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Abstract

Data sparsity is one of the key challenges as-
sociated with model development in Natural
Language Understanding (NLU) for conversa-
tional agents. The challenge is made more
complex by the demand for high quality an-
notated utterances commonly required for su-
pervised learning, usually resulting in weeks
of manual labor and high cost. In this paper,
we present our results on boosting NLU model
performance through training data augmenta-
tion using a sequential generative adversarial
network (GAN). We explore data generation
in the context of two tasks, the bootstrapping
of a new language and the handling of low
resource features. For both tasks we explore
three sequential GAN architectures, one with a
token-level reward function, another with our
own implementation of a token-level Monte
Carlo rollout reward, and a third with sentence-
level reward. We evaluate the performance of
these feedback models across several sampling
methodologies and compare our results to up-
sampling the original data to the same scale.
We further improve the GAN model perfor-
mance through the transfer learning of the pre-
trained embeddings. Our experiments reveal
synthetic data generated using the sequential
generative adversarial network provides signif-
icant performance boosts across multiple met-
rics and can be a major benefit to the NLU
tasks.

1 Introduction

Over recent years, various task-oriented conver-
sational agents, such as Amazon Alexa, Apple’s
Siri, Google Assistant, and Microsoft’s Cortana,
have become more popular in people’s everyday
life and are expected to be highly intelligent. For
the NLU component, this means that we expect
models to perform recognition of the actions and
entities within a user’s request with high accuracy.

When first training an NLU model on a new lan-
guage (a process referred to as bootstrapping a new
language), there is a strong requirement for high
quality annotated data that would support the most
common user requests across a range of domains.
As the modeling space expands to support new
features and additional languages, NLU models
are regularly re-trained on updated data sets to en-
sure support for these new functions. The major
bottleneck in both of these processes is the labor
and cost associated with collecting and annotating
new training utterances for every new feature or
language.

Recent advances in machine learning methods,
including the use of techniques such as transfer
learning (Lu et al., 2015) and active learning (Set-
tles, 2009), can lead to more efficient data usage
by NLU models and therefore decrease the need
for annotated training data. Additionally, data aug-
mentation models are being widely explored. The
advantage of data augmentation is that once syn-
thetic data is generated, it can be ingested into sub-
sequent models without additional effort, allowing
for faster experimentation.

NLU models in dialog systems can perform a va-
riety of tasks (Ram et al., 2018; Gao et al., 2018). In
this study, we will focus on three of them: Domain
classification (DC) – identify the domain that the
user request belongs to (music, reminders, alarm,
etc.), Intent classification (IC) – extract actions
requested by users (play music, find a restaurant,
set an alarm, etc.), and Named Entity Recogni-
tion (NER) – identify and extract entities (names,
values, dates, locations, etc.) from user requests.

For each utterance we expect our NLU model to
output a domain, intent, and set of extracted entities
with corresponding tags. For example, if a user
requests “play Bohemian Rhapsody by Queen”, we
expect the NLU model to return {domain: music,
intent: play song, named entities: [(bohemian
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rhapsody, song name), (queen, artist name)]}. We
call this output annotation, and the utterance along
with annotation is called an annotated utterance.
Named entities with corresponding labels are called
slots.

For our NLU model to perform well on real-time
user requests, we need to train it on a large dataset
of diverse annotated utterances. However, there
could be some areas of functionality where large
datasets for training are not available. To boost
model performance in situations where training
data is limited, we use synthetic data generated
from a small set of unique utterances that cover the
basic functionality of the user experience, called
Golden utterances. We leverage a Sequence Gener-
ative Adversarial Networks (SeqGAN) introduced
by Yu et al. (2017) to generate new utterances from
this “seed” set, and use these generated utterances
to augment training data and evaluate the perfor-
mance of the classification and recognition tasks.
We also investigate how the metrics that we use to
evaluate the quality of the generated synthetic data
links to the performance boost in the underlying
tasks.

