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Abstract

It is known that word embeddings exhibit biases inherited from the corpus, and those biases reflect
social stereotypes. Recently, many studies have been conducted to analyze and mitigate biases
in word embeddings. Unsupervised Bias Enumeration (UBE) (Swinger et al., 2019) is one of
approach to analyze biases for English, and Hard Debias (Bolukbasi et al., 2016) is the common
technique to mitigate gender bias. These methods focused on English, or, in smaller extent, on
Indo-European languages. However, it is not clear whether these methods can be generalized to
other languages. In this paper, we apply these analyzing and mitigating methods, UBE and Hard
Debias, to Japanese word embeddings. Additionally, we examine whether these methods can be
used for Japanese. We experimentally show that UBE and Hard Debias cannot be sufficiently
adapted to Japanese embeddings.

1 Introduction

Word embeddings are widely used in natural language processing tasks, and they have been reported to
inherit social stereotypes, e.g. gender and racial stereotypes (Bolukbasi et al., 2016; Caliskan et al., 2017).
For example, “programmer” and “homemaker” should be gender neutral by definition, but the analogy of
“man is to programmer as woman is to homemaker” holds as observed by Bolukbasi et al. (2016). Such
biases cause differences in F1 scores between the pro- and anti-stereotypical conditions. For example
in the coreference resolution task, it is difficult to correctly link “physician:she” and “secretary:he” for
systems which use gender-biased word embeddings, because “physician:he” and “secretary:she” are
strongly related more than “physician:she” and “secretary:he” in the word embeddings (Zhao et al.,
2018a). Therefore, in recent years, research has been conducted to mitigate the bias in word embeddings
(Bolukbasi et al., 2016; Zhao et al., 2018b; Wang et al., 2020). However, to the authors’ best knowledge,
most of them have focused on English (Sun et al., 2019; Blodgett et al., 2020), and no study has addressed
word embeddings of languages other than Indo-European languages about bias analysis and mitigation.

We hypothesize that it is not obvious that the method developed for English can be easily adapted to
other languages for two following reasons. First is due to various grammatical features which do not
exist in English. Embeddings can have different characteristics depending on language, for example
Spanish words have gender which leads to the grammatical gender bias (Zhou et al., 2019). There is a
substantial risk that we cannot adapt the bias mitigation methods meant for English while working on
such a language. Secondly, especially when the language family differs, not only the characteristics of
a given language but also the cultural background of its users changes, which in turn influences further
the bias in the embeddings (Raijmakers, 2020). Therefore, it may not be possible to directly apply bias
analysis and mitigation methods developed for English to other languages.

Bias statement Following categorization of Crawford (2017), we focus on representational bias, espe-
cially stereotyping one, which means that a system “propagates negative generalisations about particular
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social groups” (Blodgett et al., 2020, p.5456). Stereotyping happens in natural language processing tasks
when an unfair association of words represents a particular social group with other concepts (not included
in its definition), like an analogy of “man is to programmer as woman is to homemaker”. If an AI agent
has such stereotypes, they can appear in its output as reported in works on dialogue systems (Liu et al.,
2019), possibly harming users.

There are several works on stereotypes in word embeddings for English (Bolukbasi et al., 2016; Zhao et
al., 2018b; Wang et al., 2020) and some other languages (Sahlgren and Olsson, 2019; Pujari et al., 2019),
but to the authors’ best knowledge, research regarding Japanese word embeddings does not exist.

In this paper, we analyze the representational bias in Japanese word embeddings, and attempt to mitigate
gender bias by using existing methods designed for English. We also show that those methods are difficult
to generalize to Japanese.

2 Related work

2.1 Bias in word embeddings and its mitigation for English
This section describes bias analysis and gender bias mitigation for English word embeddings.

2.1.1 Bias analysis
Caliskan et al. (2017) proposed the Word Embedding Association Test (WEAT) to evaluate the inherent
social biases in embedding. WEAT measures the difference of semantic similarity with a word embedding
between two sets of target words (e.g. “male” and “female” names) and attribute words (e.g. “career” and
“family” terms). This metric was used to show that social biases of embeddings are correlated with social
stereotypes and the proportion of gender of workers in each occupation.

Swinger et al. (2019) adapted WEAT and proposed Unsupervised Bias Enumeration (UBE) to discover
the biases in embedding by unsupervised clustering using first names. They asked crowdworkers to
evaluate the results of WEATs which are outputted by UBE and confirm if these results capture social
stereotypes, such as gender as well as religion and race.

