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Abstract 

Identifying causal relationships in a text is essential for achieving comprehensive natural 

language understanding. The present work proposes a combination of features derived from 

pre-trained BERT with linguistic features for training a supervised classifier for the task of 

Causality Detection. The Linguistic features help to inject knowledge about the semantic and 

syntactic structure of the input sentences. Experiments on the FinCausal Shared Task1 datasets 

indicate that the combination of Linguistic features with BERT improves overall performance 

for causality detection. The proposed system achieves a weighted average F1 score of 0.952 on 

the post-evaluation dataset. 

1 Introduction1 

The understanding of cause-effect relation is an important NLP task because it appeals to human 

perception, reasoning, and decision-making. It has vast applications in the field of Information 

Extraction (Chan et al., 2002), Question Answering (Girju, 2003), and Event Prediction (Radinsky et 

al., 2012), among others. However, modeling causality relations between events is a non-trivial task 

because it requires a deeper analysis of the discourse and sometimes external knowledge to forge the 

relationship between separate events and entities.  

In the present work, the focus is on detection of causal relationships in a given text, which is modeled 

as a binary classification task. Sometimes the presence of causal connectives, such as causes, because 

of, leads to, after, due to indicates causality. However, there may be cases when the causal relation is 

more implicit making the task of causality detection more challenging.  

A causal relationship in a sentence involves the presence of a cause and an effect, where the cause 

triggers the effect. In other words, two events X and Y are considered to be causally related if the 

occurrence of X is triggered by the occurrence of Y, or vice versa. For illustration, consider the 

following:  (1) Fluctuations in exchange rates added to the risk factors.   

               (2) The company withdrew from bidding. 

It can be observed that the occurrence of (1) resulted in the occurrence of (2). Although there is no 

explicit marker, the association between the risk and bidding helps to forge a causal relationship.  

Past studies revealed that two major approaches for causality detection involve the use of handcrafted 

features (Riaz and Girju, 2014) or deep neural networks (Liang et al., 2019). The proposed work 

integrates syntactic and semantic features of the input text with pre-trained embedding vectors to train 

a supervised neural network for the classification of causal relations.  

The rest of the paper is organized as follows. The proposed system is described in Section 2, Section 

3 contains implementation details, and experimental results are presented in Section 4. 

2 Model Architecture 

The proposed model aims to supplement pre-trained BERT (Devlin et al., 2019) embeddings with 

linguistic features in order to induce knowledge about the syntactic and semantic peculiarities of the 
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input in the model. The model architecture is presented in Figure 1. The Linguistic feature vector and 

the BERT embeddings are concatenated together to generate a linguistically informed representation of 

the input text. The enhanced representations are processed using two identical layers of fully connected 

feed-forward network before applying a softmax classifier. The details of linguistic features are 

presented in Sec 2.1, and BERT features is described in Sec 2.2. 

 
Figure 1: Proposed Model Architecture 

2.1 Linguistic features 

A combination of lexical and syntactical features is employed for the task of causality detection. These 

features enable us to encode the semantic information of the input tokens and the structural information 

of the input sentences. 

Lexical Features 

The lexical features proposed by Pitler et al. (2009) proved to be effective in sense prediction of 

implicit discourse relations (Prasad et al., 2008) between pair of input sentences. In the present work, a 

subset of lexical features is adapted for the task of detecting causality in an input text. 

 Polarity Tags: The sentiment of each word in the input text is assigned according to the Multi-

perspective Question Answering Opinion (MPQA) corpus (Wilson et al., 2005). The number of 

positive, negative, and neutral words in the input text were considered as features. 

 Inquirer Tags: The General Inquirer lexicon (Stone et al., 1966) is used to assign semantic 

categories to the verbs present in the input text. The association between the different verb 

categories acts as an indicator of causality. 

 Money/Percent/Num: This feature is used to determine whether the input text contains numbers, 

monetary amounts, or percentages. These entities frequently occur in financial texts and are useful 

in determining causality. The count of each such occurrence in the input is considered as a feature.  

 Verbs: Levin Verb Classes (Levin, 1993) are used to identify verbs that belong to the same verb 

class. The average verb phrase lengths in the input text are also considered as a feature. 

 Modality: Pitler et al. (2009) demonstrated that the presence of modal words such as can, should, 

may most likely relate to a contingency or causal relation between sentences. Therefore, a feature 

indicating the presence of a modal word is used in the present application. 