2 Related work

NLU model boosting through training data aug-
mentation has been an active area of research over
the last few years, with more sophisticated tech-
niques and models being developed. Some of these
techniques include data resampling, the use of Vari-
ational Autoencoders (VAEs) and GANs. Xie et al.
(2017) generalize resampling methods by propos-
ing noising schemes that are designed to smooth in-
put data by randomly changing the word tokens in
a sentence. First described by Kingma and Welling
(2013), VAEs learn distributed representations of
latent variables, and decode random samples to
generate data that have similar characteristics to
those that the network was trained on. GAN model
proposed by Goodfellow et al. (2014) includes two
competing neural networks: a generator that cre-
ates fake data, and a discriminator that is trained to
distinguish between fake and real data. The genera-
tor is trained on the results of its success in fooling
the discriminator and this contest results in syn-
thetic data that is progressively more similar to real
data.

Synthetic data have shown to be useful for IC
model boosting. For example, Malandrakis et al.
(2019) explored a set of encoder-decoder models

and proposed the use of conditional VAEs (CVAEs)
to generate phrase templates, called carrier phrases.
Authors used CVAEs to control the domain, intent,
and slot types to generate desirable outputs that
resulted in a higher F1 score on the intent classifi-
cation task.

Kumar et al. (2019) focused on a few-shot IC
problem where new categories with limited train-
ing data are introduced into an existing system with
mature categories. They compared different tech-
niques that were designed to augment training data,
including upsampling, random perturbation, extrap-
olation, CVAEs, and delta-encoders, and combined
feature space augmentation with popular BERT
pre-training (Devlin et al., 2019) to provide better
performance.

The use of GANs has been previously explored
for text data augmentation in language modeling
(Kusner and Hernández-Lobato, 2016; Yu et al.,
2017; Che et al., 2017; Guo et al., 2018; Hu et al.,
2017; Li et al., 2017; Lin et al., 2017; Zhang et al.,
2017; Fedus et al., 2018) and sentiment classifi-
cation (Gupta, 2019). However, discrete text se-
quence generation brings about several challenges:
first, one needs to generate a set of discrete tokens
from a random sample of real-valued continuous
data, and second, GANs are designed to give feed-
back on entire sequences, whereas generators need
guidance for each subsequent token. The SeqGAN
model developed by Yu et al. (2017) attempts to
resolve these issues by applying reinforcement al-
gorithms for the GAN objective with a policy gra-
dient that evaluates current state-action value using
Monte Carlo (MC) search. In this work, we adopt
a SeqGAN model to boost DC, IC, and NER tasks
in NLU models that suffer from sparse data limita-
tions.

3 Methods

3.1 Data
For our experiments, we used the English data1

collected by Schuster et al. (2019). This data was
consisted of three domains: weather, alarm, and
reminder, and a total of 43000 utterances. It was
collected in a three-step process: step 1 consisted
of native English speakers producing utterances
for each intent, step 2 consisted of two annotators
labeling the intents and slots while any conflicts
between these two annotators were resolved in step
3 by a third annotator. The data was processed

1https://fb.me/multilingual task oriented data
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further to match the format that was suitable for
our models.

3.2 Models
Text data boosting in NLU was extensively used
for classification tasks, so most previous research
focused on generating sentences (Kumar et al.,
2019), carrier phrases (Malandrakis et al., 2019),
or embeddings (Guo et al., 2018). In our work
we consider DC, IC, and NER problems, where
both sequence and word tags are needed for model
training. We leverage a GAN to synthesize train-
ing data as a sequence of intents and slots: X =
{x0, x1, . . . , xn}, where n varies between a length
of 1 and the maximum allowed utterance length.
Each slot xi(i > 0) denotes the combination
of the ith word and its corresponding tag, and
x0 is a concatenation of the utterance domain
and intent. For example, for the utterance “play
Bohemian Rhapsody by Queen”, the training se-
quence for text generation would be as follows:
“music/play song play:none bohemian:song name
rhapsody:song name by:none queen:artist name”.