2.1.2 Approaches to bias mitigation
Bolukbasi et al. (2016) confirmed the existence of the gender bias in English word embeddings, and
proposed a method called Hard Debias to mitigate the gender bias. Hard Debias uses words that should
be neutral to gender, such as “doctor” and “programmer”, and reduces the bias by subtracting the vector
components of gender directions from gender neutral words. Gender directions are defined by the first
principal component of a word vector of each word consisting of a gender definition word pairs, such as
“she” and “he”.

However, Gonen and Goldberg (2019) proved experimentally that Hard Debias could not sufficiently
remove gender bias and that it can be recovered from embeddings after mitigation.

In the work of Mu and Viswanath (2018), the most statistically dominant principal components are
encoding the frequency of words. Their method improves performance of embedding by subtracting the
common mean vector from each word vector and removing the dominant principal components. Wang et
al. (2020) proposed Double-Hard Debias which was inspired by work of Mu and Viswanath (2018). They
improved Hard Debias by deciding the dominant principal component of gender bias before performing
Hard Debias. Experiments on English embeddings, including the neighborhood metric (Gonen and
Goldberg, 2019), showed improved results.

All of the above-mentioned research examples work on English language. Next, we present studies on
the bias inherent in non-English embeddings.

2.2 Word embedding biases in languages other than English
There are two major directions of research on non-English word embedding bias. The first is a bias
study of multilingual embeddings, which compares what biases exist in embeddings available in both
English and other languages, e.g. Spanish and French, and how they differ depending on language (Zhou
et al., 2019; Zhao et al., 2020). The second direction is to address biases in monolingual embeddings
of languages other than English (Zhou et al., 2019; Sahlgren and Olsson, 2019; Pujari et al., 2019;



Raijmakers, 2020). For example, the gender bias has been found and mitigated in Swedish (Sahlgren
and Olsson, 2019) and Hindi (Pujari et al., 2019). Both used Hard Debias for gender bias mitigation –
Sahlgren and Olsson (2019) could not mitigate the gender bias but Pujari et al. (2019) were able to achieve
that goal. However, (Sahlgren and Olsson, 2019) analyzed their results only partially. The problem in the
Pujari et al. (2019) method is that they used Support Vector Machine (SVM) trained on gender-biased
embeddings during Hard Debias evaluation for Hindi. Raijmakers (2020) proposed a WEAT-extended
method to investigate gender bias in monolingual embeddings of 26 languages, including Japanese, but
did not attempt to mitigate any of them. This work also lacks a detailed analysis, as it only investigates the
overall gender bias of embeddings and does not assess whether gender neutral words have gender bias.

In this paper, we examine biases in Japanese monolingual embeddings and attempt to mitigate gender
bias as a case study.

3 Specificity of Japanese language

Japanese and Western languages use different types of characters. There are three types of characters
in Japanese language: phonetic hiragana*, katakana, and ideographic kanji. Embeddings of kanji may
capture not only the meaning of the word but also the meaning of the characters. For example word数学
(“maths”) consists of two ideograms: 数 (“number”) and学 (“learning”). Katakana often represents a
foreign wordプログラマ (“programmer”), while words written in rounded shape of hiragana likeふわ
ふわ (fuwafuwa, “fluffy”) are often associated with a feminine image (Iwahara et al., 2003).

4 Experiments

In this section we explain word embeddings we used, describe UBE (Swinger et al., 2019) used in the
bias analysis experiment, and two other methods (Hard Debias (Bolukbasi et al., 2016), Double-Hard
Debias (Wang et al., 2020)) used in the bias mitigation experiment. Finally, we explain our evaluation
methodology.

4.1 Word embeddings for experiments
As the target of our analysis we use two publicly available embeddings: word2vec (Mikolov et al., 2013)
trained on Japanese Wikipedia (Suzuki et al., 2018)† and fastText (Bojanowski et al., 2016) trained on
the Wikipedia text and Common Crawl. Number of dimensions in these embeddings is 200 and 300,
respectively.

We use 50,000 most frequent words (Bolukbasi et al., 2016) and also limit the words to be assessed for
bias to nouns, verbs, adjectives, adjectival verbs and adverbs in their dictionary forms using morphological
analyzer Juman++ (Morita et al., 2015).

4.2 Bias analysis experiment
Unsupervised Bias Enumeration (UBE) In this subsection, we introduce procedural steps of UBE
which is a method to detect various biases in embeddings using names.

