onset
(C*)

Rhyme
Coda
(C*)

Nucleus
(V+)

OS

Figure 1: Structure of Orthographic Syllable where
the left over Coda concatenates with the Onset of
the next OS

3.2 Grapheme-to-Grapheme
Alignment

Le et al. (2019) and Yao and Zweig (2015)
have reported that, in grapheme-to-phoneme
alignments, the grapheme possesses the fertil-
ity property similar to IBM Model 3 i.e. it can
map to either a null or single or compound
phonemes. We assume that same holds true
for grapheme-to-grapheme alignments. Since,
the aim of alignment is to find a grapheme
sequence Y defined by Y = {p1, p2, ..., pN},

given an OS segmented grapheme sequence X
defined by X = {o1, o2, ..., oM}. Essentially,
the problem can be seen as finding the opti-
mal grapheme sequence Ŷ , which maximizes
its conditional probability, as in Equation 1.
Since p(X) is independent of the grapheme se-
quence Y , we can simplify the equation 2 to
get Equation 3.

Ŷ = arg max
Y

p(Y |X) (1)

Ŷ = arg max
Y

(X|Y )p(Y )

p(X)
(2)

Ŷ = arg max
Y

p(X|Y )p(Y ) (3)

Mathematically, given X, Y , and an align-
ment A, the posterior probability p(P |O,A) is
estimated as follows:

p(Y |X,A) ≈
N∏

n=1

p(pn|pn−k
n−1, o

n+k
n−k) (4)

where k is the context window size and n is
the alignment position index.
We use expectation-maximization as described
in Jiampojamarn et al. (2007) for re-aligning
the input sequence after OS segmentation.

Algorithm 1 Orthographic Syllable segmen-
tation . Consonant and Vowel are represented
by C and V respectively

1: procedure SEGMENT(word) ▷ Split
word based on regular expression: C∗V +

2: seg_os← ‘‘”
3: prev_vowel← False
4: for each character c in word do
5: if prev_vowel and (c!=vowel) then
6: prev_vowel← False
7: seg_os← seg_os + ‘‘#”
8: end if
9: if c = vowel then

10: prev_vowel← True
11: end if
12: seg_os← seg_os + c
13: end for
14: return seg_os.split(‘‘#”)
15: end procedure

4 Approach
In this section, we present our approach, fol-
lowed by a description of our experimental



375

setup, describing the data gathering and clean-
ing, followed by the model configurations and
then the evaluation technique.

4.1 Proposed Approach
Our approach for Indic to English Neural Ma-
chine Transliteration consists of 4 steps: (1)
orthographic syllable segmentation, (2) modifi-
cation of OS-segmented input sequences based
on alignment representation, (3) creation of
orthographic syllable embeddings with aligned
input sequences as input and (4) then we train
an RNN-based machine transliteration model.
The whole process is illustrated in Figure 2.

4.2 Experimental Data
We run our experiments on baby names
dataset available in multiple IL and English
from India Child Names website1 and Bachpan
website2. The bilingual dataset for learning is
divided into training, development, and test-
sets at a ratio of 90%, 5% and 5% respectively.
The details about the dataset are mentioned
in Table 1.

4.3 Model Configuration
We use the m-2-m aligner3 toolkit (Jiampoja-
marn et al., 2007) to align the training data
at OS level. We choose m = 2 similar to (Le
et al., 2019) for alignment. For the pre-trained
source and target OS embeddings, we apply
gensims4 toolkit (Řehůřek and Sojka, 2010)
with dimension size of 100, 200, and 300, a
window size of 3, and the skip-gram option.

For model training, we apply OpenNMT-
py5 toolkit (Klein et al., 2017) to train our
transliteration model. In the transliteration
system configuration, we run our model with
Adam optimizer and use Luong et al. (2015)
attention with two learning rates 0.01 and
0.001 for 50000 training steps. We also
use 2, 3, and 4 layered encoder-decoder net-
works(LSTMs) each with vector sizes of 100,
200, and 300 and report the top accuracy val-
ues for multiple language pairs.

1www.indiachildnames.com
2www.bachpan.com
3https://github.com/letter-to-phoneme/

m2m-aligner
4https://radimrehurek.com/gensim/models/

fasttext.html
5https://github.com/OpenNMT/OpenNMT-py

xx-en pair train dev test total
Assamese (as) 95308 5295 5295 105897
Bengali (bn) 71832 3991 3991 79813
Gujarati (gu) 16599 923 923 18443
Hindi (hi) 43074 2393 2393 47860
Kannada (kn) 16601 923 923 18445
Malayalam (ml) 15721 874 874 17467
Marathi (mr) 46908 2606 2606 52120
Punjabi (pa) 44737 2486 2486 49707
Tamil (ta) 16393 911 911 18214
Telugu (te) 19970 1110 1110 22188

Table 1: Dataset details for 10 IL where xx repre-
sents IL code mentioned in parenthesis of column
1

4.4 Evaluation Technique
We use Top-1 Exact Match accuracy as the
evaluation metric (Banchs et al., 2015). This
is one of the metrics used in the NEWS shared
tasks on transliteration.