3.2.1 SeqGAN model
When applied to text data, traditional GANs have
difficulty performing back-propagation due to the
non-differentiable output of the generator model.
The SeqGAN model addresses this issue by treating
the generator as a reinforcement learning agent that
optimizes the GAN objective. The discriminator
itself is used within the reward function to evaluate
output sequences and return feedback to guide the
learning of the generative model. Traditional re-
ward functions from classification models are also
limited by the ability to only provide score/loss-
based reward values for a complete sequence. The
SeqGAN model enables evaluation of the action-
value for an intermediate state of unfinished se-
quence for each initial state, s0, by applying an
MC search with a rollout policy to sample the un-
known last tokens (Yu et al., 2017). MC search is
a tree-search algorithm with a root node s0. Each
child node of the tree is drawn from a distribution
parametrized by a stochastic parametrized policy.
This policy can be any, for example current state of
the generator G✓.

In our experiments, we compare different ways
to compute the reward function (Figure 1). First,
we use an implementation where the MC tree
search strategy is replaced with token-level reward
produced by the discriminator (Xu et al., 2018; Hu

et al., 2018). We use the output of the Long Short-
Term Memory (LSTM)-based discriminator model
DL

� , cross-entropy, as the reward. For a synthetic
sentence Y = {y0, y1, ..., yn}, yi 2 Y , where Y
is the vocabulary of candidate domain-intent and
token-label pairs, the cross-entropy based reward
for the ith word is calculated as:

R(yi) = � logDL
� (yi|y<i) (1)

Next, we devise our own MC search-based
method to produce a set of possible sequences to ap-
proximate the expectation of the token-level reward,
rather than using a single evaluation of only one of
the possible sequences. Using the current state of
the generator model G✓ as a stochastic rollout pol-
icy, for each incomplete sequence {y0, y1, ..., yk}
we use Monte-Carlo search to produce N complete
sequences. We evaluate the token-level reward for
each of these sequences:

{yk+1, ..., yn} 2 MCG✓({y0, ..., yk};N), (2)

for k < n. To approximate the expected value of
the reward function we average the token-level re-
ward (1) calculated for the N MC rollouts:

R(yi) =

1

(n+ 1)N

nX

k=0

NX

j=1

(� logDL
� (yi|y<i))j,k, (3)

where (...)j,k is the jth MC rollout of the kth se-
quence. Finally, we compare results with an expec-
tation of a sentence-level reward calculated using
MC tree rollout strategy for the convolutional neu-
ral network (CNN)-based discriminator feedback
DC

� , that provides feedback on the full sentence (Yu
et al., 2017). Intermediate token-level reward for
current token yi is approximated using MC rollouts
as follows:

RMC(yi) =
1

N

NX

j=1

(DC
� (Y ))j , i < n, (4)

where the sampling of the missing (n� i) tokens
is governed by the equation (2). At each step i,
generator reward is governed by the Monte-Carlo
approximation (4), or discriminator feedback on
the full sentence:

R(yi) =

(
RMC(yi), i < n,

DC
� (Y ), i = n.

(5)
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Figure 1: Schematic representation of the reward function produced by discriminator model for each of the n + 1
input tokens and N Monte-Carlo rollouts (avg = average). Tokens fixed at each iteration are represented by solid
squares and tokens produced by the rollout policy are represented by blank squares. Sentence-level reward pro-
duces feedback on a complete sentence only, whereas token-level reward gives feedback on each token conditioned
on previous set of tokens.

The generator is trained to maximize the reward
from the discriminator model for the full se-
quence (Sutton et al., 2000):

J(✓) = E[R(Y |s0, ✓)] =
X

y02Y
G✓(y0|s0)QG✓

D�
(s0, y0) (6)

where QG✓
D�

(s0, y0) can be estimated by R(y0) us-
ing equations (1), (3) or (5).