As the first step, we filter out possibly problematic first names. In many languages there are polysemous
first names such as “May” in English (name of a month). Also in Japanese first names that have other
meaning, such as Hoshi (star), can be found. We filter them out because of the ambiguity they tend to bring.
Identically to Caliskan et al. (2017), we remove 20% of names with the lowest mean of cosine similarity
between a name and all other names. Then, after filtering, the names are clustered with k-means++ (Arthur
and Vassilvitskii, 2006) included in scikit-learn library (Pedregosa et al., 2011). Female and male first
names data is borrowed from JMnedict‡. Names being used for both genders are treated as neutral. The
number of clusters was experimentally set to 10 in both embeddings (word2vec and fastText). JMnedict
also includes foreign surnames. Initially, we were going to exclude them, but we thought that we might be
able to find social stereotypes regarding foreigners, so we eventually included their names in the dataset.
The results of the filtering are shown in Table 1.

*An italic represents romanization of Japanese words.
†http://www.cl.ecei.tohoku.ac.jp/˜m-suzuki/jawiki_vector/ (2017.2.2 version)
‡https://www.edrdg.org/enamdict/enamdict_doc.html
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Embeddings Neutral first
name

Female first
name

Male first name Foreign surname Total

word2vec 302 7,750 2,714 717 11,483
fastText 319 8,439 2,585 558 11,901

Table 1: The number of names after filtering

Secondly, we cluster the words which are included in the most frequent M tokens into clusters of
m words. In work of Swinger et al. (2019), occupation and food-related clusters were generated for
English. We set m to 64 as in their setup, but increase M from 30,000 to 50,000 in order to match the
bias mitigation experiment of (Bolukbasi et al., 2016).

Thirdly, each m cluster is further divided into Voronoi sets with a high degree of dot product between a
word vector and the vector mean of each name cluster. In this step, all word vectors and name vectors are
normalized to size 1. After that, the most relevant words were chosen as t in each Voronoi set, and we set
t = 3, following Swinger et al. (2019). However, if the number of elements in each Voronoi set generated
after Voronoi partitioning is smaller than t, all elements are used.

Finally, in the fourth step, we compute the WEAT score and p-value. First, we calculate the WEAT
score for each cluster of names and the t words included in Voronoi sets and chosen in order of relevance.
Next, we calculate the p-value. Following Swinger et al. (2019), we use “rotational null hypothesis” for
p-value. We multiply each name vector by an uniform Haar random orthogonal matrix and perform the
above-described third step identically to how the WEAT score is computed. This is done R = 10, 000
times, and the percentage of times the score is higher than the original score becomes the p-value. Finally,
the statistically significant WEATs are outputted. For determining the critical p-value, we follow Swinger
et al. (2019), who utilized method of Benjamini and Hochberg (1995) to guarantee an α bound on false
discovery rate. The α is set to 0.05 as in Swinger et al. (2019).

Our hypothesis is that the use of first names in Japanese does not reflect social stereotypes. As
mentioned in Section 3, kanji ideograms have their own specific meanings, and Japanese first names
are sometimes given with the intention of expressing the meaning of the kanji. In the case of a name
consisting of a single kanji character, its meaning may have a significant impact on the information
conveyed by embeddings. Additionally, as mentioned in Section 3, since the usage of embeddings may
differ depending on a character type, we assume that such types may have an influence on Japanese
embeddings. Therefore, we presume that embeddings of names are unlikely to reflect social stereotypes
and that clusters are formed by the character type and the meaning of ideograms.

4.3 Gender bias mitigation

We target bias mitigation for gender bias in Japanese embeddings by using Hard Debias (Bolukbasi et al.,
2016) and Double-Hard Debias (Wang et al., 2020).

4.3.1 Mitigating methods
Hard Debias Hard Debias is a method for bias mitigation by removing gender direction from gender
neutral words. Gender direction is defined in advance as the first principal component of gender definition
word pairs. Original Hard Debias (Bolukbasi et al., 2016) normalizes a word vector to size 1, but we do
not so, because its length can contain important information as pointed out by Ethayarajh et al. (2019).

Double-Hard Debias Double-Hard Debias follows Mu and Viswanath (2018), before doing Hard
Debias, first centralizing the entire embedding and then removing the dominant principal component of
the gender bias. Hard Debias was improved by performing these steps.

4.3.2 Gender Definition and Specific Words
Bolukbasi et al. (2016) defines gender specific words in advance, then uses them in the training data and
extends the gender specific words with SVM. However, it has been pointed out that searching for gender
specific words using embeddings of the bias mitigation targets poses the problem of not being able to
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Figure 1: Results of clustering names by first names and foreign surnames with n = 10

properly classify truly gender specific words (Ethayarajh et al., 2019; Kumar et al., 2020). For that reason
we collect gender specific words using Knowledge Based Classifier (KBC) proposed by Kumar et al.
(2020).