5 Results
We discuss and analyse the results of our ex-
periments, indicating the major improvements
and scope of improvement for our approach.

5.1 Results on Test Data
To evaluate our proposed approach, we have
implemented three systems (Table 2):

1. Baseline System: We reproduce the re-
sults of Atreya (2016) using MOSES6

toolkit (Koehn et al., 2007) for our ex-
periments along with GIZA++7 (Och and
Ney, 2003) for learning alignments.

2. System 1: Encoder-Decoder LSTM(Klein
et al., 2017) + Attention Mecha-
nism(Luong et al., 2015) + OS segmen-
tation(Atreya, 2016)+ one hot encoding
as the encoding mechanism.

3. System 2: Encoder-Decoder
LSTM(hidden sizes of 128 and 256
were tried) + Attention Mechanism +
OS segmentation + pre-trained source
and target OS embeddings(sizes of 100,
200 and 300 were used as embedding

6https://github.com/moses-smt/mosesdecoder
7https://github.com/moses-smt/mgiza

www.indiachildnames.com
www.bachpan.com
https://github.com/letter-to-phoneme/m2m-aligner
https://github.com/letter-to-phoneme/m2m-aligner
https://radimrehurek.com/gensim/models/fasttext.html
https://radimrehurek.com/gensim/models/fasttext.html
https://github.com/OpenNMT/OpenNMT-py
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mgiza


376

Bi-lingual
dataset

OS	Segmentation Alignment
Extraction

Aligner

OS	Embedding
Generation

FastText

RNN	+	OS
Embedding	Machine

Transliteration

[hi]	आभरण	
(Gratification)
[en]	aabharana

[gu]	આનંદ
(Joy)

[en]	aanand

[hi]		भगवा	न
(God)

[gu]	ત	�લી
(Toll)

[hi]	आ#भरण	
[en]	aa#bha#ra#na	

[gu]	આ#નં#દ	
[en]	aa#na#nd

[hi]	आ#भ:रण
[en]	aa#bha:ra:na

[gu]	આ#નં#દ
[en]	aa#na#nd

[hi]	bha:gwaa	n
[gu]	ta:llee

Figure 2: System Architecture for Indic to English Neural Machine Transliteration

Exp. DS Indic (xx) to English (en) Language pair
as bn gu hi kn ml mr pa ta te

Baseline 50.68 37.75 48.87 57.21 48.94 48.49 45.77 39.28 35.39 46.99

System 1 128 81.92 75.8 73.58 63.52 72.7 71.82 67.98 66.51 65.38 69.19
256 80.43 75.56 73.75 62.96 73.96 71.19 67.43 66.45 65.76 70.22

System 2 128 82.97 78.42 72.59 62.68 74.29 74.65 68.83 68.73 65.7 71.59
256 81.54 77.21 73.84 62.73 75.48 74.54 69.2 68.16 66.77 69.78

Table 2: Top-1 accuracy figures of xx-en language pairs with 128 and 256 dimension size(DS)

sizes). The learning rate used here was
0.001 with Adam optimizer as already
mentioned in section 4.3.

As evident from Table 2, our systems 1 and 2
increase the Top-1 accuracy by at-least 50%.
We list the following observations:

• All language pairs perform better with
a learning rate of 0.001 and a 2-layered
LSTM.

• We claim that the dimension size is in-
versely proportional to the size of the
dataset for Indic languages. This is sup-
ported by the fact that {gu, kn, ta}-en
language pairs have smaller dataset size
and perform better for LSTM with dimen-
sion size of 256. On the other hand, the
{as, bn, hi, ml, pa, te}-en language pairs
have a larger dataset and perform better
with dimension size of 128.

5.2 Error Analysis
Table 3 shows top-10 prediction errors along
with actual and predicted output examples.

y ŷ Count Expected
Word

Output
Word

1 ee i 832 ha mee d haa mi d
2 aa a 667 ko maa n ko ma n
3 i ee 567 haa mi d ha mee d
4 th t 288 vi dva thi vi dva ti
5 w v 202 i swa r i sva r
6 t th 187 ra nti ka ra nthi ka
7 a aa 174 ha mee d haa mi d
8 v w 158 vo to n wo to n
9 c k 107 mou ni ca mou ni ka
10 k c 55 ana mi ka ana mi ca

Table 3: Top-10 Most confused vowels across all
language pairs. y represents the expected output
whereas ŷ represents the actual predicted output