The pre-training procedure for the generative
decoder uses the maximum likelihood estimation
metric, followed by the pre-training of the discrim-
inative classifier on positive samples from the train-
ing data and negative samples produced by the
generator. After pre-training, the generative and
discriminative models are trained one at a time in
the following loop: the last discriminator state is
used to provide feedback for the generative model
training, which then provides a new set of negative
examples for the discriminator updates.

3.2.2 DC and IC/NER models
Our model architecture consists of two parts: a sen-
tence classification model for the DC task, and a
domain-specific joint model for the IC and NER
tasks. The DC model is the same as the IC part
of the joint IC-NER model, so we will describe
only the latter in detail. The IC-NER model com-
ponents are schematically shown in Figure 2, and
are composed of the following:

• Embedding: concatenation of word embed-
ding with 256 dimensions and character em-
bedding with 16 dimensions trained on a 1-
filter CNN with a tanh activation function and
dropout.

• Encoder: 2-layer bidirectional LSTM with
384 dimensions in each hidden layer with

dropout and layer normalization for token en-
coder, and a pooling stack for sequence en-
coder.

• Decoders: MLP classifier with 256 dimen-
sions for IC task and CRF sequence labeler
with 192 dimensions. For each block we
also apply ELU activation function and drop-
out. All IC-NER models were trained for 500
epochs, and DC models for 100 epochs.

token embeddings

play music by madonna

bi-LSTM encoder 
with pooling stack 

playp    l      a     y

CNN encoder

concatenationfinal token 
embedding

CRF slot-filling MLP intent 
classification

Figure 2: Multi-task model for IC and NER prediction.

3.3 Experimental setup
We build our experiments to mimic two major tasks
that are of interest to us (Figure 3):

1. Bootstrapping of a new language

2. Handling low resource features

We manipulate our English data set to simulate
modeling conditions in situations where training
data is limited. For our tasks, we need to iden-
tify a set of utterances from within our data set
that can be classified as Golden utterances, i.e.,
utterances that are found to be usually common
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Figure 3: This schematic represents our data and ex-
perimental process. For our experiments we use anno-
tated data collected by Schuster et al. (2019). Train
and validation sets were combined together in a sin-
gle train data set to extract pseudo Golden utterances.
Pseudo Goldens were further used to train and evalu-
ate the GAN model. The test set was untouched and
was used to evaluate model performance in full scale.
To simulate the low resource feature task, we used the
full train data set for the two robust domains, and the
pseudo Goldens to represent the third low-resource do-
main.

across languages and cover the basic functionality
of the user experience. To select Goldens from
our data set we use the following process. We sort
the utterances in our training data by the utterance
frequency within each domain-intent combination.
We then select the top 20% of utterances within
each domain-intent combination, unique them, and
call them pseudo Goldens. The unique utterances
within the remaining set are called Rare utterances.
Utterance counts are provided in Appendix A.

3.3.1 Bootstrapping NLU models for new
languages

When bootstrapping an NLU model to support a
new language for a conversational artificial intelli-
gence (AI), there is usually a very limited data avail-
able. One major data source is Goldens translated
from another existing robust language model. In
mimicking this task, we use our determined pseudo
Goldens as input for both data generation and NLU
models. Synthetic data generated with the GAN
model is added to the set of pseudo Goldens and
fed into our NLU model. The NLU models are
tested using our fixed original test data set (Fig-
ure 3). Our baseline for comparison consists of an
NLU model run on only the pseudo Goldens.

3.3.2 Handling low resource features
Another common challenge faced by conversa-
tional AI NLU models is sparse data. When a
feature is new, or not common, we do not have