The KBC has been implemented as follows. First we translate the definition words used by Bolukbasi et
al. (2016) and use them as gender definition words for Japanese. However, since “herself” and other words
they utilized do not exist in Japanese embeddings, we instead use, for example, synonyms of “mother” to
match the number of pairs§. Then, for any word w, we check whether the definition of w contains gender
definition words or not by using Wordnet (Bond et al., 2012) and ConceptNet (Speer and Havasi, 2013).
If the gender word is present in a definition or node, w is treated as a gender specific word, and if not, it is
labelled as a gender neutral word. However, our preliminary experiments showed that some relationships
in ConceptNet contained gender bias themselves, so we chose edges for which effects of gender bias were
not significant: IsA, PartOf, HasA, Synonym, Antonym, DefinedAs, and MannerOf.

4.4 Evaluation methods

Experiment 1: bias analysis We select the top 12 WEATs with the highest WEAT scores among the
output WEATs in the bias analysis experiment and check whether these WEATs reflect social stereotypes.
Five illustrative names for each name cluster were used for the evaluation. They are selected using a simple
greedy heuristic presented in the original paper (Swinger et al., 2019). To evaluate whether the output
WEATs reflected social stereotypes, we asked seven native Japanese speakers (5 males and 2 females,
19-29 years old) to associate statistically significant cluster of words with one most stereotypically related
cluster of names. If WEATs represent a social stereotype, there should be high agreement between WEATs
and annotators. Pairs of names/words clusters selected by more than 50% annotators were treated as
correct associations (annotation guideline follows Swinger et al. (2019) but no rewards were given to
annotators).

Experiment 2: mitigating gender bias We evaluate gender bias of the Japanese word embeddings
using the neighborhood metric (Gonen and Goldberg, 2019).

The neighborhood metric is a measure of bias, which clusters n × k words with the largest bias in
embedding before mitigation into k clusters by using k-means++, and then evaluates bias level providing
the percentage of words belonging to each cluster that is consistent with the original bias. Higher
percentage indicates that the word embedding includes a bias. We use the difference in cosine similarity
between the word vectors of “woman” and “man” and between “she” and “he” as the magnitude of the
gender bias. After compressing the data into two dimensions using tSNE (van der Maaten and Hinton,
2008), we perform further clustering also using k-means++. For this experiment, we set k = 2 to evaluate
the gender bias related to females and males. We conduct experiments setting n to 100, 500, and 1, 000,
following Wang et al. (2020).

§Definitional word pairs we used are: [“woman”, “man”], [“female”, “male” (gender)], [“female”, “male” (sex)], [“girl”,
“boy”], [“little girl”, “little boy”], [“mother”, “father”], [“mother parent”, “father parent”], [“daughter”, “son”], [“she”,
“he”],[“Hanako”, “Taro”]



w2v F0 w2v F1 w2v F2 w2v F3 w2v F4 w2v F5 w2v F6 w2v F7 w2v F8 w2v F9
Hiroji Shinzaemon Kyoko Kasumi Kotaro Yomogi Yu Rie (h) Yukino (h) Etsu
Akiko Ikurumi Mai Suzu Akari Mari Syu Chika (h) Juri (h) Ryo
Asuka Noriaki Sachiko Mine Tomihisa Satsuki Shichiro Akio (h) Yae (h) Itsuki

Shigetaka Toriha Sekiko Usagi Zyotaro Sachi Sada Ura (h) Ao (h) Atsushi
Sachino Ayame Kazuki Midori Kiyono (h) Kuon Hisao Kaoru (h) Atsumi (h) Kou
+7,712 +97 +417 +113 +1,993 +419 +52 +134 +290 +206

64% F 72% F 77% F 92% F 67% F 85% F 54% F 96% F 98% F 64% F

Table 2: Clustering results of the first names and the foreign surnames using word2vec (w2v) with n = 10
and the illustrative names of each cluster. (h) indicates a hiragana word, and bold font represents single
kanji names. “% F” in the last row indicates female name ratio in the cluster.

ft F0 ft F1 ft F2 ft F3 ft F4 ft F5 ft F6 ft F7 ft F8 ft F9

Sachio Yumie Fuyu Mitsuki Kaede Mana Hiro Masato Ayano Miyoko
Katsuyo Kikue Akiho Yoshino Teruka Kaori Akira Eiichi Matsue Harue

Takashige Mitsuki (k) Raiko Arisu Kikyou Ena Kei Yoshihiro Nao Kazuko
Yoshimi Jewison (k) Takie Yuuki Midori Yuki Akane Kenji Hiroyasu Akie
Sukeichi Yurie Ruuku Ebiko Tsukuyo Nana Ken Kano Chiho Katsuko
+1,301 +3,978 +1827 +377 +940 +913 +456 +901 +522 +636

50% F 61% F 92% F 98% F 95% F 96% F 61% F 19% F 93% F 91% F

Table 3: Clustering results for the first names and the foreign surnames using fastText (ft) with n = 10
and the illustrative names of each cluster. (k) indicates a katakana word, and bold font represents single
kanji names. “% F” in the last row indicates female name ratio in the cluster.

