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Abstract

In text matching applications, coattentions
have proved to be highly effective attention
mechanisms. Coattention enables the learn-
ing to attend based on computing word level
affinity scores between two texts. In this pa-
per, we propose two improvements to coat-
tention mechanism in the context of passage
ranking (re-ranking). First, we extend the
coattention mechanism by applying it across
all word n-grams of query and passage. We
show that these word n-gram coattentions can
capture local context in query and passage
to better judge the relevance between them.
Second, we further improve the model per-
formance by proposing a query based atten-
tion pooling on passage encodings. We eval-
uate these two methods on MSMARCO pas-
sage re-ranking task. The experiment results
shows that these two methods resulted in a rel-
ative increase of 8.04% in Mean Reciprocal
Rank @10 (MRR@10) compared to the naive
coattention mechanism. At the time of writ-
ing this paper, our methods are the best non
transformer model on MS MARCO passage
re-ranking task and are competitive to BERT
base while only having less than 10% of the
parameters.

1 Introduction

Passage ranking (or re-ranking) is a key informa-
tion retrieval (IR) task in which a model has to
rank (or re-rank) set of passages based on how rel-
evant they are to a given query. It is an integral
part of conversational search systems, automated
question answering systems (QA), etc., The typical
answer extraction process in these systems consists
of two main phases. The first phase is ranking pas-
sages from the collection that most likely contain
the answers. The second phase is extracting an-
swers from these passages. The performance of
first phase significantly impact the performance of

extracting answers and the performance of the over-
all system. Thus it is important for a QA system to
effectively rank passages.

Attention mechanisms have shown tremendous
improvements in the deep learning based NLP mod-
els (Bahdanau et al., 2014; Wang et al., 2016; Yang
et al., 2016; Lu et al., 2016; Vaswani et al., 2017).
Attention allows the model to dynamically focus
only on certain parts of the input that helps in per-
forming the task at hand effectively. Coattentions
(Xiong et al., 2016) are class of attention mecha-
nisms which can be applied on text matching prob-
lems. They proved to be highly effective as they
enables the learning to attend based on comput-
ing word level affinity scores between two texts
thus helping in effectively deciding the relevance
between them.

This paper builds on previous work on coatten-
tion mechanism (Alaparthi, 2019) (we call it as
naive coattention encoder) to tackle the problem
of passage re-ranking. We recall that the coatten-
tion encoder attends across query and passage by
computing the word-level affinity scores. Similar
to (Hui et al., 2018), we argue that attending at
word-level limits the ability to capture local con-
text in the query-passage interactions. As an exam-
ple (which we later explain in section 5.3), for a
query: what is January birthstone color, the naive
coattention encoder can relate the passages describ-
ing passages such as November birthstone color,
April birthstone color, etc. This is likely because
of common matching terms birthstone and color
and semantically similar words January, Novem-
ber, April, etc. We demonstrate that extending the
coattentions to words and n-grams can improve
the matching signals, which will contribute to final
relevance scores.

In the naive coattention encoder, max-pooling
was applied on the coattention encodings to ob-
tain the co-dependent representation of the passage,
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which forms the base in deciding the relevance.
We argue that using max-pooling limits the ability
to compose complex co-dependent representations.
Intuitively, we can leverage query to supervise the
co-dependent representation from coattention en-
codings of the passage. With this intuition, we pro-
pose a simple query-based attention pooling. We
show that query-based attention pooling can pick
the appropriate clauses which are distributed across
the coattention encodings. This allows the model
to only focus on relevant parts of passage coatten-
tion encodings, which are appropriate in judging
the relevance. Additionally, the final passage repre-
sentation is supervised by the query, which helps
the model to better judge the relevance.