 Connective: Text containing connectives belonging to the contingency class such as because, as 

a result, consequently are more likely to indicate causal relationships. A list of connectives is 

extracted from the Penn Discourse Treebank (Prasad et al., 2008), and a feature indicating the 

presence of connective in the input text is created. 

Syntactical Features 

Lin et al. (2009) demonstrated the features extracted from syntactical trees of sentences helps in 

recognizing implicit discourse relations between pairs of sentences. Since the structure of a text can 

also indicate the presence of causal relations, two kinds of syntactical features are extracted from the 

input text. 

 Constituency Parse Features: Production rules are extracted from the constituency tree of each 

sentence of the input text. A binary feature represents the presence of each production rule in a 

given input text.  

 Dependency Parse Features: Dependency rules are extracted from the dependency parse trees of 

each sentence of the input text. For each word of the sentence, the dependency rule consists of the 

POS tag of the word along with a list of all dependency types from the dependents of the word. 

The presence of each dependency rule is indicated using a binary feature.  
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 The rationale behind using both dependency and constituency features is that that precision and recall 

are increased when both parsing based features are used as the dependency trees encode additional 

information about the relationship between words of the sentences. 

For illustration, consider the sentence The New York Times estimates that at least 10,000 people 

became millionaires just from plunking a few dollars in the wildly profitable stock2. A subset of linguistic 

features is described in Figure 2. Here, Econ@, ComForm, EndLw, FormLw, COM are the Inquirer tags 

for the word estimate. Figure 3 depicts a subset of constituency and dependency features extracted from 

the respective constituency and dependency parse trees. 

 

 
Figure 2: Linguistic Features 

Figure 3: Syntactic Features 

 

It was observed that the linguistic features resulted in the creation of sparse feature space. Therefore, 

Singular Value Decomposition (SVD) is applied on three subsets of linguistic features, namely Lexical 

features, Constituency Parse Features, and Dependency Parse features. The Lexical features are reduced 

to a 100-dimensional space, and the Constituency and Dependency Parse features are reduced to 2000 

dimensional space each, resulting in a 4100-dimensional feature vector. 

2.2 BERT Embeddings 

Bidirectional Transformers for Language Understanding (BERT) was introduced by Devlin et al. 

(2019), and the usage of BERT features has resulted in state-of-the-art performance for various 

downstream NLP tasks such as Question Answering, Textual Entailment and Paraphrase detection. In 

the present work, input embeddings are extracted from the pre-trained BERT-base-uncased3 model. The 

output from the last layer corresponding to the [CLS] token is considered as the input text embedding.  

3 Implementation Details 

Pre-processing: In the pre-processing step, SpaCy4 library is used to perform Tokenization, 

Lemmatization, Sentence Segmentation, Part-of-Speech (POS) tagging and Dependency Parsing. 

SpaCy’s Named Entity Recognizer is employed to identify entities belonging to Cardinals, Monetary 

amounts, and Percentages. Constituency parsing is derived using the benepar_en2 model (Kitaev and 

Klein, 2018). 

                                                            
2present at Index 0026.00057 in the validation data 
3 https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip 
4https://github.com/explosion/spaCy 
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Dataset: The FinCausal Shared Task (Mariko et al., 2020) provides three datasets for Task1 viz., the 

Practice-Task1, the Trial-Task1 and the blind dataset Evaluation-Task1. The aforementioned datasets 

are used for training, validation and testing, respectively. Oversampling of positive samples was 

performed during the training process to balance the dataset. 

The proposed model is implemented on Python using keras5 framework. ReLU activation is applied 

on the intermediate Dense layers along with dropout regularization. The proposed model is trained to 

minimize the cross entropy loss using the Adam optimizer (Kingma and Lei Ba, 2015). Hyperparameter 

optimization is performed using keras-tuner6. The encoding dimensions of the Dense layers are tuned 

on the set {256, 512, 1024, 2048, 4096} and dropout ratio is tuned between {0.1, 0.2, …, 0.9}. The 

optimal encoding dimension and dropout ratio was found to be 2048 and 0.1, respectively. All the 

experiments were conducted on Google Colab7 using the Intel Xeon CPU @ 2.3GHz, the Nvidia Tesla 

P100 GPU and 25GB available RAM 

4 Results and Analysis 

In this section we present the results of our experiments on the blind Evaluation-Task1 dataset. The 

evaluation metrics are Precision, Recall and Weighted F1 score. Weighted F1 score is calculated by 

multiplying the class wise F1-scores with the class support, i.e. the number of examples in that class. 