5 Results

5.1 Experiment 1: bias analysis

The results of clustering names are shown in Figure 1a for word2vec, Figure 1b for fastText, and in Tables
2, 3, correspondingly. There are several possible readings of kanji ideograms for a single Japanese name,
but we use only one reading in the tables. Figures 1a and 1b show the overall results of clustering names.
Tables 2 and 3 list the illustrative names of each cluster.

In work of Swinger et al. (2019), distinct clusters are generated for both genders. However, as shown in
the Figure 1a and Table 2, in the case of Japanese, no clusters of male names are formed from word2vec
embedding and most of the names are clustered in cluster 0. Names in hiragana gathered in clusters 7
and 8. On the other hand, as shown in Figure 1b and Table 3, male names are grouped in cluster 7 when
fastText is used. In both word embeddings, clusters of single kanji ideograms (3, 5, 6 and 9 on word2vec
and 6 on fastText) and female names ending with “-ko” (cluster 2 on word2vec, cluster 9 on fastText) were
formed. We can observe that each cluster captures some distinctive characteristics, but all of them are
formed rather by the character type or number of characters, not by features that reflect social stereotypes.

The top 12 WEATs outputted by UBE are shown in Tables 4, 5. Table 4 illustrates the results of UBE
on word2vec and Table 5 on fastText. The fastText lexicon contains a number of uninterpretable parts
of words that could not be removed by the morphological analyzer Juman++, and we enclosed them in
quotes. The colored background indicates cases where the annotators agreed with WEATs that the words
reflect social stereotypes of the names. As far as Tables 4 and 5 are concerned, we can observe that most
WEATs fail to capture social stereotypes (15% agreement for word2vec, 24% for fastText).

5.2 Experiment 2: mitigating gender bias

The results of experiments using the neighborhood metric are shown in Tables 6 and 7. The tSNE
visualization is shown in Figures 2 and 3.

Regardless of which pair (“she/he” or “women/men”) is used to evaluate the size of the gender bias in
Japanese word2vec embedding, neither Hard Debias nor Double-Hard Debias come close to sufficient



w2v F0 w2v F1 w2v F2 w2v F3 w2v F4 w2v F5 w2v F6 w2v F7 w2v F8 w2v F9
investigate,
grow old,

warp

escape
safely,

betray, patrol

meet, be
irritated, be
enthusiastic

disperse,
lithography,

burn

offer
devoutly,

deify, funeral

in time, good
offices,
assault

‘boru’ (h),
keep (h),
some (h)

‘nosu’ (h),
‘noku’, pain

(h)

stupid,
salvation of

country,
yin-yang

Chikugo,
Kofu,

Komoro
(places)

Keisuke,
Hiro, Sekine

astringent,
white horse,

Mt.Fuji

country club
(k), Kissho-ji

(place),
Japanese old

ordinary
high school

Asama
(place),
imperial
capital,
Mt.Yae

Nagai,
Akamatsu,
Nabeshima

Tochigi(h),
Saitama (h),

Nanba
(places) (h)

shogi,
northern

seas, Konan
(place in
China)

Chikuzen
(place),

Shimofusa
(place), Edo
shogunate

Chube tray, folding
screen, the

Healing
Buddha

devine sprit,
deify,

dedication

family of
shogunate,
Yoshinori,
Harunobu

trick, Toi
(ancient

China class),
Buddhist

priest
pleasure,
Zyunichi,

boy friend

beautiful,
many,

kirakira
(glitter) (k)

‘yo’ (h),
‘sun’ (h),

irresponsible

adult (h),
guy (h), No.1

(h)

pain,
intelligent

person,
captivation

buddy,
Shinji,

transfer
student

frog, spider,
fang

emperor,
sanctuary,
superiority

stratagem,
revenge,
assassin

rat (h), life
(h), original

title

die out,
hollow, thief

Venezuela
(k), Slovakia
(k), Croatia

(k)

dukedom,
Ruthenia (k),
Netherland

(k)