To solve these challenges, we first extend the
coattention encoder to words and phrases by apply-
ing it across all word n-grams of query and passage.
For this purpose, similar to C-LSTM (Zhou et al.,
2015) and Conv-KNRM (Dai et al., 2018), we gen-
erate the word n-gram representations from the
word embeddings of query and passage using the
convolutional layers of different heights and multi-
ple filters. We then encode these n-gram sequences
using a BiLSTM to capture the long term dependen-
cies into n-gram encodings. A coattention encoder
is then applied on these n-gram encodings of query
and passage to get the coattention encoding of the
passage. The coattention encoder first generates
the co-dependent representations of query and pas-
sage by attending across all word n-grams from
query and passage. These co-dependent represen-
tations of passage are then fused with the n-gram
encodings of the passage using a BiLSTM to get
the coattention encoding of the passage. We show
that this coattention encoding can better capture
the local context between query and passage, thus
improving the overall judging power of the model.

To get the final representation of the passage,
Alaparthi (2019) applied max-pooling over time on
the coattention encoding of the passage (note that
coattention encoding is the outputs of BiLSTM).
This final representation forms the base in deciding
the relevance between query and passage. In this
paper, we apply a query based attention pooling on
the coattention encoding instead of max-pooling to
pick the appropriate clauses which are distributed
across the coattention encoding. We argue that,
query based attention pooling allows the model to
only focus on relevant parts of passage coatten-
tion encoding which are appropriate in judging the

relevance. Additionally, the final passage repre-
sentation is supervised by query, which helps the
model to better judge the relevance.

We experimented our methods on MS MARCO
passage re-ranking task 1 (Bajaj et al., 2016). Mak-
ing the coattention encoder n-gram aware (uni,bi-
grams) has increased the Mean Reciprocal Rank
@10 (MRR@10) from 28.6 to 29.9 (+4.5% relative
increase) when compared to the naive coattention
encoder. Replacing the max pooling layer with the
query based attention pooling has further improved
the MRR@10 to 30.9 (+8.08% overall relative in-
crease), resulting in the best non transformer based
model. We show that our methods are competitive
to BERT base despite having very less number of
parameters. Also, our methods can be easily trained
and requires much lesser computational resources.

To summarize, the key contributions of this work
are as follows: First, we extend the naive coat-
tention encoder to words and phrases making the
coattentions to capture local context. We call it
as n-gram coattention encoder. Second, we fur-
ther extend the n-gram coattention encoder with
query based attention pooling to pick the appropri-
ate clauses which are distributed across the coatten-
tion encoding of the passage. We call it as n-gram
coattention encoder with attention pooling. We
show that this can further improve the model in
deciding the relevance. Third, we apply our meth-
ods on MS MARCO passage re-ranking task and
show that our methods have outperformed all the
baselines including the previous best non BERT
model and are competitive to BERT base. Last, we
use examples to compare and discuss our methods
with naive coattention encoder.

In section 2, we discuss related work. Then in
section 3, we describe our two methods of improv-
ing naive coattention encoder. In section 4, we
describe the dataset, baselines and the settings we
used in all our experiments. Next, we analyze and
discuss the results in section 5. Finally, we con-
clude our work with future plans in section 6.

2 Related Work

Deep learning methods have been successfully ap-
plied to a variety of language and information re-
trieval tasks. By exploiting deep architectures, deep
learning techniques are able to discover from train-
ing data the hidden structures and features at dif-

1https://github.com/microsoft/
MSMARCO-Passage-Ranking

https://github.com/microsoft/MSMARCO-Passage-Ranking
https://github.com/microsoft/MSMARCO-Passage-Ranking
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ferent levels of abstractions useful for the tasks.
Therefore a new direction of Neural IR is proposed
to resort to deep learning for tackling the feature en-
gineering problem of learning to rank, by directly
using only automatically learned features from raw
text of query and passage.

The first successful model of this type is Deep
Structured Semantic Model (DSSM) (Huang et al.,
2013) introduced in 2013, which is a neural rank-
ing model that directly tackles the adhoc retrieval
task. In the same year Lu and Li proposed Deep-
Match (Lu and Li, 2013) which is a deep matching
method applied to the community question answer-
ing and micro-blog matching tasks. Later from
2014 and 2015, there is a rapid increase in neural
ranking models, such as new variants of DSSM
(Shen et al., 2014), ARC I and ARC II (Hu et al.,
2014), MatchPyramid (Pang et al., 2016), etc.,

With the introduction of large scale datasets
such as MS MARCO (Bajaj et al., 2016), we
have seen a tremendous improvements in neural
ranking models. Well known architectures in-
clude DUET (Mitra et al., 2017), DUET V2 (Mitra
and Craswell, 2019), KNRM (Xiong et al., 2017),
Conv-KNRM (Dai et al., 2018), Coattention en-
coder (Alaparthi, 2019) including the transformer
based architectures such as BERT (Nogueira and
Cho, 2019), DuoBERT (Nogueira et al., 2019),
RepBERT (Zhan et al., 2020).

