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Abstract
In this paper, we present our approaches for the
FinSim 2020 shared task on “Learning Semantic
Representations for the Financial Domain”. The
goal of this task is to classify financial terms into
the most relevant hypernym (or top-level) con-
cept in an external ontology. We leverage both
context-dependent and context-independent word
embeddings in our analysis. Our systems deploy
Word2vec embeddings trained from scratch on the
corpus (Financial Prospectus in English) along with
pre-trained BERT embeddings. We divide the test
dataset into two subsets based on a domain rule.
For one subset, we use unsupervised distance mea-
sures to classify the term. For the second subset, we
use simple supervised classifiers like Naive Bayes,
on top of the embeddings, to arrive at a final predic-
tion. Finally, we combine both the results. Our sys-
tem ranks 1st based on both the metrics, i.e., mean
rank and accuracy.

1 Introduction
Natural Language Processing has mainstream applications in
a wide range of domains. In the Financial domain, senti-
ment analysis is vastly simplified, while applications like fi-
nancial document processing remain relatively unexplored.
According to the popular educational website Investopedia1,
“A prospectus is a formal document that is required by and
filed with the Securities and Exchange Commission (SEC)
that provides details about an investment offering to the pub-
lic.” The ease in availability of financial texts in the form of
Financial Prospectus opens a broad area of domain-specific
research for computational linguists and machine learning re-
searchers.

A hypernym is simply a word (or concept) denoting a su-
perordinate category to which words (or concepts) having
more specific meaning belong. Hypernym detection is a rela-
tively old problem studied in NLP for more than two decades
[Shwartz et al., 2016]. It finds applications in question an-
swering [Yahya et al., 2013], web retrieval, website naviga-

∗ Authors equally contributed to this work.
1https://www.investopedia.com/terms/p/prospectus.asp

tion or records management [Bordea et al., 2015] and taxon-
omy evaluation [Yu et al., 2015]. In cognitive science, hy-
pernyms are analogous to higher levels of abstraction in the
hierarchy within which we innately organize concepts. Any
concept at a lower level can be categorized as a hyponym
while the corresponding higher-level concept is its hyper-
nym. A hyponym can be associated with multiple hypernyms
(Labrador: Dog, Animal; Revenue Bond: Bond, Security).
Hence, hyponym-hypernym pairs are associated with a kind
of ‘is-a’ relationship.

The problem of discovering suitable hypernyms has been
formulated in different ways in the past. Previously, the Se-
mEval community has organized similar tasks under the um-
brella of taxonomy evaluation [Bordea et al., 2015; Bordea
et al., 2016]. The problem can also be proposed as a binary
verification task, i.e., given a pair of terms, find whether they
form a hypernym-hyponym pair. Most recently in SemEval-
2018, the problem was reformulated as given a hyponym,
find candidate hypernyms in a domain-specific search space
[Camacho-Collados and Navigli, 2017]. The FinSim task
[Maarouf et al., 2020] is perhaps the first hypernym detec-
tion task in the Financial domain. The problem is devised
as a multi-class classification task. Each financial term (hy-
ponym) is classified into one of the eight high-level classes
(hypernym), which are mutually exclusive from each other.

In section 2, we provide a brief literature review of the
work already done in this field. In section 3, we describe the
techniques used in our systems including word-embeddings
and classifiers. In section 4, we discuss the experimental
setup. This includes the systems that we submitted along with
post-submission analysis. Section 5 summarises the results of
all the systems. Finally, we conclude the paper in section 6
and suggest future directions for research.

2 Related Work
The literature on modelling hypernymy can be classified
into two broad categories: Pattern-based and Distributional.
Pattern-based approaches rely on the co-occurrence of hy-
ponym and hypernym [Grefenstette, 2015], substring match-
ing, lexico-syntactic patterns [Lefever et al., 2014] or orga-
nizing terms in a hierarchy or directed acyclic graph [Velardi
et al., 2013].

Distributional approaches are relatively recent. Distribu-
tional approaches capture far away relationships and, un-
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like the pattern based approaches, do not rely on the co-
occurrence of hyponym and hypernym in text. A typical
model uses a distributional representation of a word also
called word-embedding, as input for a classification layer
[Santus et al., 2014; Fu et al., 2014; Weeds et al., 2014;
Espinosa-Anke et al., 2016; Nguyen et al., 2017].

