Predicting Modality in Financial Dialogue

Kilian Theil and Heiner Stuckenschmidt
Data and Web Science Group
University of Mannheim, Germany
{kilian, heiner} @informatik.uni-mannheim.de

Abstract

In this paper, we perform modality prediction in financial dialogue. To this end, we introduce a
new dataset and develop a binary classifier to detect strong or weak modal answers depending
on surface, lexical, and semantic representations of the preceding question and financial features.
To do so, we contrast different algorithms, feature categories, and fusion methods. Perhaps
counter-intuitively, our results indicate that the strongest features for the given task are financial
uncertainty measures such as market and individual firm risk.

1 Introduction

In this paper, we predict the modality of answers depending on their preceding question and other fea-
tures in financial dialogue. Modality is an important concept in principal-agent settings of asymmetric
information such as the stock market, since it can be used as a strategic tool by company executives:
Using modality markers such as “probably” or “certainly,” investor expectations can be managed or the
effect of negative news can be mitigated without having to commit to false statements. Loughran &
McDonald (2016, p. 1224) suggest to examine the hypothesis that larger shares of modal words in con-
ference calls might worsen stock or operating performance. Subsequently, Dzielifski et al. (2019) found
that executive modality is indeed predictive of stock price as well as analyst’s earnings forecasts and firm
valuations (Dzielinski et al., 2019). Although different to past work, we explore causes, not effects, of
modality in the financial domain, this shows that modality prediction has potential down-stream uses in
return, risk, and analyst forecast prediction. Specifically, modality prediction models could be employed
for intra-day return prediction.

1.1 Modality

Linguistic modality, a concept related to politeness (Danescu-Niculescu-Mizil et al., 2013) and hedg-
ing (Lakoff, 1973} [Hyland, 1998)), is most commonly categorized into dynamic, priority, and epistemic
modality (Portner, 2009, p. 47). In this work, we focus on epistemic modality, which expresses a
speaker’s confidence in the truth of their proposition [ibid.]: a high epistemic modality (variously ex-
pressed through markers such as “certainly,” “must”) describes a high confidence and a low modality
(“probably,” “might”) stands for a low degree of confidence. While past socio-linguistic research has
shown that a manual annotation of modality on a 5-item scale is a comparably hard task for humans
(Rubin, 2007), past work in the financial domain indicates that the task seems to be easier for a binary
distinction and a broader definition of uncertainty (Theil et al., 2018al). As manual annotation is costly
and time-consuming, we were interested in automatically creating a silver standard dataset based on an
established lexicon of modality markers (Loughran and McDonald, 2011) in the financial domain. To
the best of our knowledge, there is no study investigating the determinants of modality in dialogue using
natural language processing.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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1.2 Earnings Calls

Earnings calls—the textual form we analyze in this paper—are quarterly public teleconferences or web-
casts in which companies present the financial results of the ending business quarter. Past literature has
examined indirectness (Crawford Camiciottoli, 2009)), persuasion (Crawford Camiciottoli, 2011}; |[Craw-
ford Camiciottoli, 2018), and deception (Larcker and Zakolyukina, 2012) in earnings calls. Earnings
calls typically consist of two parts: first, the company management (usually the CEO and/or CFO) as
well as investor relations representatives hold a scripted presentation which closely follows the accompa-
nying press release. Second, the call is opened to investors and banking analysts, which pose questions
to the management in a Q&A session. Together with the information asymmetry, this unscripted kind
of interaction makes the Q& A part especially suitable for our modality prediction task. Hence, we were
motivated to extract question—answer pairs from the Q&A and to predict the modality of an answer
depending on the content of the preceding question.

1.3 Contributions

We provide the following contributions to the community:
— We publish a dataset of SK question—answer pairs for modality prediction.

— We introduce the first modality classifier including semantic information and learning from hetero-
geneous features.

— We provide interpretable results by visualizing the importance and effect of the used features.

2 Related Work

In the financial domain, the task of modality or vagueness detection is closely related to risk and return
prediction. Loughran & McDonald (2011) handcrafted a set of sentiment lexica based on frequent terms
in a sample of 60K 10-Ks. These lexica (from now on: LM) span the categories positive, negative,
uncertain, litigious, strong modal, and weak modal and have been shown to possess predictive power of
risk. Subsequent work in the NLP community automatically expands said lexica by adding semantically
similar terms according to word embedding models for predictions of risk in form of return volatility
(Tsai and Wang, 2014; Rekabsaz et al., 2017} or correlations with it (Theil et al., 2018b; [Theil et al.,
2020).

