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Abstract

This document describes a system for causality extraction from financial documents submitted
as part of the FinCausal 2020 Workshop. The main contribution of this paper is a description of
the robust post-processing used to detect the number of cause and effect clauses in a document
and extract them. The proposed system achieved a weighted-average F1 score of more than 95%
for the official blind test set during the post-evaluation phase and exact clauses match for 83% of
the documents.

1 Introduction

The FinCausal 2020 shared task (Mariko et al., 2020) focuses on the identification of causality in financial
documents. Beyond factual data, causality detection and characterization in financial documents help to
identify the reasons leading to a given quantified financial event. FinCausal 2020 proposes two shared
tasks: the first one focuses on the detection of causality in documents (binary classification), while the
second task consists of the actual extraction of the cause and effect spans from a document expressing
causality (token classification or span extraction).

This document describes a system submitted for the second task. Based on a deep learning language
model, it leverages an architecture similar to question answering and therefore addresses the task as a
span extraction problem. The post-processing and filtering of unrealistic spans are of high importance
given that several clauses (at least a cause and an effect) need to be extracted from the documents. The
extracted clauses are further refined to align with the task labeling guidelines.

The proposed system ranked 2" for the FinCausal 2020 Task 2, achieving a weighted-average F1 score
of 94.7% and predicted exact matches for the cause and effect clauses for 73.7% of documents. Further
training refinement led to an improved F1 score of 95% and exact match for 83.3% of the documents in
the official blind test set in the post-evaluation phase. The code for the proposed solution is available at
https://github.com/guillaume-be/Financial-Causality-Extraction

2 System Description

The core system used for all submissions is described in Figure 1. Features are generated from an
input text using the Transformers library (Wolf et al., 2019) with high-performance tokenizers (Hugging
Face, 2020). While the task dataset contains only rather short (2 to 3 sentences) texts, the system can
handle longer documents exceeding the language model context using a sliding window mechanism.
The tokenized input is then passed through a language model based on the Transformers (Vaswani et al.,
2017) architecture. The last layer of hidden states is connected to a dense layer with 4 output dimensions
to generate logits for the start and end positions of the cause and effect span. This mechanism is similar
to Question Answering state-of-the-art architectures with two spans extracted instead of one.

The output of the model is an array of 4 vectors per document representing the logits for the start
and end of the cause and effect. A first step cuts-off the logits vectors to the top-N elements, limiting
the potential solution space to a size of N*. Several of these solutions are unrealistic and must be
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filtered out. Some of these filtering steps are leveraged from the BERT (Devlin et al., 2019) Question
Answering system for SQuAD (Rajpurkar et al., 2016). This includes for example filtering out start
and end combinations where the end is before the start or the span length is longer than the maximum
allowed length. The cause and effect extraction tasks add complexity in that two spans need to be
extracted. Additional filters ensuring that the cause and effect clauses do not overlap have been added
(for example startequse < starteffect < endequse would be filtered out).
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Figure 1: System architecture.

Finally, task-specific heuristics aligned with the labeling guidelines (Mariko et al., 2020) have been
implemented. In addition to the filtered logits, these heuristics take the sentence boundaries as an input
(these are extracted with the PySBD library (Sadvilkar and Neumann, 2020)). The following heuristics
have been implemented:

e HI1: A clause (cause or effect) may not span over multiple sentences.
e H2: If a sentence contains only one clause (cause or effect), extend the clause to the entire sentence

The filtered and improved (via heuristics) possible cause-effect span combinations are then ranked
based on the sum of their 4 corresponding logits for start and end of cause and effect. The number of
cause/effect combinations to return is either set externally (via the number of duplicated entries in the
shared task dataset implicitly defining the number of cause/effects combinations to extract) or dynami-
cally based on the span probability and a threshold.

3 Experimental Results

3.1 Data

The data used for all experiments is the data for the FinCausal 2020 shared task (Mariko et al., 2020).
This data was extracted from 2019 financial news (QWAM, 2020). The task 2 dataset contains a subset of
documents containing at least one cause and effect relationship. When several cause/effect relationships
exist in a sample, this sample is duplicated for each additional cause/effect pair to be found. The data
contains two labeled subsets called Trial (641 samples, 500 unique), Practice (1109 samples, 913 unique)
and a blind test dataset Evaluation (638 samples, 452 unique). All models have been trained by merging
the Trial and Practice dataset and performing a random split keeping 90% of the data for training and
10% for validation.

3.2 Experiments

The proposed system was trained for 20 epochs using the AdamW (Loshchilov and Hutter, 2017) opti-
mizer. The learning rate is set to a maximum value of 2.5e — 5 and follows a cosine annealing schedule
(Loshchilov and Hutter, 2016) with 100 warm-up steps. The effective batch size was kept constant at
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12, using gradient accumulation when necessary. Experiments were performed on a RTX2070 GPU and
Google Colaboratory notebooks.