Shwartz et al. [2016] combined both pattern-based and
distributional approaches in a neural network based model.
Bernier-Colborne and Barriere [2018] use a combination of
embeddings and Hearst-style patterns for hypernym detec-
tion. We leverage both the approaches in our analysis. We
test for string inclusion to divide the dataset into two subsets.
We then perform separate analysis on the subset of terms that
include a class label and the subset of terms that exclude any
class label or include multiple labels.

3 Methods
We employed a variety of methods that were essentially dis-
tributional. Figure 1 shows a typical system. It primarily
consists of an embedding layer followed by a classification
layer. We discuss both the layers below.

3.1 Word-embeddings
We employ two types of word-embeddings. One is based on
the context-free Word2vec model [Mikolov et al., 2013]. The
second is the contextualized state-of-the-art language repre-
sentation model, BERT [Devlin et al., 2018].

Context-free embeddings: Word2vec
We use Word2vec embeddings [Mikolov et al., 2013] for cap-
turing semantic and syntactic properties of words. It is a
dense low-dimensional representation of a word. We trained
the embeddings on the whole corpus of Financial Prospectus.
Word2Vec represents each word as a vector. We tried differ-
ent dimensions ranging from 50 to 500. A term is represented
by an average of word embeddings of each word contained in
the term.

Contextualized embeddings: BERT
Bidirectional Encoder Representations from Transformers
(BERT) [Devlin et al., 2018] is the state-of-the-art language
model, that has been found to be useful for numerous NLP
tasks. It is deeply bidirectional (takes contextual information
from both sides of the token) and learns a representation of
text via self-supervised learning. BERT models pre-trained
on large text corpora are available, and these can be trained
for a specific NLP task or further fine-tuned on a specific cor-
pus. We used BERT Base Uncased configuration2, which has
12 layers (transformer blocks), 12 attention heads and 110
million parameters. We extract sentences from the corpus
containing the terms in train and test datasets (maximum 5 for
each term). We extracted the default pre-trained embeddings
from the last hidden layer for each word in a sentence. We ob-
tain term-embeddings by taking an average of embeddings of
its constituent words. This way, we get multiple embeddings
for the same term. They are again combined by taking an
average. We have limited access to computational resources,

2https://github.com/google-research/bert

Raw Text

Preprocessing

Prediction

Embedding layer
supervised / unsupervised

Classification layer
supervised / unsupervised

Figure 1: A typical system pipeline

however, with higher computational capability, BERT can be
fine-tuned on the whole corpus before extracting embeddings.

3.2 Classifiers
We use simple classifiers on top of the embedding layer. This
is due to the small size of the train and test datasets (roughly
100 terms each). We perform both supervised and unsuper-
vised classification.

Unsupervised classification
We obtain embeddings both for the terms and the 8 class la-
bels. We test three different measures of distance/similarity.
First, we use cosine-similarity. It is a measure of similarity
between two vectors. The more the cosine-similarity score,
the closer are the embeddings of the term and the label. We
rank the labels in descending order of similarity. We then em-
ploy two distance measures, L1 and L2, to find the distance
between embeddings of the term and the class labels. The
smaller the distance, the closer is the term to that class la-
bel. We rank the labels in the ascending order of distance for
prediction. These measures do not depend on the size of the
dataset as they do not involve further training in the classifi-
cation layer.

Supervised classification
We test two simple supervised classifiers, namely Naı̈ve
Bayes and Logistic Regression. Naı̈ve Bayes is a popular
classical machine learning classifiers [Rish and others, 2001].
The primary assumption behind the model is that given the
class labels. All features are conditionally independent of
each other, hence the name Naı̈ve Bayes. It is highly scal-
able, that is, takes less training time. It also works well on
small datasets. We used the default Bernoulli Naı̈ve Bayes
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Train Test Example
# hypernyms within term # terms # hypernyms within term # terms Term Hypernym

0 41 0 29 Debenture Bonds

1 53 1 66 Covered Bond Bonds

2 6 2 4 Bond Future Future

100 99

Table 1: Distribution of terms as per hypernym inclusion

classifier from sklearn library3. Since the embeddings used
are continuous, we first tried Gaussian Naive Bayes. How-
ever, the results were unsatisfactory. We then tried Bernoulli
Naive Bayes. It binarizes the continuous embeddings with
a default threshold of 0. It performed best with the default
threshold, far better than Gaussian Naı̈ve Bayes. In the fol-
lowing paper, we address Bernoulli Naı̈ve Bayes as simply
Naı̈ve Bayes.

Logistic regression [Kleinbaum et al., 2002] uses logistic
function as the representation, in a manner similar to linear
regression, to model a binary dependent variable. The eight
classes are treated as eight binary variables, which are as-
signed a probability between 0 and 1. Being a simple model,
it works pretty well on small datasets. We use the default
Logistic Regression classifier from the sklearn library.