§tajner et al. (2017) perform speculation detection in the monetary policy domain as a binary sentence
classification task. They use a list a list of uncertainty triggers extracted from the CoNLL-2010 shared
task’s training set (Farkas et al., 2010), the LM uncertain lexicon, and an own list of speculation trig-
gers tailored to the task. Theil et al. (2018a)) train a binary sentence classifier predicting the linguistic
uncertainty of 1K sentences randomly sampled from a dataset of earnings calls. They use lemmatized
bag-of-words (BoW) vectors, part-of-speech tags, a set of handcrafted syntactic rules, the CoNLL-2010
list of uncertainty triggers (Farkas et al., 2010), and the LM uncertain lexicon. Their results indicate
that BoW vectors and the LM lexicon are the strongest features, which is why we include them in our
classifier, too. Note that different to these works, we do not aim to predict the uncertainty of a sentence
given its content, but rather the uncertainty of an answer given the content of the preceding question.
Furthermore, we explore additional feature categories, such as semantic or financial features.

Using a set of 120K earnings calls, Dzielinski er al. (2019) find that the modality of executive ut-
terances is correlated with post-call stock price, analyst’s earnings forecasts, and firm valuation. Keith
and Stent (2019) gather 12K earnings call transcripts and find that pragmatic and semantic features are
moderately predictive of analysts’ price forecast targets following the call dates. Their pragmatic feature
set contains a dictionary of uni- and n-gram hedges (Prokofieva and Hirschberg, 2014)) as well as the LM
dictionary (Loughran and McDonald, 2011); however, they find the influence of semantic features (BoW
and doc2vec (Le and Mikolov, 2014) vectors) to be stronger. Theil ez al. (2019) collect a dataset of 90K
earnings calls and develop an attention-based neural model to predict financial risk (i.e. return volatility)
given the transcripts and several financial features. We include their financial features in our classifier,
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types tokens sentences utterances

7. 7K 232.1K  15.1K 5.0K

Table 1: Descriptive statistics of our dataset.

as past research suggests a correlation between linguistic modality and financial risk. Different to these
works, we do not predict external financial measures based on linguistic features. Instead, we aim to
predict a linguistic variable (modality) as we are interested in uncovering its determinants in financial
Q&A settings.

3 Methodology

We begin by introducing a new dataset for modality prediction in financial dialogue (cf. Section [3.1)),
proceed by defining different features sets (cf. Section [3.2)), and finally introduce a classifier for our
binary classification task (cf. Section [3.3).

3.1 Dataset

We obtain 20K earnings call transcripts from SeekingAlpha! and sample all question—answer (Q&A)
pairs from them. Numbers are identified with SpaCy’s named entity recognizer and replaced with uni-
form placeholder tokens. We remove Q&A pairs with inaudible parts, audiogaps, or multiple speakers
talking at once.

We use the established LM dictionary (Loughran and McDonald, 2011)) as a basis to induce the binary
modality label of the answers, thus forming a silver standard dataset used in the subsequent classification.
To this end, we focus on the two categories weak and strong modality and extract the answers with the
highest share of these words—to avoid ambiguous labels, we require the weak modal answers to contain
zero strong modal words and vice versa:

— The weak modality lexicon contains 27 tokens conveying vagueness such as “maybe” and “possi-
bly.”” We take the 2.5K answers with the highest share of weak modal tokens and assign them a
weak modal label.

Example: “Well, the numbers might suggest that.”

— The strong modality lexicon contains 20 tokens conveying certainty such as “always” and “undoubt-
edly.” We take the 2.5K answers with the highest share of these tokens and assign them a strong
modal label.

Example: “It will. That’s right, it will.”
This yields a balanced dataset of 5K (2.5K weak and 2.5K strong modal) instances; Table (1| describes
this set in terms of surface features. For the subsequent experiments, we apply an 80 : 20 training—test
split. Both our dataset and code can be found online.?
3.2 Features

Since we aim to predict the modality of an answer given the preceding question, all features are extracted
from the questions. In total, we evaluate four different feature categories, which are partly motivated by
the previous literature (cf. Section 2)).