enough data for the NLU model to generalize well
on possible request variations. But, unlike the pre-
vious task, we typically do have a large amount
of data collected in the same language, but within
different intents and domains. Generative adver-
sarial networks, paired with a transfer learning ap-
proach, can give us the opportunity to use other
domains and intents which have robust data, to
strengthen the performance of these low resource
features. In this case we limit our experiments to
exploring a case where we have a low resource
domain. In mimicking this task, we pick one of
the three domains we have as the low resource
domain. We consider only the pseudo Goldens
as available data for this domain. The remaining
two domains are considered as robust domains and
we consider all data (i.e., both pseudo Goldens
and Rare utterances) as available data for the NLU
model. We also use all training data from the two
robust domains to pre-train word embedding us-
ing the fastText algorithm (Lample et al., 2017).
We then run data generation for the low resource
domain using our SeqGAN implementation while
using the pre-trained word embeddings from the
two robust domains to initialize word embeddings
both in generator and discriminator. For the NLU
model, we feed the pseudo Goldens together with
the synthesized data for the low resource domain
and feed all available training data for the two ro-
bust domains. We measure the performance of the
low resource domain against a baseline which is
run using only pseudo Goldens from the low re-
source domain together with all available data from
the robust domains. As with task 1, performance is
tested on the separate fixed test data set.

4 Data Generation

We explore the following different GAN frame-
works and expansions to generate synthetic anno-
tated utterances:

• Original implementation with Monte
Carlo rollout: a selected set of experiments
to benchmark the original implementation
by Yu et al. (2017) on our open source data
set.

• Original implementation without rollouts:
a selected set of experiments to benchmark the
original implementation by Yu et al. (2017),
where the reward function is evaluated on a
single MC rollout.
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• Generator with token-level reward: train-
ing the generator using token-level reward as
suggested by Hu et al. (2018).

• Generator with token-level Monte Carlo
rollout: we expand the above implementation
to include a token-level Monte Carlo rollout
and test our task of bootstrapping new lan-
guages.

• Generator with pre-trained embeddings:
we add fastText pre-trained embeddings to the
generator and discriminator to selectively test
our task of handling low-resource features).

The model architecture consists of three parts: gen-
erator pre-training, discriminator pre-training, and
adversarial training. In the pre-training parts, we
first train the generator, followed by the discrim-
inator, for 80 epochs each. For each adversarial
epoch, we update the generator once and then for
35 steps we generate negative examples using the
current state of the generator, combined with the
same number of positive examples from the train-
ing data, and re-train the discriminator. The total
number of adversarial training epochs is set to 600.
All hyper-parameters were chosen based on obser-
vations of when the loss functions and synthetic
data quality evaluations either stabilize or clearly
degrade.

5 Results and Discussion

5.1 Evaluation
We evaluate our models using domain accuracy,
intent accuracy, slot F1, and frame accuracy. Do-
main and intent accuracy measure the accuracy of
the domain and intent classification tasks, respec-
tively. We use micro-averaging to calculate slot
F1 to measure the performance of the NER task.
Frame accuracy indicates the relative number of
utterances for which the domain, intent, and all
slots were correctly identified. In our case, we pay
attention to individual metrics to understand which
tasks are most affected by the synthesized data.

5.2 Language bootstrapping task
In this section we present the results of our exper-
iment mimicking the task of bootstrapping a new
language. See Section 3.3.1 for experimental setup.
We compare three SeqGAN implementations each
with a different reward policy. An open question
when using generated data for NLU model training

is whether the improvements observed are due to
the data enrichment gained by the new variations
introduced in synthetic data or due to upsampling.
To test this, we repeat each experiment on three
subsamples of the generated synthetic data. First,
we add a synthetic data set that is equal in size
to the pseudo Golden data set. We call this TopX
sampling. This enables us to explore the changes
in performance obtained by adding a synthetic data
set that reflects the original distribution produced
by the trained GAN framework, but with limited
effects of upsampling. In the second case, we pro-
duce a synthetic data set that is significantly larger
than the pseudo Golden data set (9600 utterances
per domain) and we take only the unique utterances
within that set. We call this Uniques sampling. This
enables us to explore the changes in performance
obtained by adding a synthetic dataset that contains
an exhaustive set of the different combinations of
utterances that the GAN can create, given the input
data. Finally, we add the full set of 9600 gener-
ated utterances per domain, that should be simi-
lar in distribution to the pseudo Goldens set (All
sampling). The results obtained for each SeqGAN
implementation with TopX, Uniques, and All sam-
pling strategies are summarized in Appendix B and
Appendix C.

