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Abstract

Smart devices are often deployed in some
edge-devices, which require quality solutions
in limited amount of memory usage. In most
of the user-interaction based smart devices,
coreference resolution is often required. Keep-
ing this in view, we have developed a fast
and lightweight coreference resolution model
which meets the minimum memory require-
ment and converges faster. In order to generate
the embeddings for solving the task of coref-
erence resolution, DistilBERT, a light weight
BERT module is utilized. DistilBERT con-
sumes less memory (only 60% of memory
in comparison to BERT-based heavy model)
and it is suitable for deployment in edge de-
vices. DistilBERT embedding helps in 60%
faster convergence with an accuracy compro-
mise of 2.59%, and 6.49% with respect to its
base model and current state-of-the-art, respec-
tively.

1 Introduction

Edge devices require natural language processing
(NLP) for understanding users’ input1. Whenever
it comes to user interaction, coreference resolu-
tion becomes an important task for analysing user’s
input. It involves determining all referring expres-
sions that point to the same real-world entity. A
grouping of referring expressions with the same ref-
erent is called a coreference chain or cluster. The
goal of a coreference resolution system is to output
all the coreference chains of a given text (Martschat
and Strube, 2015; Ferreira Cruz et al., 2020).

Several works on coreference resolution are
available in the literature having very high accu-
racy (Lee et al., 2017, 2018; Kantor and Globerson,
2019; Joshi et al., 2019; Fei et al., 2019). These
models use ELMo (Lee et al., 2018) and BERT

1https://www.iotforall.com/iot-natural-language-
processing/

(Joshi et al., 2019) for learning the semantic space
of the input. Because of the use of such heavy
transformers with millions of parameters, these
models require a lot of memory. However, smart
devices like smartphones should be responsive,
light-weight, and energy-efficient models. This
motivates us to design a light-weighted coreference
resolution model which is suitable for the deploy-
ment in smart-devices.

We contributed in word context representation
of c2f-model (Lee et al., 2018), by forming it from
embedding generated by DistilBERT instead of
ELMo. We use c2f-model as our baseline model,
since this is used as base model in all the recent
works ((Kantor and Globerson, 2019), (Joshi et al.,
2019) ). DistilBERT is a smaller, faster, cheaper,
and light-weight distilled version of BERT, which
is approx. 97% efficient in comparison to BERT.
It is 40% smaller in size, and 60% faster (Sanh
et al., 2019). The embeddings are generated from
the DistilBERT for learning the semantic space
of the sentences. After the generation of embed-
dings, they are passed to the bidirectional LSTM,
followed by span head for calculation of mention
scores. These mention scores are used for forming
the coreference chain using hierarchical clustering
as defined in (Lee et al., 2018).

The standard CoNLL-2012 (Pradhan et al., 2012)
dataset is utilized for the performance evaluation
of our proposed model. Experimental results show
that, the developed system requires only 60% mem-
ory for execution, in comparison to the BERT-
based heavy models, while remaining 97% effi-
cient, and 60% faster converging too. We have
also shown that 768 embedding dimension is suffi-
cient for word context embedding generation from
DistilBERT.
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2 The Proposed Approach

In order to utilize the embeddings generated by
DistilBERT for extracting the coreference chains,
we have integrated the recently proposed higher-
order coreference model proposed in (Lee et al.,
2018) in our system. We refer to this work as c2f-
model.

