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Abstract

Automatic evaluation metrics are indispens-
able for evaluating generated text. To date,
these metrics have focused almost exclusively
on the content selection aspect of the system
output, ignoring the linguistic quality aspect
altogether. We bridge this gap by proposing
GRUEN for evaluating Grammaticality, non-
Redundancy, focUs, structure and coherENce
of generated text.! GRUEN utilizes a BERT-
based model and a class of syntactic, seman-
tic, and contextual features to examine the sys-
tem output. Unlike most existing evaluation
metrics which require human references as an
input, GRUEN is reference-less and requires
only the system output. Besides, it has the ad-
vantage of being unsupervised, deterministic,
and adaptable to various tasks. Experiments
on seven datasets over four language genera-
tion tasks show that the proposed metric corre-
lates highly with human judgments.?

1 Introduction

Automatic evaluation metrics for Natural Language
Generation (NLG) tasks reduce the need for hu-
man evaluations, which can be expensive and time-
consuming to collect. Fully automatic metrics al-
low faster measures of progress when training and
testing models, and therefore, accelerate the devel-
opment of NLG systems (Chaganty et al., 2018;
Zhang et al., 2020; Clark et al., 2019).

To date, most automatic metrics have focused on
measuring the content selection between the human
references and the model output, leaving linguistic
quality to be only indirectly captured (e.g., n-gram
and longest common subsequence in ROUGE-N
and ROUGE-L respectively (Lin and Hovy, 2003;

"Following BLEU and ROUGE — blue and red in French,
we name our evaluation metric GRUEN - that means green
in German.

2Qur metric is available at https://github.com/
WanzhengZhu/GRUEN.
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Q1: Grammaticality The summary should have no date-
lines, system-internal formatting, capitalization errors or
obviously ungrammatical sentences (e.g., fragments, miss-
ing components) that make the text difficult to read.

Q2: Non-redundancy There should be no unnecessary
repetition in the summary.

Q3: Focus The summary should have a focus; sentences
should only contain information that is related to the rest of
the summary.

Q4: Structure and Coherence The summary should be
well-structured and well-organized. The summary should
not just be a heap of related information, but should build
from sentence to sentence to a coherent body of information
about a topic.

Table 1: Dimensions of linguistic quality as proposed
in Dang (2006).

Lin, 2004), and alignment in METEOR (Baner-
jee and Lavie, 2005)). Even though the need for
an explicit measure of linguistic quality has long
been pointed out in Dang (2006); Conroy and Dang
(2008), this aspect has remained under-explored
barring a few studies that focused on measuring
the linguistic quality of a generated piece of text
(Pitler et al., 2010; Kate et al., 2010; Xenouleas
etal., 2019).

In this paper, we bridge this gap by proposing
a novel metric for evaluating the linguistic quality
of system output. Taking into consideration the
guidelines put forth for the Document Understand-
ing Conference (DUC) in Table 1, we evaluate: 1)
Grammaticality by computing the sentence like-
lihood and the grammatical acceptability with a
BERT-based language representation model (De-
vlin et al., 2019), 2) Non-redundancy by identifying
repeated components with inter-sentence syntac-
tic features, 3) Focus by examining semantic re-
latedness between adjacent sentences using Word
Mover’s Distance (WMD) (Kusner et al., 2015),
and 4) Structure and Coherence by measuring the
Sentence-Order Prediction (SOP) loss with A Lite
BERT (Lan et al., 2019).
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Compared with existing metrics, GRUEN is ad-
vantageous in that it is:

e Most correlated with human judgments: It
achieves the highest correlation with human
judgments when compared with other metrics
of linguistic quality, demonstrated using seven
datasets over four NLG tasks.

Reference-less: Most existing evaluation metrics
(e.g., ROUGE, METEOR, MoverScore (Zhao
et al., 2019)) require human references for com-
parison. However, it is only logical to assume
that the linguistic quality of a system output
should be measurable from the output alone. To
that end, GRUEN is designed to be reference-
less, and requires only the system output as its
input.

Unsupervised: Available supervised metrics
(e.g., SUM-QE (Xenouleas et al., 2019)) not
only require costly human judgments? as super-
vision for each dataset, but also risk poor gener-
alization to new datasets. In addition, they are
non-deterministic due to the randomness in the
training process. In contrast, GRUEN is unsu-
pervised, free from training and deterministic.

o General: Almost all existing metrics for evaluat-
ing the linguistic quality are task-specific (e.g.,
Pitler et al. (2010) and SUM-QE (Xenouleas
etal., 2019) are for text summarization), whereas
GRUEN is more generally applicable and per-
forms well in various NLG task settings as we
demonstrate empirically.

2 Related Work

The growing interest in NLG has given rise to better
automatic evaluation metrics to measure the output
quality. We first review the widely used metrics for
NLG tasks and then discuss available metrics for
evaluating linguistic quality.