3 Methodology

In this section, we first describe with notations.
Next in section 3.2, we briefly describe the naive
coattention encoder first proposed in (Xiong et al.,
2016). In section 3.3 and 3.4, we describe our two
methods to improve the naive coattention encoder.

Notations Let Qemb = (xQ1 , . . . , x
Q
n ) ∈ IRn×L

be the embeddings of words in query of length n,
where each word embedding is of dimension L.
Similarly, P emb = (xP1 , . . . , x

P
m) ∈ IRm×L denote

the same for words in passage of length m.

3.1 Naive Coattention Encoder

Coattention encoder can be applied on Qemb and
P emb to get the coattention encoding of the passage.
We first start with encoding the Qemb and P emb

using the same BiLSTM (Mueller and Thyagarajan,
2016) to share the representational power:

qt = BiLSTM(qt−1, x
Q
t ) (1)

and
pt = BiLSTM(pt−1, x

P
t ) (2)

Similar to (Merity et al., 2016; Xiong et al.,
2016), we also add sentinel vectors qφ, pφ to allow
the query to not attend to any particular word in
the passage. SoQ = (q1, . . . , qn, qφ) ∈ IR(n+1)×L

and similarly P = (p1, . . . , pm, pφ) ∈ IR(m+1)×L.
Next, we compute the affinity scores between

all pairs of query and passage words: L = P TQ.
We call L as affinity matrix. The affinity matrix is
normalized row wise to get the attention weights
AQ across the passage for each word in query. Sim-
ilarly, normalized column wise to get the attention
weights AP across the query for each word in the
passage:

AQ = softmax(L) (3)

and
AP = softmax(LT ) (4)

Next, we compute the attention contexts, of the
passage in light of each word in the query:

CQ = PAQ (5)

Additionally, we compute the summariesCQAP

of the previous attention contexts in light of each
word in the passage. We also define CP , a co-
dependent representation of the query and passage,
as the coattention context:

CP = [Q;CQ]AP (6)

Here [x; y] is concatenation of vectors x and y
horizontally. The last step is the fusion of tem-
poral information to the coattention context via a
bidirectional LSTM:

ui = BiLSTMfusion(ui−1, ui+1, [pi; c
P
i ]) (7)

We define U = [u1, . . . , um], the outputs of
BiLSTMfusion concatenated vertically, as the
coattention encoding of the passage. Here U ∈
IRm×L′ and L

′
is the dimension of the hidden state

in BiLSTMfusion.
For the rest of this paper, we treat the coattention

encoder as a module, defined as:

U = CoAttentionEncoder(Qemb, P emb) (8)
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Figure 1: Architecture of ngram aware coattention encoder

3.2 Word N-Gram Coattention Encoder
In this section, we extend the naive coattention
encoder by applying it across all word n-grams
from query and passage as shown in Figure 1. To
compute the word h-gram representations of query
Qemb, where each h-gram representation is of di-
mension F , similar to (Zhou et al., 2015; Dai et al.,
2018), we apply F convolution filters of height h
and width L. Note that L is the dimension of the
word embeddings. For each window of h words,
a single filter filterf performs a weighted sum of
all word embeddings xQt:t+h parameterized by it’s
weights wf ∈ IRhL and bias bf ∈ IR:

vhf = wf · xQt:t+h + bf , vf ∈ IR (9)