2.1 Overview of c2f-model
For each mention span u, the model learns a dis-
tribution P (·) over possible antecedent spans v, as
shown in equation 1. The scoring function s(u,v)
between spans u and v takes gu and gv as its inputs.
It uses fixed-length span representations. The scor-
ing function consists of a concatenation of three
vectors: the LSTM states of both the span end-
points and an attention vector computed over those
span tokens. The score s(u, v) is computed by the
mention score of u (sm(u)), mention score of v
(sm(v)), the joint compatibility score (sc(u, v)) of
u and v. The mention score of a span signifies
the probability of a span to be a mention. The
joint compatibility score signifies the probability
of the two spans as corefering. The components
are computed as follows:

P (v) =
es(u,v)∑

v′∈V e
s(u,v′ )

(1)

s(u, v) = sm(u) + sm(v) + sc(u, v) (2)

sm(u) = FFNNm(gu) (3)

sc(u, v) = FFNNc(gu, gv, φ(u, v)) (4)

where FFNN(·) represents a feed forward neu-
ral network and φ(u, v) represents speaker and
meta-data features. Antecedent distribution is used
for further refinement of these generated span rep-
resentations. Finally coreference chain is formed
using the scores generated from the softmax layer.

2.2 Extraction of Embedding from
DistilBERT for word context
representation

Extraction of embeddings from ELMO is shown in
(Peters et al., 2018). We have shown the embedding
extraction from DistilBERT for word representa-
tion in Fig. 1. This extraction of word representa-
tion is performed in 4 steps, which are explained
below.

Conversion of Term-Tokens into WordPiece
tokens: DistilBERT takes token embedding and
position embeddings as input (Sanh et al., 2019).

Thus, complete sentences are formed from the
Term-Tokens, and passed to the DistilBERT to-
kenizer. DistilBERT takes WordPiece tokens gen-
erated by the tokenizer and merges the initial em-
beddings and the position embeddings as the final
input for it.
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Figure 1: Word context representation from Distil-
BERT

Collecting outputs from DistilBERT: After,
the generation of WordPiece tokens, these are given
as input to the DistilBERT for the generation of
word embeddings. For generating the word context
representations from the ELMo, the three features
1) output of left-LSTM, 2) output of right-LSTM
and 3) final embedding have been considered in
the c2f-model. Similarly, to strengthen the learning
from word context representation we generate word
context representation from triplet of embedding
outputs. We consider the raw form of embedding
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outputs from sa layer norm of Layer-6 and out-
put layer norm of Layer-5 and final embedding out-
put from the output layer norm of Layer-6 of Dis-
tilBERT. Word context representation means repre-
sentation of word in the input sentence. Word rep-
resentation as defined in c2f-model, are generated
by character embedding using GloVe(Pennington
et al., 2014) vector.

Mapping Embedding from WordPiece to-
kens to Term-tokens : The dimension of em-
bedding matrix generated from DistilBERT is
(None,N ′, 786). Here, N ′ is the maximum of
the number of WordPice tokens for a sample point
in the batch. Learning the coreference in context of
WordPiece token is complex to understand, and its
analysis and explanation seem unusual. So we have
mapped the output of WordPiece token to Term-
Token by averaging the corresponding WordPiece
embeddings.
Let, in a batch of size B, N be the maxi-
mum of number of Term-Tokens in a sample,
N

′
be the maximum number of WordPiece to-

kens, and i, j, k, l ∈ N. Let, WordPiece token
generated by DistilBERT tokenizer be WPT =〈
WP1,WP2,WP3, . . . ,WPN ′

〉
(when the num-

ber of tokens in WordPiece token is less than N
′
,

then post-padding is done to get it) for input Term-
Token, ET = 〈E1, E2, E3, . . . , EN 〉. Let, the
embedding output generated from DistilBERT be
EmbOut

′
, which is a matrix of order (B,N

′
, 768),

where

EmbOut
′
[i] =

[
e
′
j,k

]
1≤j≤N ′ ; 1≤k≤768

;

∀1 ≤ i ≤ B Then, we map it to the EmbOut
matrix of order (B,N, 768) i.e.,

EmbOut[i] = [ej,k]1≤j≤N ; 1≤k≤768 ;

∀1 ≤ i ≤ B where

ej,k = e
′
j,k; (5)

if WPj = Ej ×
1

l

l∑
p=1

e
′
j+p,k; (6)

&if Ψ(j, l) = True (7)

∀ 1 ≤ k ≤ 768 and the function
Ψ(j, l) returns True if the WordPiece tokens
〈WPj+1, . . . ,WPj+l〉 lead to term-token, Ej .
Similar procedure is followed to get the embed-
ding output from the rest of the two layers.