The most frequent error the system makes is
confusing long ई(E) sound with a short इ(e)
and have only predicted correctly 487 times.
The characters थ(th) and त(t), both unaspi-
rated and aspirated consonants, are also mis-
takenly substituted. Schwa present at the end



377

of an OS also presents a challenge for the
prediction since IL words are almost always
suffixed by a short अ(a) sound(unless other-
wise specified explicitly by using ◌् ) that is
non-existent in English words. This is also
language dependent since राज़(raj, rule) from
Hindi to English should be transliterated as
Raj whereas from Dravidian(ta, te, kn, ml)
languages should be Raja. Similarly, even
words of the same language can have two dif-
ferent predictions like मा(mother) have ma and
maa which are both correct with respect to
English phonology. The characters w and v
are the sounds that both maps to the same
akshar of Indo-Aryan languages and are often
very difficult to differentiate.

6 Conclusion and Future Work
We show that using pre-trained OS-
embeddings on neural encoder-decoder
architecture involving OS tokenization out-
performs the baseline system by a significant
margin. The results also support our claim
that phonology and alignment play an
important role in increasing the accuracy
of transliteration. The reason for the im-
provement could be learning the Akshar
(a combination of vowel and consonant)
representation by encoder network and the
ability to learn canonical spellings in English.

Given the benefits of using alignment and
OS embeddings for low-resource ILs, we intend
to explore IL to IL transliteration with and
without English as a pivot.

7 Acknowledgement
We would like to show our gratitude to Min-
istry of Electronics And IT (MEITY8) and
our colleagues from Center for Indian Lan-
guage Technology (CFILT9) who provided in-
sight, expertise, and resources that greatly as-
sisted the research, and we thank 2 ”anony-
mous” reviewers for comments that improved
the manuscript.

References
Mansur Arbabi, Scott M Fischthal, Vincent C

Cheng, and Elizabeth Bart. 1994. Algorithms
8https://www.meity.gov.in/
9http://www.cfilt.iitb.ac.in/

for arabic name transliteration. IBM Journal of
research and Development, 38(2):183–194.

Arjun Atreya. 2016. Structure cognizant multi-
lingual query expansion in resource scarce lan-
guages. Ph.d thesis, IIT Bombay, April.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Rafael E Banchs, Min Zhang, Xiangyu Duan,
Haizhou Li, and A Kumaran. 2015. Report of
news 2015 machine transliteration shared task.
In Proceedings of the Fifth Named Entity Work-
shop, pages 10–23.

Andrew Finch, Lemao Liu, Xiaolin Wang, and Ei-
ichiro Sumita. 2016. Target-bidirectional neural
models for machine transliteration. In Proceed-
ings of the sixth named entity workshop, pages
78–82.

Sittichai Jiampojamarn, Grzegorz Kondrak, and
Tarek Sherif. 2007. Applying many-to-many
alignments and hidden markov models to letter-
to-phoneme conversion. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main
Conference, pages 372–379.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine
translation. In Proc. ACL.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine transliteration. Computational linguistics,
24(4):599–612.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, et al. 2007. Moses: Open
source toolkit for statistical machine transla-
tion. In Proceedings of the 45th annual meeting
of the association for computational linguistics
companion volume proceedings of the demo and
poster sessions, pages 177–180.

Anoop Kunchukuttan, Mitesh Khapra, Gurneet
Singh, and Pushpak Bhattacharyya. 2018.
Leveraging orthographic similarity for multi-
lingual neural transliteration. Transactions of
the Association of Computational Linguistics,
6:303–316.

Ngoc Tan Le, Fatiha Sadat, Lucie Menard,
and Dien Dinh. 2019. Low-resource machine
transliteration using recurrent neural networks.
ACM Transactions on Asian and Low-Resource
Language Information Processing (TALLIP),
18(2):13.

https://www.meity.gov.in/
http://www.cfilt.iitb.ac.in/
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012


378

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025.

Franz Josef Och and Hermann Ney. 2003. A
systematic comparison of various statistical
alignment models. Computational linguistics,
29(1):19–51.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks,
pages 45–50, Valletta, Malta. ELRA. http:
//is.muni.cz/publication/884893/en.

Bonnie Glover Stalls and Kevin Knight. 1998.
Translating names and technical terms in ara-
bic text. In In Proceedings of the Workshop
on Computational Approaches to Semitic Lan-
guages, page 34–41.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-
to-sequence neural net models for grapheme-
to-phoneme conversion. arXiv preprint
arXiv:1506.00196.

Min Zhang, Haizhou Li, Ming Liu, and A Ku-
maran. 2012. Whitepaper of news 2012 shared
task on machine transliteration. In Proceedings
of the 4th Named Entity Workshop, pages 1–9.
Association for Computational Linguistics.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

