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Abstract

Neural network (NN) based data2text models
achieve state-of-the-art (SOTA) performance
in most metrics, but they sometimes drop or
modify the information in the input, and it is
hard to control the generation contents. More-
over, it requires paired training data that are
usually expensive to collect. Template-based
methods have good fidelity and controllability
but require heavy human involvement. We pro-
pose a novel template-based data2text system
powered by a text stitch model. It ensures fi-
delity and controllability by using templates to
produce the main contents. In addition, it re-
duces human involvement in template design
by using a text stitch model to automatically
stitch adjacent template units, which is a step
that usually requires careful template design
and limits template reusability. The text stitch
model can be trained in self-supervised fash-
ion, which only requires free texts. The ex-
periments on a benchmark dataset show that
our system outperforms SOTA NN-based sys-
tems in fidelity and surpasses template-based
systems in diversity and human involvement.

1 Introduction

Data2Text takes structured data like key-value pairs
as inputs and generates corresponding texts. It has
been used in various applications like automatically
generating weather reports (Angeli et al., 2010),
restaurant descriptions (Dušek et al., 2019), etc.

Recent works on Data2Text mainly focus on neu-
ral network (NN) based models (Liu et al., 2018;
Puduppully et al., 2019). Despite their great suc-
cess,their fidelity (express all data correctly) and
controllability (control the generated contents) are
always their main issues. For example, for most
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NN-based generation models, we cannot guarantee
that the generated texts do not drop or modify the
information in the input. Besides, it is hard to fix
errors made by NN-based generation models.

Considering these issues, template-based
data2text models (Reiter and Dale, 1997; Bouayad-
Agha et al., 2011; Dou et al., 2018) are still widely
used in real-world applications. As shown in Fig. 1,
one of the most commonly used templates is the
slot-filling style template (Dou et al., 2018). It does
not require any linguistic knowledge. Users just
write a normal sentence but leave the changeable
parts as slots. While this kind of system can
produce faithful and controllable texts in specific
domains, writing these templates typically requires
a lot of human efforts, especially when we want to
have both variety and fluency in the output texts.

A main reason for intensive human involvement
is the template reusability. It is difficult to reuse
sentence-level templates in new tasks that usually
have different requirements. Therefore, people usu-
ally break long templates into smaller template
units (TUs). Each TU contains candidate expres-
sions expressing the same topic, and we randomly
choose one to use during generation (see Fig. 1). It
allows us to recombine existing TUs to cover new
tasks. However, different expressions may require
different contexts. As we include more candidates
in a TU, the difficulty would rise rapidly to find
suitable phrases to connect adjacent TUs for all
expressions. For example, in Fig. 1, expressions
[Price] price range and [Price] price in TU-Price
require different prepositions ahead of them. How-
ever, if we instead put expressions requiring dif-
ferent contexts into different TUs, the increased
number of TUs would raise the cost to use them.

In this paper, we propose a Text Stitch Powered
Template System (TS2), which reduces human in-
volvement in template writing by removing the
need to manually write phrases to connect adjacent
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TUs. As shown in Fig. 1, once the step of man-
ually writing connection phrases is removed, the
whole template becomes much simpler, and more
expressions can be added in the same TU. Besides,
the increased number of TU expressions and the
automatically generated connection phrases enable
us to generate more diversed and natural sentences.
Moreover, unlike NN-based models, since we only
generate connection phrases, we can control most
of the contents, especially the essential part contain-
ing input information. It guarantees output fidelity
and delivers better generation controllability.

Since the vocabulary of the connection phrases
is limited, we automatically generate text stitch
training data by dropping certain words in free
texts with simple rules. Therefore, we can train a
high-quality text stitch model in a self-supervised
paradigm. By experimenting on a benchmark
data2text dataset, we find that the text stitch model
trained on an open-domain corpus can produce
fluent text in most cases. When task-related data
are added, our self-supervised TS2 system clearly
outperforms the state-of-the-art (SOTA) template
system. In addition, it outputs more faithful text
compared with the SOTA NN-based system.

2 Approach

2.1 Text Stitch Powered Template System

The templates in our Text Stitch Powered Template
System (TS2) can be represented as: T =
TU1|TU2|...|TUn, where TUi is a template unit
(TU). Each TUi contains several candidates Cij

that express the same topic. Cij can be 1) a text
snippet, 2) a slot, 3) a combination of them (see
Fig. 1). Each TU candidate can be associated with
some conditions, that only when the condition is
fulfilled would it be used for generation. We can
also add constraints that, if some required slots
are not present, the TU candidate outputs empty
string (see Fig. 1). During the generation phase,
TUs are instantiated into text snippets by filling the
slots with corresponding input data and randomly
selecting a TU candidate with satisfied conditions
for each TU. After that, the instantiated TUs are
stitched together by our text stitch model.