2.1 NLG Evaluation Metrics

N-gram-based metrics: BLEU (Papineni et al.,
2002), ROUGE (Lin and Hovy, 2003; Lin, 2004)
and METEOR (Banerjee and Lavie, 2005; Lavie
and Denkowski, 2009; Denkowski and Lavie, 2014)
are three most commonly used metrics to mea-
sure the n-gram lexical overlap between the human

3We use “human references” to mean the ground truth
output for a given task, and “human judgments” as the manual
linguistic quality annotation of a system’s output.
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references and the system output in various NLG
tasks. To tackle their intrinsic shortcomings (e.g.,
inability to capture lexical similarities), many vari-
ations have been proposed such as NIST (Dodding-
ton, 2002), ROUGE-WE (Ng and Abrecht, 2015),
ROUGE-G (ShafieiBavani et al., 2018) and ME-
TEOR++ 2.0 (Guo and Hu, 2019).

Embedding-based metrics: These metrics utilize
neural models to learn dense representations of
words (Mikolov et al., 2013; Pennington et al.,
2014) and sentences (Ng and Abrecht, 2015;
Pagliardini et al., 2018; Clark et al., 2019). Then,
the embedding distances of the human references
and the system output are measured by cosine sim-
ilarity or Word Movers Distance (WMD) (Kusner
et al., 2015). Among them, MoverScore (Zhao
et al., 2019), averaging n-gram embeddings with
inverse document frequency, shows robust perfor-
mance on different NLG tasks.

Supervised metrics: More recently, various su-
pervised metrics have been proposed. They are
trained to optimize the correlation with human judg-
ments in the training set. BLEND (Ma et al., 2017)
uses regression to combine various existing met-
rics. RUSE (Shimanaka et al., 2018) leverages
pre-trained sentence embedding models. SUM-QE
(Xenouleas et al., 2019) encodes the system output
by a BERT encoder and then adopts a linear regres-
sion model. However, all these supervised metrics
not only require costly human judgments for each
dataset as input, but also have the risk of poor gen-
eralization to new datasets and new domains (Cha-
ganty et al., 2018; Zhang et al., 2020). In contrast,
unsupervised metrics require no additional human
judgments for new datasets or tasks, and can be
generally used for various datasets/tasks.

Task-specific metrics: Some metrics are proposed
to measure the specific aspects of the tasks. For
instance, in text simplification, SARI (Xu et al.,
2016) measures the simplicity gain in the output.
In text summarization, most metrics are designed
to evaluate the content selection, such as Pyramid
(Nenkova and Passonneau, 2004), SUPERT (Gao
et al., 2020) and Mao et al. (2020). In dialogue
systems, diversity and coherence are assessed in Li
et al. (2016a,b) and Dziri et al. (2019). However,
these proposed metrics are not generally applicable
to the evaluation of other aspects or tasks.



2.2 Evaluating Linguistic Quality

Existing metrics have focused mostly on evalu-
ating the aspect of content selection in the sys-
tem output, while ignoring the aspect of linguistic
quality. This suggests the long-standing need for
automatic measures of linguistic quality of NLG
output, despite requests for further studies in this
important direction. For instance, the Text Analy-
sis Conference (TAC)* and the Document Under-
standing Conference (DUC)? (Dang, 2006) have
motivated the need to automatically evaluate the
linguistic quality of summarization since 2006. As
another example, Conroy and Dang (2008) have
highlighted the downsides of ignoring linguistic
quality while focusing on summary content during
system evaluation. Additionally, the need for lin-
guistic quality evaluation has been underscored in
Dorr et al. (2011); Graham et al. (2013); Novikova
et al. (2017); Way (2018); Specia and Shah (2018).
The uniqueness of our study is that it bridges the
need of an automatic evaluation metric of language
quality to enable a more holistic evaluation of lan-
guage generation systems.

Among the few existing metrics of linguistic
quality available in prior studies, the early ones
Pitler et al. (2010); Kate et al. (2010) rely only on
shallow syntactic linguistic features, such as part-
of-speech tags, n-grams and named entities. To
better represent the generated output, the recent
SUM-QE model (Xenouleas et al., 2019) encodes
the system output by a BERT encoder and then
adopts a linear regression model to predict the lin-
guistic quality. It shows the state-of-the-art results
and is most relevant to our work. However, SUM-
QE is a supervised metric, which not only requires
costly human judgments as input for each dataset,
but also has non-deterministic results due to the
intrinsic randomness in the training process. Be-
sides, SUM-QE has been shown to work well with
the DUC datasets of the summarization task only
(Xenouleas et al., 2019), calling into question its
effectiveness for other datasets and tasks. GRUEN,
as an unsupervised metric, requires no additional
human judgments for new datasets and has been
shown to be effective on seven datasets over four
NLG tasks.