Using F filters, we get F scores vh1 , .., v
h
F , each

describing xQt:t+h in a different perspective. These
vhf from F filters are concatenated into a single
vector and tanh activation is then applied to get
the F -dimensional embedding:

xQh
t = tanh([vh1 ; . . . ; vhF ]) ∈ IRF , t = 1..n−h+1

(10)
We define h-gram sequence of the query as

Qh = [xQh
1 , ..., xQh

n−h+1] (11)

Note that padding is not applied to the sequence.
Similarly, we apply the same convolution filters to

get the h-gram representations of passage P emb:

Ph = [xPh
1 , . . . , xPh

m−h+1] (12)

Here Qh ∈ IR(n−h+1)×F and Ph ∈ IR(m−h+1)×F .
Using these convolutional layers of different
heights, we get different n-gram sequences.

Coattention encoder is applied on all Qi and Pj
∀i, j ∈ [1..H], H is a parameter, which denotes
the span of the n-gram. In this paper, we have only
experimented with uni,bi-grams i.e., H = 2. Note
that, H = 1 reduces to naive coattention encoder
i.e., unigrams/words. Coattention encoder applied
on Qi and P j generates a coattention encoding of
the passage denoted by:

Uij = CoAttentionEncoder(Qi, Pj)

∀i, j ∈ [1..H] (13)

Here Uij ∈ IR(m−j+1)×L′ and to recall,

Uij = [uij1 , uij2 , . . . , uijm−j+1 ] (14)

where uijt is the output from the BiLSTMfusion

at time step t. We call Uij as the coattention en-
coding of the passage Pj with respect to the query
Qi.

To get the relevance score, similar to (Alaparthi,
2019), a max-pooling layer over time can be ap-
plied on Uij to get the single representation (single
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thought vector):

uij = max({uijt}t=1..m−j+1) ∈ IRL
′

(15)

We concatenate these representations uij∀i, j ∈
[1..H] horizontally to get a single vector u

′
a n-

gram aware coattention representation of passage.

u
′

= [u11;u12; . . . ;uH−1H ;uHH ] ∈ IRH2L
′

(16)
The u

′
is then passed to a linear layer parameterized

by weightsWs ∈ IRH2L
′

to get the relevance score:

scoreP |Q = W T
s u
′

(17)

3.3 Coattention Encoder with Attention
Pooling

In the naive coattention encoder and in the previ-
ous section, max-pooling over time is applied on
the coattention encoding to get the single repre-
sentation capturing entire sense of the passage. In
this section, we propose a simple attention pool-
ing to select key parts from the coattention encod-
ing Uij of the passage using the query: q

′
= qi

n
′ ,

n
′

= n − i + 1. We also add sentinel vector d
′
φ

(Merity et al., 2016) to Uij to allow the query to
not attend to any particular clause in the passage:

uij =

t=m−j+1∑
t=1

αtuijt (18)

Where,

αt =
exp(uTijtq

′
)∑k=m−j+1

k=1 exp(uTijkq
′)

(19)

Similar to previous section, uij∀i, j ∈ [1..H] can
then be concatenated horizontally into a single vec-
tor u

′
and this u

′
can be used to get the relevance

score.

4 Experimental Setup

This section describes our datasets, how training
and testing were performed and our implementa-
tion details.

4.1 Dataset and Learning rule

We perform all our experiments on Microsoft MA-
chine Reading COmprehension (MS MARCO) pas-
sage re-ranking task. The whole corpus consists

of 8.8M passages extracted from 3.6M web doc-
uments corresponding to 500K anonymized user
queries sampled from Bing’s search query logs.

For the ease of training, MS MARCO
team has released a pre-processed training set
triples.train.small.tsv1, which contain the triples
〈Q,P+, P−〉, where Q is the query, P+ and P−

are passages, P+ being more relevant. We train all
our models on triples.train.small.tsv2. We use the
Cross Entropy loss employed by a softmax function
on relevance scores scoreP+|Q and scoreP−|Q to
learn the parameters Θ of the models. Some sub-
set of query, passages are randomly chosen from
top1000.dev.tsv2 to tune the models. Finally, we
predict the ranks on top1000.eval.tsv2.