Five different language models have been investigated: DistilBERT (Sanh et al., 2019), BERT-base
and BERT-large (Devlin et al., 2019), RoBERTa-base and RoBERTa-large (Liu et al., 2019) using the
implementation available in the Transformers library (Wolf et al., 2019). For each of these, the impact
of pre-training on a question answering task (SQuAD dataset (Rajpurkar et al., 2016)) is evaluated.
The rationale is that question answering is also a span extraction task and that the causality extraction
architecture proposed is similar to that of extractive question answering systems. The impact of the
language model and its pre-training setup is available in Figure 2. The average for three runs of the
weighted-averaged F1 score over the token categories (cause, effect, other) and the fraction of documents
with exact spans extractions are shown by the dots. The range represents the minimum and maximum
values. The metrics are reported for the bind test dataset following an early stopping on the hold-out
validation dataset.
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Figure 2: Language model selection and impact on performance.

The training of the system was more stable using models pre-trained for question answering: the
weighted-averaged F1 score spread is significantly smaller for these models compared to the unsuper-
vised pre-trained version. The larger models (BERT-large and RoBERTa-large) perform better than
smaller models (base versions and DistilBERT) for a significantly higher computational cost. The impact
of the model architecture and pre-training for the fraction of exact matches is less significant, probably
because the metric is very sensitive to single token prediction changes.

3.3 Ablation study

An ablation study was conducted to identify significant contributions to the proposed model perfor-
mance. For all ablations, the weighted-average F1 score and exact matches fraction on the blind test set
is reported. The reported value is the average over 3 runs and subscripts show the standard deviation.
The pre-training on a question answering task has a significant impact on both the weighted average
F1 score and the standard deviation, indicating a more stable training regime. The question answering
pre-training also improves the number of exact matches significantly, further highlighting the value of
pre-training on a similar span extraction task.

Model F1 score (%) Exact match (%) Ap1(%)
Full model 94.68 3 79.944 4

without SQuUAD pre-training 93.920.¢ 77.902 3 -0.76
Single cause/effect returned 82.86¢.2 75.290 1 -11.81
without Heuristic 1 (max. 1 sentence per clause) 94.60¢.1 79.894 4 -0.08
without Heuristic 2 (clause extended to full sentence)  93.249 1 78.532.8 -1.44

The Single cause/effect return represents a system that outputs a single cause and effects for all doc-
uments provided (instead of returning multiple feasible causes and effects). Since the dataset contains a
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significant amount of documents with multiple causes and effects this severely impacts the performance.
The impact of the first heuristic is marginal and within the uncertainty margins. The second heuristic, ex-
tending the clause to the entire sentence, has a significant impact (more than 1% point weighted-average
F1 score). Additional training data would likely allow the model to learn more accurate span predictions
and reduce the impact of this heuristic.

3.4 Multiple cause/effect predictions

A document may contain multiple cause/effect pairs to extract (for example 1 cause and 2 effects). For
the shared task, the example is duplicated for each cause/effect pair, indicating the number of predictions
to output. In a real-world setting the model should be able to assess how many predictions (causes and
effects) to output for a given example. The following analysis evaluates if the value of the logits produced
by the model can be used as a proxy for the confidence of the model for how many examples to return:

1. Rank possible extracted spans by the sum of the logits of start/end positions of the cause/effect
Filter out the spans with a cause or effect fully overlapping with more likely spans

Calculate the span probability (P(causesiqrt) * P(causecnq) * P(ef fectsiart) * P(ef fectenq))

Sl

The ground truth of the number of spans (V) to extract is known from the number of duplicates of
the given example. The top-/V (excluding the first) extracted spans are stored as valid prediction
probabilities, the rest of the extracted spans and their probability are stored as invalid predictions.

Figure 3 shows the results on the combined hold-out evaluation and blind test datasets:
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Figure 3: Probability of cause/effect prediction based on actual number of expected predictions.

The distribution of probability scores shows good separation of valid and invalid predictions. Using
a confidence threshold of 99%, the model is able to identify the number of cause/effect relationships to
extract with a F1 score of 91.4% (precision: 86.4%, recall: 97.1%).

4 Conclusion

A system for the second task of the FinCausal 2020 workshop has been described. The problem was
framed as a span extraction task leveraging pre-trained model and post-processing elements from state-
of-the-art question answering systems. This strong baseline was complemented with extensions to handle
the extraction of two spans per document. The ability of the system to not only extract cause and effect,
but also to predict the number of cause/effect relationships in a document was also demonstrated. The
proposed model accurately extract causes and effect from documents.
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