3.2.1 Surface Features
In the SURFACE feature set, we explore the following:
!seekingalpha.com is a crowd-sourced provider of data and research on financial markets. We comply with their

reproduction policy of not quoting more than 400 words of any given transcript.
https://www.uni-mannheim.de/dws/people/researchers/phd-students/kilian-theil
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— Length is once represented by the number of sentences and once by the number of tokens in the
respective question.

— Positivity and negativity are the share of tokens according to the respective LM lexica. These are
defined by 354 positive tokens such as “breakthrough” or “win” and 2,355 negative tokens such as
“decline” and “worsen.”

— Strong and weak modality of a question could influence the modality of the respective answer.
Examples of strong and weak model tokens according to the LM lexicon are given in Section[3.1]

— Uncertainty is again measured by the respective LM lexicon which contains 297 tokens referring
to linguistic imprecision or risk, e.g. “hypothesis” and “volatility.”

3.2.2 Lexical (Semantic) Features

In the LEXICAL category, we compare tf and tfidf vectors, which have been shown to perform strong for
an uncertainty detection task (Theil et al., 2018b). To reduce sparsity, we apply singular value decom-
position (SVD) and experiment with dimensions dp,i € {100,200, ...,1000}. Additionally, to expand
the LEXICAL feature set with semantic information, we train word embedding models with word2vec
(Mikolov et al., 2013) on the entire earnings call corpus (cf. Section . We evaluate dimensions
dw2y € {100,200, 300} with both the continuous bag-of-words (CBOW) and the skip-gram (SG) archi-
tecture. Finally, we represent all questions as embedding centroids. Our results indicate that out of all
previously mentioned representations, tfidf vectors with dp,yy = 300 are optimal for the given task.

3.2.3 Semantic Features

We use the Latent Dirichlet Allocation (LDA) algorithm to obtain topic models forming our SEMANTIC
feature set. To find an optimal number of topics n, we evaluate the sensitivity of the log-likelihood [ and
the perplexity P to n € {5, 10, ...,45,50} in a five-fold cross validation setup on our training set. Our
results indicate that an optimal [ and P are obtained for n = 5.3

3.2.4 Financial Features

We use the FINANCIAL feature set proposed by [Theil et al. (2019) to contrast the predictive power of
linguistic features to that of performance measures about the firm or the overall economy:

— Firm volatility, measured by the standard deviation of stock returns, is the most important measure
for financial risk. We include the volatility in the preceding business quarter as this feature should
have an impact on investor and manager confidence.

— Market volatility as gauged by the CBOE Volatility Index (VIX),* reflects the overall market un-
certainty and should have a similar (albeit more global) impact as firm volatility.

— Firm size or market value is the number of outstanding shares multiplied by the stock price and is
a well-known driver of risk (Fama and French, 1992)).

— Book-to-market reflects the firm value according to the balance sheet divided by the market value
and thus reflects the degree of over- or undervaluation. Similar to the preceding measures, this ratio
is considered to be a major risk driver (Fama and French, 1992)).

— Earnings surprise reflects the deviation from the actual earnings per share figure from the mean
of previous analyst forecasts. Negative surprises tend to decrease stock returns (Price et al., 2012)
which may lead the executives to manage investor expectations.

— Industry dummies are obtained from the established Fama—French 12-industry scheme,” which
distinguishes between e.g. “energy” or “healthcare.”

3] = —145218.44 and P = 1782.15.
Ynttp://www.cboe.com/vix
Shttp://mba.tuck.dartmouth.edu/pages/faculty/ken. french/data_library.html
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Features Weak Modal Strong Modal Average
P R F P R F P R F

SURFACE 0.52 0.55 0.53 0.51 0.48 0.50 0.52 0.52 0.52
LEXICAL 0.57 0.60 0.59 0.56 0.53 0.54 0.57 0.57 0.57
SEMANTIC 0.51 0.52 0.51 0.49 0.47 0.48 0.50 0.50 0.50
FINANCIAL 0.89 0.95 0.92 0.95 0.87 0.91 0.92 0.91 0.91

ALL gr1y 0.86 0.95 0.90 0.94 0.85 0.89 0.90 0.90 0.90
ALLjge 0.89 0.85 0.87 0.85 0.89 0.87 0.87 0.87 0.87
Random 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 2: Classification results per class (weak and strong modal) and on average.