L(Θ) = −
∑

〈Q,P+,P−〉 ∈ S

logP (P+|〈Q,P+, P−〉))

(20)
where,

P (P+|〈Q,P+, P−〉)) =

exp(scoreP+|Q)

exp(scoreP+|Q) + exp(scoreP−|Q)
(21)

4.2 Hyperparameters

In all our experiments, we use FastText (Bo-
janowski et al., 2017) word embeddings of dimen-
sion 300. These FastText embeddings are trained
on all queries and passages from the training set,
we freeze these embeddings during the training.
All the other parameters of the model are initial-
ized using an uniform distribution U(−0.01, 0.01).
The number of filters in convolution layers is set
to 300. We only experiment with uni and bi-grams
i.e, H = 2. We use the BiLSTMs with 2 layers and
hidden sizes of 512 with dropout of 0.2 (Srivastava
et al., 2014) between the layers. ADAM optimizer
(Kingma and Ba, 2014) with initial learning rate of
0.001, β1 = 0.9, β2 = 0.999 is used. We truncate
the query and passage lengths to 30 and 150 words,
train our network until convergence with batch size
of 128. On a single 1080 Ti machine, training takes
around 8 hours to converge. We evaluate our model
on dev set every 500 steps and decay the learning
rate by a factor of 0.5 every 5,000 steps.

2https://github.com/microsoft/
MSMARCO-Passage-Ranking#
data-information-and-formating

https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating
https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating
https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating
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Method MRR@10 Dev MRR@10 Eval Parameters
KNRM (Xiong et al., 2017) 21.8 19.8 -
Duet V2 (Mitra and Craswell, 2019)* 24.3 24.5 -
Conv-KNRM (Dai et al., 2018) 24.7 24.7 -
FastText + Conv-KNRM (Hofstätter et al.,
2019)

29.0 27.1 -

IRNet ** 27.8 28.1 -
Naive coattention encoder (Alaparthi, 2019) 28.8 28.6 6.9M§

N-gram coattention encoder (Ours) 31.0 29.9 (+4.54%) 9.6M §

+ attention pooling (Ours) 31.9 30.9 (+8.08%) 9.6M §

BERT Base 34.4 33.5 109M
BERT Large (Nogueira and Cho, 2019) 36.5 35.8 340M

Table 1: Comparison of the different methods. The variants of the coattention encoder benefits significantly from
the modifications described in this paper. * Official Baseline; ** Unpublished work; § These do not include the
parameters from word embeddings as we directly use the pre-trained FastText embeddings and do not update them
during the training.

5 Results and Discussion

In this section, we present the evaluation results of
our models and compare our models with various
baselines.

5.1 Comparision with Baselines

Table 1 lists the MRR@10 scores on Dev and Eval
sets. We compare the naive coattention encoder and
two proposed methods with the baselines including
BERT. From the table, we get the following obser-
vations: (1) Firstly, the naive coattention encoder
has performed better than the existing best non
BERT based models: Conv-KNRM and IRNet (2)
Applying the coattention encoder on uni-grams and
bi-grams resulted in an increase in MRR@10 on
eval from 28.6 to 29.9 (relative increase of 4.5%).
This indicates that the model can capture the more
robust interactions between query and passage. (3)
Using the query based attention pooling instead of
max-pooling over time further increased the score
by 3.3% indicating that the model can now focus
on the appropriate clauses in the passage leading
to better passage representation and appropriate
relevance score. (4) We can also observe that de-
spite having less number of parameters compared
to BERT, (9.6M vs. 109M), our models are com-
petitive to BERT (30.9 vs. 33.5).

5.2 Analysis with respect to query type

Table 2 lists the MRR@10 scores of naive coatten-
tion encoder (represented by A), n-gram coatten-
tion encoder (represented by B) and n-gram coat-
tention encoder with attention pooling (represented

Type # Queries A B C
what 2751 28.07 29.25 30.85
others 2274 31.21 32.17 33.86
how 837 23.28 23.8 25.73

where 283 37.6 37.69 39.32
who 278 28.9 29.91 33.66
when 189 23.42 26.38 23.92
define 173 27.84 29.21 28.31
which 120 21.03 22.35 23.53
why 75 19.55 23.31 22.92

Table 2: Comparision of naive coattention encoder (A)
with the two variants described in this paper with re-
spect to query type. In the table, B represents the n-
gram coattention encoder and C represents the n-gram
coattention encoder with attention pooling.

by C) which were evaluated using Dev set.
From the table, we can observe that, both the

n-gram coattention encoders consistently outper-
formed the naive coattention encoder. It is inter-
esting to see that plain n-gram coattention encoder
(with out attention pooling, represented by column
B) outperformed the n-gram coattention encoder
with attention pooling (column C) in case of when,
define, why type queries.