American,
Britisher,
Japanese
diaspora

Arabia (k),
Hindu (k),
Jerusalem

Guangzhou ,
Yunnan,
Fujian

(places in
China)

castle town,
villa, the

main
enclosure of

a castle

apartment
(k), one
house,

manshon (k)
(rich

apartment)

giant tree,
fountain,

stone pillar

tomb,
mosque (k),
royal palace

study (room),
warehouse

direct line of
descent,
relative,

collateral
line

childhood
friend,

childhood
friend (only
kanji), same

age

eldest son,
successor,
father and

son

princess,
empress
dowager,

mother-in-
law

general
education
college,
graduate
school of

letters,
department
of sociology

classmate,
upperclass-

man,
pupil

study of
Chinese
classics,
assistant
professor,

school
principal

academy,
degree, pass

an
examination

topography,
ancient

manuscript,
genealogy

conversation,
story of
one’s

experience,
recollection

scroll,
collection of

haikus,
iconography

inscription,
series of

publication,
hymn

history book,
historical
material,

transcription

word,
anthology,
national
history

fullname (k),
family name,

initial (k)

seal,
character
used as a
phonetic
symbol,
Greek

free
translation,

Greek,
original
meaning

hiragana (h),
word (h),
written in
English

translation
into classical

Chinese,
classical
Chinese,

translitera-
tion

confess, go
around

together,
meet

dance, light
up, plant

divine,
praise,
protect

ask, look
after, beg

do, bestow,
destroy

Table 4: The top 12 highest-scoring WEATs output (statistically significant) by UBE on word2vec. ‘w2v
F’ indicate the cluster in Table 2. (h) indicates a hiragana word, (k) stands for a katakana. All other words
are written in kanji ideograms except ones in quotation – they are uninterpretable parts of words (noise).
Orange cells indicate the clusters of names and words selected by more than 50% annotators matches the
generated WEAT.



ft F0 ft F1 ft F2 ft F3 ft F4 ft F5 ft F6 ft F7 ft F8 ft F9
director,

investigate,
assistant
professor

sweet
novel

comic (k),
comedian,
Kaiseisha
(company)

go (h), get
up (h), feel

(h)

Iceland (k),
Toulouse

(k),
America

(k)

orange (k),
leaf, the

Milky Way

bikini
model (k),
girl, idol

(k)

Yukio, Yuji
(h), factory

Nuremberg
(k) (place),

Hitachi-
naka (h)
(place),
Okhotsk

(k)

career
woman (k),
wife, lady

(k)

dry, be
dazzled,

mold

enough,
very (h),
excellent

somehow,
all year
round,

hirahira (h)
(fluttering)

erotic (k),
cute, look

like a
grown-up

split, I
(ware), too

much

leading
person, go
through (h),

plan

Joseph (k),
Norman

(k), Harry
(k)

aurora (k),
Laguna (k),
acacia (k)

Erina (k),
Emily (k),
Lilly (k)

Hiroshi (k),
Kenji (k),

Ministry of
Transport

Yawatahama,
Dazaifu,

Wakayama
(places)

Toru (k),
Susan (k),

Takeshi (k)

stone wall,
imperial
guards,
Chika-
matsu

enjoyment
of the

moon, wild
cherry tree,
Japanese
apricot

with red
blossoms

Horse (old
orthogra-

phy),
stipend,
vivid

equator,
Okinawa
(place),
Kyushu
(place)

Ito (h),
Hida (h)
(place),

‘koji’ (h)

kid (h),
crab (h),
burnt (h)

‘koru’ (h),
‘ri’ (h),

‘puri’ (h)

connection,
detail, cut

off

‘rero’ (h),
line (h),

feeling (h)

to (old unit
of volume),
disaster, I
(onore)

hero,
expert,

primeval
man

royal
princess,
imperial
princess,
princess

very, a bit,
first

various,
other place,

this way

tax
included,
immedi-

ately after,
pipe (h)

successor,
third son,
eldest son

sworn
friend,
brother,
family

mother,
ex-wife,
married
couple

particular,
multiple,
diverse-

ness

little, slant,
error

the whole
country,
rising,

neighbor-
hood

family
name, brief

history,
pen name

meaning,
abbrevia-

tion,
character
(letter)

omitted
letter,
name,

one’s title

old name,
favorite
phrase,
speech

raise,
explain, be

granted

distribute,
compare,

return

prompt one
to do,

neglect,
receive

price, side,
measure

Table 5: The top 12 highest-scoring WEATs output (statistically significant) by UBE on fastText. ‘ft F’
indicate the cluster in Table 3. (h) indicates a hiragana word, (k) stands for a katakana. All other words
are written in kanji ideograms except ones in quotation – they are uninterpretable parts of words (parser
noise). Orange cells indicate the clusters of names and words selected by more than 50% annotators
matches the generated WEAT.
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Figure 2: tSNE visualisation of the top 500 words in the case of “she” and “he”. Graphs (a-c) show the
results for word2vec. Graphs (d-f) show the results for fastText.