2.2 Text Stitch Model

Our text stitch model takes in a sequence of text
snippets t1|t2|...|tn. It inserts connection texts be-
tween each pair of ti|ti+1, so that the generated text
is fluent and retains the original meaning. Note that

it only inserts connection phrases and preserves
all the contents in the input. Therefore, compared
with traditional encoder-decoder frameworks that
generate texts from scratch, edition-based methods
are better fits for this setting.

Our text stitch model utilizes a similar architec-
ture to Levenshtein Transformer (Gu et al., 2019)
(LevT), but the deletion operation is not used.
As shown in Fig. 2, the model uses the encoder-
decoder framework but produces the final output
in a refinement fashion. On the encoder side, a spe-
cial token [SEP] is inserted between adjacent input
text snippets ti|ti+1 to denote the position to insert
the connection texts. Then, the new input, together
with randomly initialized position embeddings, are
fed to several transformer layers (Vaswani et al.,
2017) to produce the input embeddings.

On the decoder side, the refinement process is
initiated with the original input text without [SEP]
tokens. The token embeddings and position embed-
dings are also fed into transformer layers to pro-
duce an embedding for each token. The encoder
attention mechanism (Vaswani et al., 2017) is em-
ployed to provide information about the original
input and the insertion positions.

The text stitch process is conducted by perform-
ing placeholder prediction and token prediction
iteratively. In placeholder prediction, we predict
how many tokens to insert for each position i:

πplh(p|i, x, y) = softmax(Wplhconcat(h′i,h
′
i+1))

(1)
where h′i is the decoder embedding for position i,
and Wplh is the weight matrix. Based on the num-
ber 0− kmax of tokens it predicts, several [PLH]
tokens are inserted to position i. Then we replace
each [PLH] with a token via token prediction:

πtok(t|i, x, y) = softmax(Wtokh′i) (2)

The objective function for each sample is:∑
p∗i∈p∗

logπplh(p
∗
i |i, x, y)+

∑
t∗i∈t∗

logπtok(t
∗
i |i, x, y′)

(3)
where p∗ and t∗ are the target placeholders and
tokens derived from the ground-truth text. y′ is the
output after inserting placeholders p∗ upon y.

2.3 Self-Supervised Training
Compared with traditional text generation, the gen-
eration vocabulary of text stitch is limited. This
enables automatically generating high-quality train-
ing data from free texts.
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Figure 1: Example templates. 1) Left side shows a sentence with corresponding templates. [*] refers to slots. TUs
are seperated by |. {*} refers to a TU ID. Connection phrases are shown in blue. 2) Right side demonstrates the
TU candidates in the template unit TU-Price. Condition and result are seperated by ? in each TU candidate.

Figure 2: Our text stitch model.

We find tokens with POS tags adp, aux, cconj,
part, punct, sconj, verb are often parts of a connec-
tion phrase. Therefore, for each pair of adjacent
sentences, we consider each token toki with these
POS tags as an indicator of potential segmentation
of two TU instantiations. Then we randomly re-
move 1-5 consecutive tokens to the left and right
of toki. We require the removed tokens to have the
aforementioned POS tags, plus adj, adv, det, intj,
pron which are also found in connection phrases
sometimes but with lower probability. To increase
dataset variety, we also randomly skip a segmen-
tation with a probability 5%. The remaining text
can be seen as the input to the text stitch model,
while the original text is the output. Note that two
adjacent sentences are taken as the input instead of
one to make sure that our model can also stitch the
boundary of two sentences.

3 Experiments

We aim to answer 4 research questions. Q1) Does
TS2 produce more faithful texts than NN-based
systems? Q2) Does TS2 produce more natural texts
than template-based systems? Q3) Can the pre-
trained template stitch model be directly used in
specific tasks? Q4) Does TS2 reduce human efforts
compared with pure template-based systems?
Experimental Setup We use the E2E
dataset (Dušek et al., 2019) with 42063, 4672,
630 data for training, development and test. Both
template- and NN-based systems are extensively
studied in E2E, which enables us to have a
comprehensive comparison with existing data2text
systems. We adopt BERT tokenization, 70K max
training steps, and batch-size of 8k tokens. More
training details can be found in the appendix.