5.3 Qualitative Analysis

Table 3 lists the best passages ranked by the naive
coattention encoder and our methods described in
this paper for the various queries. In this section,
we qualitatively analyze the performances of the
coattention encoders.



167

Query Method Best Ranked passage

Naive coattention encoder For other people named Tom Corbett, see Tom Corbett (disambiguation). Thomas Wingett Tom Corbett, Jr.
(born June 17, 1949) is an American politician and attorney who served as the 46th Governor of Pennsylva-
nia from January 18, 2011 to January 20, 2015. He is a member of the Republican Party.

who is tom cavanagh?
N-gram coattention encoder Tom Cavanagh on Why Grant Gustin Deserves to Be THE FLASH in the Movies, Too. Share: Tom Ca-

vanagh is a national treasure. No, not just because he is the Tom in our beloved Mike and Tom Eat Snacks
podcast, or because of his chilling performance as Dr. Harrison Wells on The CW’s The Flash. But rather
because the Canadian actor is unafraid to speak his mind — which often happens to coincide with exactly
what we were thinking, too.

N-gram coattention encoder with
query attention

Grodd (via Harrison Wells) Thomas Patrick Tom Cavanagh (born October 26, 1963) is a Canadian actor.
He portrays the various iterations of Harrison Wells on The Flash.

Naive coattention encoder November Birthstone Color. The November birthstone color is usually light to dark yellow, however, topaz,
the official November birthstone comes in a range of great colors such as several shades of yellow, pale
green, blue, red, pink, black, and brown. Pure topaz is actually a colorless stone. The red and pink topaz
gets their color from chromium.

what is January birthstone color
N-gram coattention encoder Birthstone color list. January Birthstone Color. The birthstone for the month of January is the garnet, which

means that red is the commonly accepted January birthstone color. It signifies trust and friendship, which
makes it a good gift for a friend. The word garnet comes from the Latin word granatum, which means
pomegranate.

N-gram coattention encoder with
query attention

Birthstone color list. January Birthstone Color. The birthstone for the month of January is the garnet, which
means that red is the commonly accepted January birthstone color. It signifies trust and friendship, which
makes it a good gift for a friend. The word garnet comes from the Latin word granatum, which means
pomegranate.

Naive coattention encoder Napalm. Napalm is jellied gasoline. Its name is an acronym of naphthenic and palmitic acids, which are
used in its manufacture. While used in World War II and the Korean War, napalm became notorious in
Vietnam where it was used in three capacities.Possibly its most visual use was being dropped from aircraft
in large canisters which tumbled sluggishly to earth.apalm is jellied gasoline. Its name is an acronym of
naphthenic and palmitic acids, which are used in its manufacture.

why was napalm used
in the vietnam war

N-gram coattention encoder Napalm. U.S. troops used a substance known as napalm from about 1965 to 1972 in the Vietnam War;
napalm is a mixture of plastic polystyrene, hydrocarbon benzene, and gasoline. This mixture creates a
jelly-like substance that, when ignited, sticks to practically anything and burns up to ten minutes.

N-gram coattention encoder with
query attention

The US first used napalm during World War II in both the European and Pacific theaters, and also deployed
it during the Korean War. However, those instances are dwarfed by American use of napalm in the Vietnam
War, where the US dropped almost 400,000 tons of napalm bombs in the decade between 1963 and 1973.
Of the Vietnamese people who were on the receiving end, 60% suffered fifth degree burns, meaning that
the burn went down to the bone.