3.3 Classifier

Since we are interested in examining the influence of different features on an answer’s modality, we select
a set of algorithms with interpretable weights. In sum, we consider: (Gaussian) Naive Bayes, Logistic
Regression, Support Vector Machines (with RBF kernel), Decision Trees, Random Forest, and XGBoost
(Chen and Guestrin, 2016). The classifier is implemented and evaluated using sklearn 0.21.2 and
xgboost 0.90.

3.3.1 Feature Fusion

To fusion our four feature categories, we use the following methods: (1) Early fusion involves represent-
ing all feature categories in the same vector space; (2) late fusion (or “stacking”) implies that for each
feature category, a separate classifier is trained—the predicted labels of these classifiers are then used as
feature inputs for a meta-classifier predicting the final label. Our results show that, when representing all
features in one vector space (early fusion), the XGBoost classifier outperforms all other algorithms. We
furthermore find that the Gaussian Naive Bayes algorithm performs best as meta-classifier for the late
fusion approach.

3.3.2 Evaluation

We evaluate the performance of our classifiers with precision, recall, and F-score metrics. Furthermore,
to quantify relative feature importance in case of the early fusion approaches, we use SHAP (SHapley
Additive exPlanations) values, which were introduced by Lundberg and Lee (2017) and subsalently
a_dapted for tree-based learners (Lundberg et al., 2020):

0i(fe) = 32 (PR UD) — fu(P, n

ReR

where ¢; is the SHAP value for feature 4, f,. is the model output, R is the set of all feature orderings, PlR
is the set of all features preceding feature 7 in ordering I, and M is the total number of features.

4 Results and Discussion

4.1 Feature Performance

Table [2 shows the results of our classification task in terms of precision (P), recall (R), and F-score
(F) for both the strong and the weak modal class as well as on average. The early fusion approach
uses an XGBoost classifier trained on a single vector containing all features; the late fusion approach
additionally uses a Gaussian Naive Bayes meta-classifier stacked upon two XGBoost classifiers trained
separately on the linguistic and financial features. Since the binary labels are evenly distributed, a useful
classifier should exceed a value of 0.50 across all measures. The SURFACE, LEXICAL, SEMANTIC, and
FINANCIAL feature sets are defined as outlined in Section [3.2] and the fused features are represented by
ALL with separate subscripts for the early and the late fusion approach.
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Figure 1: Violin plot of SHAP values for the top-10 features in the binary classification with early fusion.

All feature sets (with the exception of SEMANTIC for the strong modal class) improve over a random
prediction. Furthermore, although late fusion improves slightly in terms of precision on the weak modal
class (P = 0.89 vs. 0.86) and in terms of recall on the strong modal class (R = 0.89 vs. 0.85), the
overall performance is slightly worse than that of an early fusion approach. When looking at individual
features sets, we find that, perhaps counter-intuitively, the financial feature set alone has the strongest
performance—even when compared to the more complex fusion approaches. This suggests that e.g.
market or firm risk have a comparably larger influence on the modality of executive answers than the
content of the preceding question. Therefore, while past literature asserts a comparably small impact
of textual information for correlations with financial risk (Loughran and McDonald, 2011} [Theil et al.,
2018b)), the same seems to apply when predicting a linguistic variable such as modality. Furthermore,
this motivates to explore whether the effect persists when featuring a larger context window of textual
information (perhaps including the earnings call presentation or prior questions and answers) or different
methods of textual representation.

4.2 Feature Importance

One advantage of the early fusion approach is its interpretability: since all features are represented in the
same vector, we can obtain a notion of relative feature importance quantitatively. To do so, we calculate
the SHAP values (cf. Section for all features and present the results in Figure |1} The intuition
behind these values is to compare the contribution of a feature value to the difference between the actual
and the mean prediction.

The strongest feature is market volatility, followed by firm volatility, and firm size. Interestingly, a
high market and firm volatility positively impact the model output (and vice versa), implying that risky
economic conditions may prompt managers to create a sense of security by committing to strong modal
answers more frequently. Apart from two topical features, the strongest linguistic feature is positivity:
Less positive questions tend to decrease the modality of an answer which could be attributed to their
unsettling impact on manager confidence.