Formation of the final word context represen-
tation: The output from Layer-6, sa layer norm

of Layer-6, and output of Layer 5 are sep-
arately passed to mapper and mapped out-
put m1,m2, and,m3 are collected. Finally,
m1,m2, and,m3 are concatenated for generation
of the word context representation. This map-
ping also reduces the second dimension of word
context representation from N ′ to N . Thus, the
order of word context representation becomes
(None,N, 2304), where N is the maximum num-
ber of tokens in a sample in the batch; this reduction
makes the model to work with less space too.

2.3 Overview of the proposed system

The word and character embeddings are generated
via DistilBERT and Glove, respectively. The word
embedding generation through DistilBERT is dis-
cussed in the subsection 2.2. Character embed-
dings are generated through Glove similar to the
c2f-model. The flow of our model after embed-
ding generation is same as that of the c2f-model.
The embeddings are fed to bidirectional LSTM to
learn encoded representations for the words. The
encoded features are further passed ahead to form
the span head and span representation with span
head feature. These span representations are then
used for calculating the coreference score. Mention
score and antecedant score are used for calculating
the final coreference score. The formula for these
calculations is shown in the Equation 1. For deter-
mining the final probability distribution between
different spans, softmax is applied. At last, hier-
archical clustering is used to form the coreference
chain using the generated probability distribution.

3 Dataset used and experimental set-up

CoNLL-2012 shared task corpus is a standard coref-
erence resolution corpus (Pradhan et al., 2012). We
have used the English-based corpus for evaluating
the performance of our proposed approach.

Our experimental setup is almost similar to that
of c2f-model and we have modified some parts of
their code to generate word context representation
from DistilBERT embeddings, which are:
1) The ELMo embeddings are replaced by the Dis-
tilBERT embeddings which are lighter and faster.

2) We have experimented with word context rep-
resentation, generated from DistilBERT. The two
different experimental setups are discussed below:
i) D-Coref-Small: In our proposed D-coref model,
we have extracted the embeddings from the three
layers of DistilBERT for generating the word con-
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text representation. The order of generated em-
bedding is (None,N, 768) and the order of word
context representation is (None,N, 2304).

ii) D-Coref-Large: For higher dimensional word
context representation, we have extracted the em-
bedding outputs from layer-4 of DistilBERT for
raw embedding representation in addition with
embeddings of D-coref-Small. Thus, the order
of word context representation for this setup is
(None,N, 3072) similar to c2f-model.

Table 1: Comparison with previous works

MUC B3 CEAF Avg F1
(Lee et al., 2017) 75.8 65.0 60.8 67.2
(Lee et al., 2018) 80.4 70.8 67.6 73.0
(Joshi et al., 2019) 83.5 75.3 71.9 76.9
D-coref-Large 78.15 67.94 64.76 70.28
D-coref-Small 78.27 68.09 64.87 70.41

4 Results and Analysis

In this section, we have discussed the performance
of our model on the standard CoNLL-2012 dataset,
along with different features of the model.

4.1 Performance Evaluation

We have reported precision, recall and F1-scores
of the B3, MUC, and,CEAF metrics, and average
F1 score (main evaluation metric) of all these three
metrics as per the previous papers (Pradhan et al.,
2012). The results obtained from our proposed ap-
proach is tabulated in table 1, and the detailed com-
parison is shown in table 2. Our baseline is the c2f-
model with ELMo input features, which achieves
an average F1 of 73.0%. We have achieved an aver-
age F1 of 70.41% for D-Coref-Small, and 70.28%
for D-Coref-Large. Our experiments show that get-
ting word context representation in the dimension
of (None,N, 2304) is sufficient. After observing
the performance and the size of the model, we con-
sider the D-Coref-small as our final model. The
performance of D-Coref-small is 6.49% less than
the current state-of-the-art (Joshi et al., 2019) and
2.59% less than the c2f-model. This performance
matches with the claim of 3% less language un-
derstanding capability of the DistilBERT model2.
We have a loss of approx 6% in performance, but
this is the inherent nature of DistilBERT. At the