4 Experimental Setup
In this section, we quantitatively describe the dataset provided
by the organizers and the challenges accompanying it. We
then mention the preprocessing steps briefly. Finally, we dis-
cuss the architecture and parameters of the systems in detail.

4.1 Data description
As a part of the task, we are provided with a training dataset
of 100 terms with corresponding class labels (hypernyms).
The test dataset comprised of 99 financial terms. As a com-
mon observation, the majority of the terms contained the la-
bel within them (Table 1). For instance, consider the term
“Convertible Bonds”. The corresponding label for this term
is “Bonds”. Hence, such terms can be separately dealt us-
ing a rule-based approach. The text corpus provided by the
organizers consisted of 156 Financial Prospectuses in PDF.

The dataset (Table 1) comes with a lot of inherent chal-
lenges. Firstly, the dataset is too small for a supervised ap-
proach, especially neural network classifiers. Secondly, there
were some terms in the training data, which were not present
in the provided corpus. Also, the corpus was provided as
PDFs and converting them to txt format added much noise
and sentence boundary detection proved to be a challenge.

Another issue is related to acronyms. In both train and test
datasets, there were multiple terms written as acronyms. For
example, the term “CDS” stands for Credit Default Swap. If
the full form was given, this term would have easily quali-
fied for subset 1, and direct classification would have been
possible. However, because of the acronym form, the correct

3https://scikit-learn.org/stable/

classification is solely dependent on the presence of “CDS” in
the corpus. The constituent terms Credit, Default and Swap
also cannot be used to classify it.

4.2 Data preprocessing
Text preprocessing steps included removal of punctuation,
stop words and special characters, followed by lower-casing,
lemmatization and tokenization. We used the nltk library4

[Loper and Bird, 2002] for the same. The tokens were then
converted to vectors using Word2vec or BERT embeddings.
Finally, the average of all the word vectors is taken to create
final embedding for each term.

4.3 Systems
As mentioned in section 4.1, some of the terms contained the
label within them. We split the test dataset into two subsets.
Subset 1 consists of terms containing exactly one class label
within them. Subset 2 has the remaining terms, those with no
class label or more than one class label. Subset 1 and subset
2 comprise of 66 and 33 terms, respectively. We perform a
separate analysis on both subsets. On observing the training
dataset, the terms in subset 1 can be directly classified into the
corresponding label since they contain the label within them.
This rule-based approach, of directly classifying a term into
the label, works very well for our dataset with 100% accuracy.
But it does not provide a ranking of labels useful in potential
exceptional cases for which the label contained in the term
might not be the correct label. Though no such example is
encountered in our dataset of 199 points in total, we do not
have evidence to eliminate the possibility in which the rank-
ing would be useful in evaluation according to mean rank.
Hence, we run all the approaches used for subset 2 on subset
1 also.

A typical system is represented in Figure 1. The combina-
tion of the classification layer and the embedding layer used
in subset 1 and subset 2 may vary for each system. We de-
scribe five such combinations for subset 1 and subset 2. Both
are combined to obtain results on the complete test dataset.
The results for these systems are discussed in section 5.

System 1
In this system, we use Word2vec word-embeddings of dimen-
sion 100 in the embedding layer. In the classification layer,
we use L2 norm for subset 1 and Bernoulli Naive Bayes clas-
sifier for subset 2. This is the system that stood 1st in the
FinSim task in terms of both Mean Rank and Accuracy.

4https://pythonspot.com/category/nltk/
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Unsupervised Supervised

Embedding Dim
Cosine Sim. L1 L2 Naı̈ve Bayes Logistic Regression
MR ACC MR ACC MR ACC #train MR ACC #train MR ACC

Word2vec
50 1.06 0.95 1.04 0.95 1.06 0.95 100 1.47 0.73 100 1.26 0.85
100 1.02 0.98 1.02 0.98 1.00 1.00 100 1.21 0.85 100 1.11 0.89
300 1.00 1.00 1.00 1.00 1.00 1.00 100 1.04 0.97 100 1.03 0.97

BERT 768 1.21 0.95 1.21 0.95 1.21 0.95 100 1.04 0.98 100 1.00 1.00

Table 2: Performance on subset 1 (MR = mean rank, ACC = accuracy)

Unsupervised Supervised
Embedding Dim Cosine L1 L2 Naı̈ve Bayes Logistic Regression