The results corresponding to different subsets of the feature space is given in Table 1. It can be observed 

that linguistically enhanced input representations improve the ability of the supervised model to detect 

causal relationships in a given text.  

 
Features Precision Recall Weighted 

F1 score 

Only Lexical Features 0.943 0.946 0.936 

Only Constituency Features 0.934 0.940 0.936 

Only Dependency Features 0.934 0.941 0.930 

Only Syntactical Features 0.942 0.946 0.935 

Only BERT Features 0.943 0.935 0.938 

Only Linguistic Features 0.947 0.950 0.942 

Linguistic + BERT Features(Evaluation) 0.950 0.949 0.951 

Linguistic + BERT Features (Post Evaluation) 0.951 0.954 0.952 

 

Table 1: Test Results on the blind dataset 

 

 
Figure 4:(a) F1 Score of the proposed model on Test Set with and without oversampling with different 

sampling seeds (b) Validation and Training accuracy for the proposed model (Early Stopping returns 

the weights of second epoch) 

 

                                                            
5 https://keras.io/ 
6https://keras-team.github.io/keras-tuner/ 
7https://colab.research.google.com/ 

https://keras-team.github.io/keras-tuner/
https://colab.research.google.com/
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The effect of oversampling in the proposed model is demonstrated in Figure 4(a) by using different 

sampling seeds. The F1 score on the test set of the model trained without oversampling is lower than 

the average F1 score of the model trained with oversampling8. Training and Validation accuracies are 

shown in Figure 4(b). Early Stopping9 call back is used to get the weights of the second epoch to avoid 

overfitting because validation accuracy stops increasing after this epoch. 

Predictions of the proposed model for samples taken from the Validation set are described in Table 

2. Example 1 and 2 are correctly classified while Examples 3-8 are incorrectly classified. The causality 

in Example 3 is between capital out (withdrawal of capital) and refinancing. However, the lexical and 

syntactical structures of the input sentence conceal the underlying causal relationship. In Examples 4 

and 5 the difference in numeric quantities have an underlying causal effect. This indicates that 

knowledge with respect to variation of numeric quantities may help in improving performance of the 

model. The reason for unemployment in Example 6 is excluded from the input text and thus, the gold 

label is not causal. However, due to the presence of the connective phrase as result the proposed model 

assigns causality. The proposed model picks up on the complementary relationship between verbs earn 

and pay to predict causality in Example 7. The gold label for Example 8 indicates the absence of 

causality which is incorrect because the presence of the connective as strongly suggest the presence of 

a causal relation indicating that since 67 persons sold their share it dived. Thus, the proposed system is 

able to pick up on linguistic clues for meaningful predictions. 

 

Input Text Index Gold Predicted 

1 Choice Hotels International has a consensus target price 

of $85.12, suggesting a potential downside of 8.49%. 

0194.00006 Causal Causal 

2 Around the world fiduciaries are struggling with the 

challenging investment outlook. 

0016.00011 Not 

Causal 

Not Causal 

3 I refinanced my apartment and took almost 30,000 euros 

of capital out of my home. 

0311.00009 Causal Not Causal 

4 The S&P 500 returned 4.3%, after a 13.6% gain in the 

March quarter. 

0088.00025 Causal Not Causal 

5 Keep in mind that an 8% annual return is really only a 

5% annual return after 3% inflation. 

0126.00018 Causal Not Causal 

6 It said 1,300 jobs would be lost as result, with a further 

3,400 in the supply chain put at risk. 

0366.00003 Not 

Causal 

Causal 

7 Anyone earning below $2 million a year will not pay a 

dime. 

0102.00016 Not 

Causal 

Causal 

8 It dived, as 67 investors sold RTN shares while 352 

reduced holdings. 

0288.00031 Not 

Causal 

Causal 

 

Table 2: Predictions of the Proposed Model on the Validation Set (Trial-Task1) 

5 Conclusion 

Causality detection in a text is a challenging task due to the semantic peculiarities of the English 

language and also because it requires a deeper domain understanding. In the present work, semantic 

and structural knowledge of the input text is induced on the top of input embeddings to generate 

enhanced representation. The results indicate that the enhanced representations improve the 

performance across all the evaluation metrics. In future work we would like to experiment with more 

complex architectures such as LSTMs and Transformers. Additionally, we would also like to 

experiment with CNN and max-pooling based dimensional reduction for treatment of the sparse 

linguistic feature space. 

                                                            
8Best results are obtained for sampling seed 5050 
9 https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping 
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