5.2.1 Generator with token-level reward
When using the Generator with token-level reward,
we observe that out of three synthetic data sam-
pling strategies (i.e., TopX, Uniques, and All), the
biggest overall gain is shown by the All sampling
strategy with an overall intent accuracy improve-
ment of 4%, and an overall frame accuracy im-
provement of 3% (Table 1). Domain accuracy and
overall slot F1 do not show much change. In this
setup, alarm and reminder domains’ intent accura-
cies show increases of 12-14% with overall intent
accuracy increasing by 4%. However, intent ac-
curacy in the weather domain degrades by 4%.
The generator with token-level reward outperforms
the corresponding generator with sentence-level
reward in domain accuracy, slot F1 and frame ac-
curacy, but trails in intent metrics.

When the models are run using Goldens upsam-
pled to the same counts, we observe that overall do-
main, intent, and frame accuracies are slightly bet-
ter. However, individual intent accuracy of alarm
and reminder domains do not perform as well as
with synthetic data. No degradation of the weather
domain is observed with upsampled data.
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Table 1: Performance relative to the baseline for models with token-level and sentence-level reward using All
sampling strategy. Baseline is a model trained on Goldens only.

Reward Domain Intent accuracy Overall Slot F1 Overall Frame
accuracy alarm reminder weather int. acc. alarm reminder weather slot F1 accuracy

Token-level 0.29 11.84 14.62 -3.89 4.41 -1.04 0.8 1.25 0.39 3.26
Sent.-level -0.26 14.45 17.4 0.27 7.81 -1.19 1.21 -2.77 -1.23 -4.43

Table 2: Performance relative to the baseline for models with Monte Carlo rollouts on token-level and sentence-
level reward using Uniques sampling strategy. Baseline is a model trained on Goldens only.

Reward Domain Intent accuracy Overall Slot F1 Overall Frame
accuracy alarm reminder weather int. acc. alarm reminder weather slot F1 accuracy

Token-level 0.41 14.83 14.43 -0.12 7.21 -0.43 2.82 0.25 0.67 4.3
Sent.-level -1.37 9.07 9.19 0.23 4.71 -0.09 1.47 -0.52 -0.12 0.19

5.2.2 Generator with token-level Monte
Carlo rollout

Using a Generator with token-level Monte Carlo
rollout brings significant improvement, especially
outperforming other models in the Uniques sam-
pling strategy. Overall intent accuracy shows an
improvement of 7%, and overall frame accuracy
improves by 4% (Table 2). Alarm and reminder
domains’ intent accuracy show improvements of
14-15%. The reminder domain’s slot F1 improves
by 3%. This setup performs significantly better
than the generator with sentence-level reward in
all overall metrics and also in alarm and reminder
domain intent accuracies.

When compared to the models run using Gold-
ens upsampled to the same counts, we observe that
the Generator with token-level Monte Carlo rollout
policy performs better on domain accuracy, overall
intent accuracy, and overall slot F1 while being
slightly under on frame accuracy. Specifically, it
performs much better on both the alarm and re-
minder domains which show approximately 50%
the performance boost.

5.3 Handling low resource features
In this section we present the results of our experi-
ment mimicking the task of handling low resource
features. See Section 3.3.2 for the experimental
setup. We conduct each experiment three times
and present the mean results for Uniques sampling
strategy in Appendix D.

5.3.1 Generator with token-level reward and
embeddings pre-trained on robust
domains

Appendix D summarizes the results obtained using
SeqGAN with a generator with token-level reward

and embeddings pre-trained on robust domains to
synthesize data for the low-resource domain. We
observe a 12% increase in intent accuracy in the
alarm domain when compared to the baseline. We
also observe a 13% increase in intent accuracy in
the reminder domain when synthetic data is added.
For the weather domain, we do not observe a signif-
icant change in intent accuracy. For alarm and re-
minder domains we see an increase in overall intent
accuracy when synthetic data is added. For these
same domains, overall frame accuracy shows small
improvements while domain accuracy and overall
slot F1 does not show any significant changes.