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(a) word2vec

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(b) Hard debiased
word2vec

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(c) Double-Hard
debiased word2vec

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(d) fastText

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(e) Hard debiased
fastText

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

(f) Double-Hard
debiased fastText

Figure 3: tSNE visualisation of the top 500 words in the case of “women” and “men”. Graphs (a-c) show
the results for word2vec, (d-f) for fastText. Clusters in 3d-3f are not separated, so gender bias is not
visible.

mitigation of the gender bias. Also when fastText is used, neither of the bias mitigation methods is able
to effectively mitigate the gender bias in the “she/he” case. However, when “woman/man” were used,
gender bias could not be confirmed even before mitigating bias using the neighborhood metric.

6 Discussion

6.1 Experiment 1: bias analysis

Based on our experimental results, it is difficult to say that WEATs reflect social stereotypes. This supports
our hypothesis that Japanese first name embeddings do not reflect social stereotypes. However, Ethayarajh
et al. (2019) noticed that WEAT systematically overestimates the bias. We need to examine their findings
in the future.

As mentioned in Section 5.2, each cluster of names is formed by the character type, which also supports
our hypothesis that clusters are formed by the surface characteristics of Japanese language, not by the
meaning. However, clusters are not formed by the meaning of kanji included in the names themselves.
Particularly, our hypothesis that the clustering would be affected by a single kanji character was not
supported by the experimental results. Rather than single ideograms, the single kanji character names are
grouped, and we were able to confirm that clusters were not formed by the meaning of these characters.
We also confirmed that clusters of three or more character names were created (“ft F1” cluster in Table 3).
Foreign surnames also did not form their own clusters, but were grouped into the element-richest clusters.
Therefore, our experimental results show that name embeddings form concentric circles of names merely
from superficial information of character type and number of characters rather than meaning, gender or
nationality.

Based on the above considerations, it can be said that Japanese first name embeddings do not contain
much of social stereotypes, and the similarity between name and word vectors are affected by character
types of a word rather than the meaning of the word itself. We think that the fact that WEATs failed
to reflect social stereotypes is because the main information conveyed by name and word embeddings
is mostly superficial. Swinger et al. (2019) express their concern about the difficulty of applying UBE
with respect to groups that cannot be significantly distinguished by name. The results of our experiment
support that speculation.

6.2 Experiment 2: mitigating gender bias

Gonen and Goldberg (2019) showed experimentally that Hard Debias fails to mitigate the gender bias
when the neighborhood metric is used. We replicated this phenomenon in Japanese word embeddings.
According to Wang et al. (2020), Double-Hard Debias can mitigate gender bias with the neighborhood



Embedding Method Top 100 Top 500 Top 1000
Original 1.00 (1.00) 1.000 (0.994) 1.000 (0.999)

word2vec Hard Debias 1.00 (1.00) 0.995 (0.992) 0.993 (0.988)
Double-Hard

Debias
1.00 (1.00) 0.960 (0.978) 0.933 (0.967)

Original 1.0 (1.00) 0.753 (0.972) 0.594 (0.959)
fastText Hard Debias 0.99 (1.00) 0.607 (0.974) 0.593 (0.976)

Double-Hard
Debias

0.99 (1.00) 0.607 (0.973) 0.592 (0.958)

Table 6: Experimental results on the neighborhood metric in the case of “she” and “he”. The accuracy of
the metric after dimensionality reduction with tSNE is shown in parentheses.

Embedding Method Top 100 Top 500 Top 1000
Original 1.00 (0.99) 1.000 (0.982) 0.996 (0.945)

word2vec Hard Debias 1.00 (1.00) 0.993 (0.965) 0.993 (0.971)
Double-Hard

Debias
1.00 (0.98) 0.966 (0.937) 0.916 (0.940)

Original 0.64 (0.51) 0.585 (0.622) 0.645 (0.643)
fastText Hard Debias 0.64 (0.68) 0.583 (0.598) 0.647 (0.652)

Double-Hard
Debias

0.64 (0.51) 0.583 (0.647) 0.573 (0.662)

Table 7: Experimental results on the neighborhood metric in the case of “women” and “men”. The
accuracy of the metric after dimensionality reduction by tSNE is shown in parentheses.

metric when targeting English GloVe and word2vec (results of the latter only shown in their Appendix).
However, the bias could not be sufficiently mitigated in Japanese embeddings by using their method¶.

One of the reasons might be related to the way how the gender definition words are predefined in those
methods. Ethayarajh et al. (2019) comment on the results of Gonen and Goldberg (2019) stating that
Hard Debias removes only the components of the predefined gender direction, and that it is impossible to
remove other undefined components of the gender direction. Their conclusion is that even if one mitigates
the bias with non-exhaustive gender definition word pairs, potential gender directions remain (Ethayarajh
et al., 2019, p.1699).