System Dropped Slots Modified Slots Not Fluent
Prag (SOTA NN) 0.393 0 0.047
TGen (Baseline NN) 0.183 0.040 0.033
TUDA (SOTA Template) 0 0 0
TS2 0 0 0.030
TS2 pt 0 0 0.097
TS2 1k FT 0 0 0.033
TS all FT 0 0 0.027
TS random 0 0 0.087

Table 1: Human evaluation on 300 random test data.

Method METEOR BLEU NIST R-L CIDEr
Prag (SOTA NN) 45.25 68.60 8.73 70.82 2.37
TGen (Baseline NN) 44.83 65.93 8.61 68.5 2.23
TUDA (SOTA Template) 45.29 56.57 7.45 66.14 1.82
TS2 45.37 56.47 7.48 66.92 1.89
TS2 1k 38.01 34.26 5.15 55.28 0.58
TS2 10k 44.37 55.00 7.35 65.74 1.84
TS2 pt 43.55 49.85 6.80 64.00 1.19
TS2 1k ft 44.65 53.08 7.22 66.81 1.61
TS2 10k ft 44.88 55.62 7.41 66.17 1.75
TS2 all ft 45.38 56.87 7.51 66.37 1.80
TS2 random 43.72 50.85 6.93 58.72 1.27

Table 2: Automatic evaluation. R-L is ROUGE-L.
We hightlight the best NN- and Template-based results.
Underline refers to the best score among all systems.

3.1 Train with Unpaired Task-Related Data

We first train the text stitch model using un-
paired free texts in the E2E training set in the
self-supervised fashion. We compare TS2 with
TUDA (Puzikov and Gurevych, 2018), Prag (Shen
et al., 2019), TGen (Dušek et al., 2018), which
are the SOTA template-based system, SOTA NN-
based system, and a baseline NN-based system in
the E2E dataset, respectively. To make a fair com-
parison with TUDA, we follow the template design
of TUDA, but remove the connection phrases.
Human Evaluation In human evaluation, we an-
swer Q1 by evaluating the fidelity of the generated
text. We ask two annotators to annotate the gener-
ated texts. Conflicts are resolved by discussion be-
tween these two annotators. Annotation standards
and other details can be found in the appendix.

As shown in Table 1, both SOTA and baseline
NN-based systems drop input slots with a high fre-
quency, and not all the outputs are fluent. Even
worse, TGen sometimes modifies the original input
slot. This leads to unfaithful texts that are unac-
ceptable in many applications. The outputs of the
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SOTA template-based system are fluent and per-
fectly preserve the information in the inputs, yet at
the cost of intensive human involvement.

Compared with NN-based systems, TS2
achieves perfect fidelity by using templates to pre-
serve the input information. Although TS2 pro-
duces some influent sentences, the fraction of these
sentences is relatively small. Besides, we can write
simple rules for specific TU pairs to fix the fluency
problem, or even use rule-based logic to replace the
stitch model, which demonstrates the superiority
of TS2 over NN-based systems on controllability.

Compared with template-based systems, al-
though TS2 introduces a small fraction of influent
sentences, it significantly reduces human efforts in
designing templates. The TUDA code contains 24
if s to organize the orders and connection phrases
of TUs. In contrast, TS2 only needs 3 templates to
constrain the TU orders and does not need to con-
sider the connection phrases. Therefore, significant
human efforts are reduced in template design and
Q4 is partially answered.
Automatic Evaluation Automatic metrics com-
pare the generated texts with human-written refer-
ences. Human tends to alter the words for different
slot values. Therefore, we answer Q2 here to see
if TS2 picks more suitable words for different slot
values than template-based systems.

As shown in Table 2, TS2 outperforms TUDA
in most automatic metrics, which demonstrates
that automatically stitching TUs generates more
suitable connection texts for the given slot values.
However, while TS2 achieves the best METEOR
score, it is inferior to NN-based ones in other met-
rics. The reason lies in the logic of each metric.
METEOR calculates the precision and recall of the
matched words between the generated and refer-
ence texts after alignment by taking paraphrases
into account. Therefore, it is less sensitive to ex-
pression variations and content orders than other
automatic metrics. Template-based systems are
usually inferior to NN-based ones in the variety of
the output, which leads to lower scores in metrics
other than METEOR. While TS2 improves the va-
riety of pure templates, the templates used in TS
still make the output less diverse than NN systems.