In addition, we were interested to explore the importance of individual linguistic types for the final
prediction. To this end, we ranked the average SHAP values of all components of the purely LEXICAL
model. In addition, we ran SpaCy’s part-of-speech tagger on the ranked terms to explore the prevalence
of different word classes. The vocabulary size of the complete dataset is 7,679 types. Out of these, only
153 terms have an average SHAP value > 0, i.e. are important for the final prediction. We found that the
majority of terms are nouns (63), followed by verbs (47), adjectives (21), and adverbs (10). The top-20
terms according to their average SHAP value can be found in Table[3] Questions with numerical content
(e.g. containing the token “number” or the placeholder tokens “DATE,” “MONEY,” “CARDINAL” for
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term SHAP in % term SHAP in %

DATE 5.67 share 0.94
okay 4.61 obviously 0.91
really 2.37 CARDINAL 0.89
number 1.85 color 0.88
MONEY 1.71 doing 0.85
does 1.46 tax 0.81
capex 1.44 charge 0.79
opportunity 1.26 performance 0.77
opportunities 1.13 stores 0.69
timing 1.12 given 0.68

Table 3: Average SHAP values for the top-20 terms. Uppercase terms represent placeholder tokens for
the respective numerical named entity types identified with SpaCy.

dates, monetary values, and cardinal numbers) appear to influence an answer’s modality. Likewise,
business jargon terms such as “capex,” “share,” or “tax” are important for modality prediction.

Lastly, we were motivated to compare the feature distributions of the 434 misclassified instances to the
total population of 1K test instances. For example, systematically higher VIX values in the misclassified
instances compared to the rest of the population would motivate further experiments with a different
weighting/sampling procedure of this feature in the training process. To do so, we checked for significant
differences in the SURFACE and FINANCIAL feature sets across both misclassified and test instances
using independent ¢-tests. Although none of the features showed significant differences in mean for p €
{0.05,0.01,0.001}, we found that the p-value for question uncertainty approaches conventional levels
for significance (p = 0.144). This indicates that, apart from the increased context window mentioned
above, future work could deeper explore the measurement of and prediction based on uncertainty for the
given task—perhaps building on prior work on modality, hedging, or uncertainty detection presented in
Section

5 Conclusion

In this paper, we present a new dataset for modality prediction in financial dialogue and introduce a binary
classifier to address this task. In our experiments, we contrast the performance of various algorithms,
feature sets, and fusion methods. Interestingly, we reach a counter-intuitive result indicating that financial
features (most prominently market and firm risk) possess a higher predictive power for answer modality
than linguistic features (such as bags-of-words, topic models, or word embeddings) of the preceding
question. In future work, it would be interesting to explore whether this effect persists when using a
larger context window for the textual representations.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

References

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of ACM
SIGKDD, pages 785-794.

Belinda Crawford Camiciottoli. 2009. “Just Wondering if You Could Comment on That”: Indirect Requests for
Information in Corporate Earnings Calls. Text & Talk, 29(6):661-681.

Belinda Crawford Camiciottoli. 2011. Ethics and Ethos in Financial Reporting: Analyzing Persuasive Language
in Earnings Calls. Business Communication Quarterly, 74(3):298-312.

232



Belinda Crawford Camiciottoli. 2018. Persuasion in Earnings Calls: A Diachronic Pragmalinguistic Analysis.
International Journal of Business Communication, 55(3):275-292.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure Leskovec, and Christopher Potts. 2013.

A Computational Approach to Politeness with Application to Social Factors. In Proceedings of ACL, pages
250-259.

Michat Dzielifiski, Alexander Wagner, and Richard J. Zeckhauser. 2019. Straight Talkers and Vague Talkers:
The Effects of Managerial Style in Earnings Conference Calls. Swiss Finance Institute Research Paper Series,
17(13).

Eugene F. Fama and Kenneth R. French. 1992. The Cross Section of Expected Stock Returns. Journal of Finance,
47(2):427-465.

Richdrd Farkas, Veronika Vincze, Gyorgy Mora, Janos Csirik, and Gyorgy Szarvas. 2010. The CoNLL-2010
Shared Task: Learning to Detect Hedges and their Scope in Natural Language Text. In Proceedings of CoNLL:
Shared Task, pages 1-12.