2https://medium.com/huggingface/distilbert-
8cf3380435b5

same time, our model has become faster and light-
weight due to the usage of the faster and lighter
DistilBERT.
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Figure 2: Epoch versus Average F1 curve

0 40000 80000 120000 160000 200000 240000 280000 320000 360000 400000
Epoch

10

20

30

40

50

60

70

Lo
ss

Epoch vs Loss
HOC_ELMo
D-Coref-Large
D-Coref-Small

Figure 3: Epoch versus Loss curve
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Figure 4: Epoch versus Average loss graph
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Figure 5: Epoch versus Average Loss sub graph

The detailed comparison table, with all the per-
formance metrics are shown in Table 2. The epoch
vs loss and epoch vs average F1 curves are shown
in Figures 2, 3, 4, and 5.
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Table 2: Comparison with previous works

MUC B3 CEAF
P R F1 P R F1 P R F1 Avg

F1
(Martschat and
Strube, 2015)

76.7 68.1 72.2 66.1 54.2 59.6 59.5 52.3 55.7 62.5

(Clark and Man-
ning, 2015)

76.1 69.4 72.6 65.6 56.0 60.4 59.4 53.0 56.0 63.0

(Wiseman et al.,
2015)

76.2 69.3 72.6 66.2 55.8 60.5 59.4 54.9 57.1 63.4

(Wiseman et al.,
2016)

77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2

(Clark and Man-
ning, 2016)

79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

(Lee et al., 2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
(Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
(Joshi et al., 2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
D-coref-Large 80.45 75.97 78.15 71.32 64.86 67.94 66.59 63.03 64.76 70.28
D-coref-Small 80.85 75.86 78.27 71.91 64.65 68.09 62.69 67.2 64.87 70.41

4.2 Characteristics df the Proposed Model

Our proposed model is fast and light-weight. Here,
we have discussed these two properties in detail.

Fast: From the epoch vs loss graph (fig. 3), we
observed that model does not show any improve-
ment after 240K. But after examining the average
F1 plot (fig. 2), it is evident that the model has
converged at 200K and there is no improvement
in average F1 after 200K, while the c2f-model had
converged at 400K epochs. In this way, the de-
veloped model is 60% faster, this behaviour also
matches with the claim of faster learning capability
of the DistilBERT (Sanh et al., 2019).

Light-weight: DistilBERT is a very light-
weight model, with 66 millions of parameters,
while the transformer ELMo has 465 millions of
parameters (Sanh et al., 2019). Thus it can meet
the memory requirements of edge devices. The
requirement of fewer parameters for DistilBERT is
the main motivation of this work. At the same time,
the reduced word context representation dimension
of D-coref-small has also lowered the model size,
because the entire learning dimension depends on
word context representation as it flows throughout
the model.

In the view of these advantages, it is evident that
our model is suitable for small devices with some
compromise in performance. The size of the Distil-
BERT is reduced by 40% in comparison to BERT
model, while it retains 97% of the language under-

standing capabilities of BERT and is 60% faster
(Sanh et al., 2019). Thus, the usage of DistilBERT
embeddings makes our model faster and lighter.

5 Conclusion and Future Work

We have devised a fast and light-weight coreference
resolution model using DistilBERT. In order to gen-
erate a faster and light-weight model, the accuracy
gets compromised. Word context representation in
reasonable lower dimension can work like represen-
tation in higher dimension with proper tuning. Our
developed system requires only 60% memory for
execution, in comparison to the BERT-based heavy
models, while remaining 97% efficient too. Thus,
it is suitable for edge devices. In future we will try
to come up with a model having better performance
with same or lesser space requirement.
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