Naive coattention encoder 5. According to the lecture, what energy source is Earth using primarily for its internal processes? a.
[Interior heat] b. [Geothermal energy] c. [Solar energy] d. [Radioactive Decay] e. [Magma] 6. According
to the lecture, what energy source is Earth using primarily for its external/surficial processes? a. [Interior
heat] b. [Geothermal energy] c. [Solar energy] d.

what energy source is earth using
primarily for its internal heat

N-gram coattention encoder 5. According to the lecture, what energy source is Earth using primarily for its internal processes? a.
[Interior heat] b. [Geothermal energy] c. [Solar energy] d. [Radioactive Decay] e. [Magma] 6. According
to the lecture, what energy source is Earth using primarily for its external/surficial processes? a. [Interior
heat] b. [Geothermal energy] c. [Solar energy] d.

N-gram coattention encoder with
query attention

5. According to the lecture, what energy source is Earth using primarily for its internal processes? a.
[Interior heat] b. [Geothermal energy] c. [Solar energy] d. [Radioactive Decay] e. [Magma] 6. According
to the lecture, what energy source is Earth using primarily for its external/surficial processes? a. [Interior
heat] b. [Geothermal energy] c. [Solar energy] d.

Table 3: Best ranked passages by naive coattention encoder and it’s 2 variants

Considering the query Who is tom cavanagh?,
we can notice that naive coattention encoder al-
though ranked the passage which semantically an-
swers the query, it utterly fails as Tom Corbett and
Tom Cavanagh are completely different persons.
Although n-gram aware coattention encoder was
able to mark the passage containing Tom Cavanagh
as relevant, but it could not correctly capture the re-
quired sense from the passage. Finally, adding the
query attention to the n-gram coattention encoder
improved the ranking performance as we can see
that the model was now able to correctly rank the
passage.

Similarly, in case of query what is January birth-
stone color, naive coattention encoder has marked
the passage relevant which corresponds to Novem-
ber birthstone color. However, both the n-gram
coattention encoders have marked the correct pas-
sage as relevant, which is related to January birth-

stone. These two examples suggests that n-gram
coattention encoders are able to correctly capture
the local context and can capture the robust interac-
tions between query and passages, thus improving
the overall model performance.

In case of third query why was napalm used in
the vietnam war, the naive coattention encoder pre-
dicted the passage containing the terms napalm,
vietnam war. But the passage does not answer the
query. The n-gram coattention with attention pool-
ing marks the passage as relevant which describes
about the effects napalm has created in vietnam war
but the passage does not correctly answer the rea-
son for using napalm in vietnam war. Interestingly,
the n-gram coattention with out attention pooling
predicted the correct relevant passage.

Lastly, for the query what energy source is earth
using primarily for its internal heat, all the coat-
tention encoders predicted a passage which is not
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relevant. One interesting observation is that, the
query is part of the passage itself. This shows that
the coattention mechanism has trouble discriminat-
ing the passage which is semantically similar to the
query but does not have an answer in it.

6 Conclusion and Future Work

In this paper, we proposed two simple extensions
to naive coattention encoder, namely, n-gram coat-
tention encoder which attends the words and word
n-grams to better capture the interactions between
query and passage. Later, we proposed simple
attention pooling to pick the appropriate clauses
which are distributed across the coattention en-
coding of the passage. Our experiments on MS
MARCO passage re-ranking task shows that our
models outperformed all the baselines including
the naive coattention encoder. We also compare
our methods with BERT and show that our methods
are competitive to BERT base despite having very
less number of parameters, thus our models are
very easy to train and are computationally efficient.

We have also compared the performance of coat-
tention encoders with respect to the query types
and also qualitatively analyzed the performances
by taking few examples. We show that n-gram coat-
tention encoders now capture the local context very
well and also show the delimitation of coattention
mechanism.

In the future, we would like to perform more
deeper analysis on delimitations of coattention
mechanism. Apart from this, our future line of
research would be as follows: Incorporating the
handcrafted features such as BM25 and study the
performance. It would be interesting to see how
the performance of the models will change with
respect to the context based embeddings such as
ELMo, BERT, etc.,
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