MR ACC MR ACC MR ACC #train MR ACC #train MR ACC

Word2vec

50 2.97 0.18 2.67 0.27 2.54 0.27
100 2.09 0.48 100 1.97 0.48
166 2.18 0.48 166 1.97 0.52

100 2.73 0.21 2.24 0.36 2.33 0.33
100 1.56 0.64 100 1.84 0.52
166 1.51 0.61 166 1.76 0.54

300 2.58 0.33 2.48 0.24 2.27 0.30
100 1.70 0.61 100 1.82 0.52
166 1.70 0.64 166 1.76 0.54

BERT 768 2.61 0.33 2.45 0.39 2.5 0.36
100 2.06 0.52 100 1.97 0.48
166 2.12 0.45 166 1.88 0.54

Table 3: Performance on subset 2 (MR = mean rank, ACC = accuracy)

System 2
In this system, we use Word2vec word-embeddings of dimen-
sion 300 in the embedding layer. In the classification layer,
we use L2 norm for subset 1 and Bernoulli Naive Bayes clas-
sifier for subset 2.

System 3
In this system, we use word-embeddings obtained from
BERT of dimension 768 in the embedding layer. In the classi-
fication layer, we use logistic regression for both the subsets.

5 Results
We discuss the performance of all the approaches and sys-
tems on the test dataset. Table 2 describes the results of dif-
ferent approaches on subset 1. It is clear from the table that
unsupervised approaches (cosine similarity, L1 norm and L2
norm) prove to be better than supervised approaches (Naı̈ve
Bayes and Logistic Regression) for subset 1 with Word2vec
word-embeddings. Among the unsupervised, L2 norm domi-
nates. For BERT embeddings, logistic regression dominates.

Table 3 describes the results of different approaches on
subset 2. Contrary to subset 1, supervised approaches per-
form better than unsupervised approaches on subset 2. Naı̈ve
Bayes dominates among the supervised classifiers for the
Word2vec word-embeddings while logistic regression dom-
inates for BERT embeddings. Since we obtain 100% accu-
racy for subset 1, as assumed based on the rule, and the train-
ing dataset is small, we add the terms in subset 1, with their

predicted labels, in the training dataset. Hence, we present
results for subset 2 on 100 training data points (original train
dataset) as well as on 166 training data points (original train
dataset + subset 1). In the following systems, we use results
with 166 training data points on subset 2 for consistency.

Table 4 shows the results for the systems discussed in
subsection 4.3. System 1 and 2 show the performance of
Word2vec word-embeddings of dimensions 100 and 300, re-
spectively. These systems are a combination of unsupervised
and supervised approaches separately applied on subset 1 and
2, respectively. They outperform any of the approaches ap-
plied to the aggregate test data. For both the systems, the
classification layers consist of L2 norm for subset 1 and Naı̈ve
Bayes classifier for subset 2 as they dominate in their respec-
tive categories. System 3, reveals the performance of BERT
word-embeddings in the embedding layer. It uses the lo-
gistic regression classifier, for both subsets 1 and 2, in the
classification layer as it performs the best with BERT word-
embeddings.

System Mean Rank Accuracy
1 1.17 0.87
2 1.23 0.88
3 1.29 0.85

Table 4: Results of different systems on the whole test data
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Although system 1 stood 1st in the task on both metrics,
in post-submission analysis, system 2 outperforms system 1
in terms of accuracy. Overall, the Word2vec embeddings out-
perform BERT embeddings. This may be because BERT em-
beddings are context-dependent and do not produce a unique
embedding for each word. On the contrary, Word2vec em-
beddings are unique for every word and are more suited for a
task where proper nouns are being classified.

6 Conclusion
As part of FinSim 2020 shared task on Learning Seman-
tic Representations in the Financial Domain, we attempt to
solve the problem of hypernym detection minted for Financial
texts. We employ static Word2vec and dynamic BERT em-
beddings under the top classification layers consisting of sim-
ple classifiers. Word2vec dominates for both dimensions (100
and 300). Though BERT embeddings come out to be equally
accurate for terms containing the one hypernym within them,
they lag behind for the other subset of terms. With higher
computational resources, BERT could be pre-trained on the
whole corpus, and the performance may improve. Unsuper-
vised metrics are efficient and independent of data size, but
they lag behind supervised classifiers for terms exclusive of
class label.

For future research, the data size could be increased signif-
icantly to bring deep learning based classifiers into the pic-
ture, and the task could be enhanced from hypernym detec-
tion to hypernym discovery. Overall, the task advances the
NLP community towards the broad area of Financial Docu-
ment Processing and encourages collaboration between the
fields of Finance and NLP.
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