Ken Hyland. 1998. Hedging in Scientific Research Articles. John Benjamins, Amsterdam/Philadelphia.

Katherine A. Keith and Amanda Stent. 2019. Modeling Financial Analysts’ Decision Making via the Pragmatics
and Semantics of Earnings Calls. In Proceedings of ACL, pages 493-503.

George Lakoff. 1973. Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts. Journal of
Philosophical Logic, 2:458-508.

David F. Larcker and Anastasia A. Zakolyukina. 2012. Detecting Deceptive Discussions in Conference Calls.
Journal of Accounting Research, 50(2):494-540.

Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documents. In Proceedings of
ICML, pages 272-280.

Tim Loughran and Bill McDonald. 2011. When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and
10-Ks. The Journal of Finance, 66(1):35-65.

Tim Loughran and Bill McDonald. 2016. Textual Analysis in Accounting and Finance: A Survey. Journal of
Accounting Research, 54(4):1187-1230.

Scott M. Lundberg and Su-in Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Proceedings
of NIPS, pages 1-10.

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. From Local Explanations to Global Understanding with
Explainable Al for Trees. Nature Machine Intelligence, 2(1):56-67.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations
in Vector Space. arxiv:1301.3781.

Paul Portner. 2009. Modality. Oxford University Press.

S. McKay Price, James S. Doran, David R. Peterson, and Barbara A. Bliss. 2012. Earnings Conference Calls and
Stock Returns: The Incremental Informativeness of Textual Tone. Journal of Banking and Finance, 36(4):992—
1011.

Anna Prokofieva and Julia Hirschberg. 2014. Hedging and Speaker Commitment. In International Workshop on
Emotion, Social Signals, Sentiment & Linked Open Data. LREC.

Navid Rekabsaz, Mihai Lupu, Artem Baklanov, Allan Hanbury, Alexander Duer, and Linda Anderson. 2017.
Volatility Prediction Using Financial Disclosures Sentiments with Word Embedding-Based IR Models. In Pro-
ceedings of ACL, pages 1712-1721.

Victoria L. Rubin. 2007. Stating with Certainty or Stating with Doubt: Intercoder Reliability Results for Manual
Annotation of Epistemically Modalized Statements. In Proceedings of NAACL HLT 2007, pages 141-144.

Sanja §tajner, Goran Glavas, Simone Paolo Ponzetto, and Heiner Stuckenschmidt. 2017. Domain Adaptation for
Automatic Detection of Speculative Sentences. In Proceedings of the International Conference on Semantic

Computing, San Diego.

233



Christoph Kilian Theil, Sanja Stajner, Heiner Stuckenschmidt, and Simone Paolo Ponzetto. 2018a. Automatic De-
tection of Uncertain Statements in the Financial Domain. In Proceedings of CICLing, pages 642—654. Springer.

Christoph Kilian Theil, Sanja gtajner, and Heiner Stuckenschmidt. 2018b. Word Embeddings-Based Uncertainty
Detection in Financial Disclosures. In Proceedings of the ACL Workshop on Economics and Natural Language
Processing (ECONLP), pages 32-37.

Christoph Kilian Theil, Samuel Broscheit, and Heiner Stuckenschmidt. 2019. PRoFET: Predicting the Risk of
Firms from Event Transcripts. In Proceedings of IJCAI, pages 5211-5217.

Christoph Kilian Theil, Sanja Stajner, and Heiner Stuckenschmidt. 2020. Explaining Financial Uncertainty
through Specialized Word Embeddings. ACM/IMS Transactions on Data Science, 1(1).

Ming-Feng Tsai and Chuan-Ju Wang. 2014. Financial Keyword Expansion via Continuous Word Vector Repre-
sentations. In Proceedings of the EMNLP, pages 1453-1458.

234



	Introduction
	Modality
	Earnings Calls
	Contributions

	Related Work
	Methodology
	Dataset
	Features
	Surface Features
	Lexical (Semantic) Features
	Semantic Features
	Financial Features

	Classifier
	Feature Fusion
	Evaluation


	Results and Discussion
	Feature Performance
	Feature Importance

	Conclusion