5.3.2 Generator with token-level Monte
Carlo rollout and embeddings
pre-trained on robust domains

Appendix D shows the results obtained when using
MC rollout policy in addition to using embeddings
pre-trained on robust domains to synthesize data
for the low-resource domain. For the reminder
and alarm domains, we note that the performance
boost in the IC task for the low-resource domain is
larger by 2-3% than without the MC rollout. The
weather domain shows a small but statistically sig-
nificant improvement of 0.5% when compared to
the baseline. These results suggest that the MC
rollout policy provides additional guidance to the
generator in all cases.

6 Synthetic data deep dive

6.1 Evaluating the quality of the data
generated

To the best of our knowledge, there is no compre-
hensive metric that is commonly used for measur-
ing the performance of a text generation model.
To measure the performance of the SeqGAN, we
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Figure 4: Data quality evaluation for synthetic data gen-
erated in different GAN models: number of unique ut-
terances generated normalized by the number of Gold-
ens used as an input for GAN model (left), and 4-gram
BLEU score (right).

use the n-gram Bilingual Evaluation Understudy
(BLEU) score (Papineni et al., 2002), calculated
against a test set of Golden utterances. This metric
measures the degree of similarity between the gen-
erated data and test set. Additionally, we calculate
the diversity of generated data through the num-
ber of unique phrases we generated and number of
unique words used from vocabulary. We also keep
track on the mean utterance length to detect pos-
sible utterance collapse for token-level feedback,
when the generator learns to generate shorter ut-
terances. Detailed evaluations on bootstrapping
experiments are provided in the Appendix E, and
summarized in Figure 4. We see that compared to
other domains, weather’s BLEU scores are higher,
and the diversity of the generated data is lower,
suggesting that the model potentially reproduces
almost the same data as the input, and does not
bring in much novelty for NLU model training.

6.2 Annotation review

Although, in general, we observed that the NLU
model benefits from synthetic data, we have noted
some degradation in NER models, especially in the
weather domain. Deep diving into NER errors, we
found the following major sources of errors: an-
notation errors and context-dependent annotations.

First, in seeding pseudo Goldens, we selected ut-
terances based on their frequency, and then took
all unique annotations to be a pseudo Goldens set.
That process artificially increased weight of annota-
tion errors in cases were for frequent phrases there
were a few misannotated utterances. For example,
for utterances “remind me to ... tomorrow” with
and without label “datetime” frequently appeared
in our goldens, and the NLU model fails to recog-
nize “tomorrow” as an entity. In contrast, for the
utterances “remind me tomorrow to ...” the model
produces the correct “datetime” label. Additionally,
small context-dependent words that have different
annotation in the same domain, but appear to have
a dominant annotation in pseudo Goldens and fur-
ther in synthetic data, happen to be another cause
of failures. One example of such a word is “for” in
the weather domain, where in “weather for London
next week” it has no label, while in “forecast for
next week please” it is labeled as datetime.

7 Conclusions

In this paper, we evaluate the use of the SeqGAN
model for synthetic annotated data generation to
boost NLU model performance. We have shown
that adding synthetic data to bolster our Goldens
can significantly improve DNN model performance
in intent classification and named entity recognition
tasks. We propose a token-level reward with Monte
Carlo search rollout to guide the generator model,
that showed better performance when compared
with a regular token-level reward implementation,
sentence-level reward implementations both with
and without Monte Carlo tree search, and with a
pure upsampling strategy. We also show that us-
ing SeqGAN together with embeddings pre-trained
on high-resource domains to generate synthetic
data can significantly improve the performance of
low-resource domains. Embeddings pre-trained on
different tasks can carry over the information they
have learned and that can be especially useful in
low-resource model building scenarios.
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