We think this is true even if we remove the dominant principal components and make the embedding
space isotropic, so the same criticism applies to Double-Hard Debias. In our opinion, the experimental
results presented in this paper indicate that the list of gender definition word pairs we used was not
sufficient to mitigate the gender bias. This poses the following problem. The number and types of words
for gender naturally vary from language to language. Depending on the language, the exhaustive set
of gender definition word pairs will differ. Also, the gender direction affecting the downstream task is
not guaranteed to be identifiable or known a priori by simply using gender definition words translated
from English. Therefore, it will be generally difficult to provide a comprehensive set of gender definition
word pairs, suitable for downstream tasks, especially working with languages of a small NLP research
population and limited resources.

7 Conclusion

In this paper, we analyzed the representational bias of Japanese word embeddings and attempted to mitigate
the gender bias in these embeddings with previous methods developed for English. The experimental
results showed that Japanese first name embeddings do not include social stereotypes and that the similarity
of word vectors is influenced by the superficial information of character type. And, the existing gender

¶Unfortunately, there is no pre-trained GloVe model available for Japanese, so we were not able to investigate the influence
of the embedding type.



bias mitigation methods did not sufficiently mitigate the gender bias in Japanese embeddings. These
results suggest that it is difficult to generalize the previous methods for English to Japanese. This, in turn,
may be suggesting that it could be difficult to apply those methods not only to Japanese, therefore it is
important to consider whether and how they can be used to analyze and mitigate bias in other languages.

In the future, we will develop methods for bias analysis and of bias mitigation specifically dedicated to
Japanese language. We will also examine the generalizability of other existing methods, and try to answer
remaining question: what are the meta-conditions for a method to be independent of a language.
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Linköping University Electronic Press.

Robyn Speer and Catherine Havasi. 2013. ConceptNet 5: A large semantic network for relational knowledge. In
The People’s Web Meets NLP, pages 161–176. Springer.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Belding,
Kai-Wei Chang, and William Yang Wang. 2019. Mitigating gender bias in natural language processing: Litera-
ture review. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
1630–1640, Florence, Italy, July. Association for Computational Linguistics.

Masatoshi Suzuki, Koji Matsuda, Satoshi Sekine, Naoaki Okazaki, and Kentaro Inui. 2018. A joint neural model
for fine-grained named entity classification of wikipedia articles. IEICE Transactions on Information and Sys-
tems, E101.D(1):73–81.

Nathaniel Swinger, Maria De-Arteaga, Neil Thomas Heffernan IV, Mark DM Leiserson, and Adam Tauman Kalai.
2019. What are the biases in my word embedding? In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, AIES ’19, page 305–311, New York, NY, USA. Association for Computing Machinery.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605.

Tianlu Wang, Xi Victoria Lin, Nazneen Fatema Rajani, Bryan McCann, Vicente Ordonez, and Caiming Xiong.
2020. Double-hard debias: Tailoring word embeddings for gender bias mitigation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 5443–5453, Online, July. Association
for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2018a. Gender bias in coreference
resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 15–20, New Orleans, Louisiana, June. Association for Computational Linguistics.

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-Wei Chang. 2018b. Learning gender-neutral word embed-
dings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages
4847–4853, Brussels, Belgium, October-November. Association for Computational Linguistics.

Jieyu Zhao, Subhabrata Mukherjee, saghar Hosseini, Kai-Wei Chang, and Ahmed Hassan Awadallah. 2020. Gen-
der bias in multilingual embeddings and cross-lingual transfer. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 2896–2907, Online, July. Association for Computational
Linguistics.

Pei Zhou, Weijia Shi, Jieyu Zhao, Kuan-Hao Huang, Muhao Chen, Ryan Cotterell, and Kai-Wei Chang. 2019.
Examining gender bias in languages with grammatical gender. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 5276–5284, Hong Kong, China, November. Association for
Computational Linguistics.


	Introduction
	Related work
	Bias in word embeddings and its mitigation for English
	Bias analysis
	Approaches to bias mitigation

	Word embedding biases in languages other than English

	Specificity of Japanese language
	Experiments
	Word embeddings for experiments
	Bias analysis experiment
	Gender bias mitigation
	Mitigating methods
	Gender Definition and Specific Words

	Evaluation methods

	Results
	Experiment 1: bias analysis
	Experiment 2: mitigating gender bias

	Discussion
	Experiment 1: bias analysis
	Experiment 2: mitigating gender bias

	Conclusion