3.2 Pre-train with Open-Domain Data
To answer Q3, we pre-train our text stitch model
on an open domain corpus with 1m Wikipedia sen-
tences, 1m newscrawl sentences, 1m web sentences
from Leipzig Corpora (Goldhahn et al., 2012).

Pre-trained Model As shown in Table 1 and 2,
TS2 pt is the model trained only on the open do-
main corpus. Majority of the sentences produced
by TS2 pt are fluent and faithful. Most influent
sentences have the same pattern: xxx located in the
[Area], located near [Near]. This is due to the
imperfection of the open domain corpus that it has
few sentences expressing a place is located in an
area and near another site. Since most errors are
introduced when stitching slots [Area] and [Near],
we can easily fix it using simple rules.
Finetuned Model As shown in Table 1 and 2, we
also evaluate the text stitch model finetuned on
1k, 10k, and all unpaired texts in E2E training
set (1k ft, 10k ft, all ft). Finetuning the
pre-trained model clearly outperforms the model
trained only on the same amount of E2E data (1k,
10k). However, when the size of task-related data
is large enough, using a pre-trained model does not
deliver much benefits (TS2 and TS all ft). On
the other hand, finetuning clearly improves the per-
formance of TS2 pt in both human and automatic
metrics, where using only 1k domain data already
produces satisfying scores in human metrics.

3.3 Randomly Arranged Template Units

We also apply the fully finetuned text stitch model
to randomly arranged TUs (TS2 random), which
further answers Q4 that TS2 is able to fluently
stitch most TU pairs and thus reduces human ef-
forts involved when writing templates. We fix the
first two TUs to express slots [Name] and [EatType]
to avoid TU sequences that can not form fluent sen-
tences. As shown in Table 1, even in this difficult
setting, only 0.087 outputs are influent, which are
typically caused by rare TU combinations. This
implies that TUs can be freely arranged when writ-
ing templates. As long as adjacent TU pairs are not
rare, there is a high probability that TS2 can output
faithful and fluent texts.

4 Conclusion

We propose a novel text generation framework that
combines the advantages of both template- and
NN-based data2text systems. Compared with NN
models, it guarantees the fidelity of the output and
improves system controllability. Compared with
pure template systems, it produces more varied
texts and reduces human involvement in designing
templates by removing the need to design connec-
tion texts for template units.
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A Training Details

We use the original E2E dataset along with the
default splits 1. As for automatic evaluation, we
use the tools provided in the E2E NLG Challenge 2.

We adopt Transformer base (Vaswani et al.,
2017), with dmodel = 512, dhidden = 2048,
nheads = 8, nlayers = 6, lrmax = 0.0005, label-
smooth=0.1, warmup=10000, dropout=0.3, weight-
decay=0.01. Source and target side share embed-
dings. All the models are trained using 1 Nvidia
Tesla V100 GPU with the batch size of 8000 tokens,
maximum 70K steps for training or finetune on
task-related data, and 1.5M steps for pre-training
on open-domain. All the hyperparameters follow
the default setting of the LevT paper (Gu et al.,
2019) except for the training steps. We manually
examine the performance of 10K, 30K, 50K, 70K,
90K, 110K training steps of the text stitch model
trained on the free text of E2E training data, and
find 70K performs best in METEOR. Then, we use
70K for all settings. As for pre-training, we choose
the training steps by examined performances 1M,
1.5M, 2M steps. The whole model has about 60M
parameters. We use the fairseq (Ott et al., 2019)
framework, and it takes about 7 seconds to finish
100 steps.

B Annotation Rules

We randomly select 300 data from the E2E test
set for human evaluation, and collect the generated
texts of each system on these 300 data. Two paid
annotators are asked to annotate the generated texts
of each system. They discuss with each other to
resolve conflict annotations.

We follow the fluency definition of Ferreira et al.
(2019) that the sentence is fluent when it is gram-
matical and flow in a natural, easy to read manner.
As for dropped slots and modified slots, we fol-
low the definition of Puzikov and Gurevych (2018).
They refer to the situation that the generated text
dropped certain slots or modified the value of cer-
tain slots in the input data, respectively.

Since there can exist up to 8 slot-value pairs in
the input data, it is very time-consuming to manu-
ally examine the dropped-slot errors and modified-
slot errors for all data. Therefore, we first examine
if the input slot values are present in the output
texts. Then, only those sentences with missing

1https://github.com/tuetschek/e2e-dataset
2https://github.com/tuetschek/e2e-metrics

slot values are sent to annotators for further exam-
ination. Pilot experiments show that this process
introduces no extra errors.

C Detailed Templates

See supplementary materials.