‘nttp://tac.nist.gov/
‘http://duc.nist.gov/
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3 Proposed Metric

In this section, we describe the proposed linguistic
quality metric in detail. We define the problem as
follows: given a system output S with n sentences
[s1, 82, ..., Sp], where s; is any one sentence (po-
tentially among many), we aim to output a holistic
score, Yg, of its linguistic quality. We explicitly
assess system output for the four aspects in Ta-
ble 1 — Grammaticality, Non-redundancy, Focus,
and Structure and Coherence. We leave Referen-
tial Clarity as suggested in Dang (2006) for future
work.

Grammaticality: A system output with a high
grammaticality score y, is expected to be readable,
fluent and grammatically correct. Most existing
works measure the sentence likelihood (or perplex-
ity) with a language model. We, in addition, explic-
itly capture whether the sentence is grammatically
“acceptable” or not.

We measure y, using two features: sentence
likelihood and grammar acceptance. For a system
output .S, we first use the Punkt sentence tokenizer
(Kiss and Strunk, 2006) to extract its component
sentences si, So, ..., Sp,. Then, for each sentence
si = (wi1,wi2,...,wi), a sequence of words
w; j, we measure its sentence likelihood score [;
and grammar acceptance score g; by a BERT model
(Devlin et al., 2019).° The choice of BERT is to
leverage the contextual features and the masked
language model (MLM), which can best examine
the word choice. However, BERT can not be di-
rectly applied to get the likelihood of a sentence,
as it is designed to get the probability of a single
missing word. Inspired by Wang and Cho (2019);
Wang et al. (2019), we estimate /; by a unigram
approximation of the words in the sentence: [; =
Zj logp(wi7j|wi,1..., Wi, j—1, Wi 541y wi7k)- By
such approximation, /; can be estimated by comput-
ing the masked probability of each word. To obtain
the grammar acceptance score g;, we fine-tune the
BERT model on the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2018), a dataset
with 10,657 English sentences labeled as grammat-
ical or ungrammatical from linguistics publications.
Finally, scores from both models (i.e., [; and g;)
are linearly combined to examine the grammati-
cality of the sentence s;. The final grammaticality
score y, is obtained by averaging scores of all n

®We use the “bert-base-cased” model from:
http://huggingface.co/transformers/
pretrained_models.html.
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component sentences: y, = » ., (l; + g;)/n.

Non-redundancy: As shown in Dang (2006), non-
redundancy refers to having no unnecessary rep-
etition, which takes the form of whole sentences
or sentence fragments or noun phrases (e.g., “Bill
Clinton”) when a pronoun (“he”) would suffice
across sentences. To calculate the non-redundancy
score ¥, we capture repeated components by us-
ing four inter-sentence syntactic features: 1) string
length of the longest common substring, 2) word
count of longest common words, 3) edit distance,
and 4) number of common words. We compute the
four features for each pair of component sentences
and there are (g) such pairs in total. For each pair
of sentences (s;, s;), we count the number of times
m; ; that these pairs are beyond a non-redundancy
penalty threshold. The penalty threshold for each
feature are: <80% string length of the shorter sen-
tence, <80% word count of the shorter sentence,
>60% string length of the longer sentence, and
<80% word count of the shorter sentence, respec-
tively. Finally, we get y, = —0.1 x>, .m; ;.
Note that the non-redundancy penalty threshold
and penalty weight are learned empirically from a
held-out validation set. We discuss the effective-
ness of each feature in detail in Appendix B.1.

Focus: Discourse focus has been widely studied
and many phenomena show that a focused output
should have related semantics between adjacent
sentences (Walker, 1998; Knott et al., 2001; Pitler
etal., 2010). We compute the focus score y ¢ by cal-
culating semantic relatedness for each pair of adja-
cent sentences (s;, si+1). Specifically, we calculate
the Word Mover Similarity wms(s;, $;11) (Kusner
et al., 2015) for the sentence pair (s;, s;+1). If the
similarity score is less than the similarity threshold
0.05, we will impose a penalty score -0.1 on the
focus score y¢. A focused output should expect
yr =0

Structure and coherence: A well-structured and
coherent output should contain well-organized sen-
tences, where the sentence order is natural and easy-
to-follow. We compute the inter-sentence coher-
ence score Y. by a self-supervised loss that focuses
on modeling inter-sentence coherence, namely
Sentence-Order Prediction (SOP) loss. The SOP
loss, proposed by Lan et al. (2019), has been
shown to be more effective than the Next Sen-
tence Prediction (NSP) loss in the original BERT
(Devlin et al., 2019). We formulate the SOP loss
calculation as follows. First, for a system out-
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put .S, we extract all possible consecutive pairs
of segments (i.e., ([s1, ..., Si|, [Si+1, -+, Sn]), Where
i €[1,2,...,n — 1]). Then, we take as positive ex-
amples two consecutive segments, and as negative
examples the same two consecutive segments but
with their order swapped. Finally, the SOP loss
is calculated as the average of the logistic loss for
all segments,” and the coherence score y,. is the
additive inverse number of the SOP loss.

Final score: The final linguistic quality score Yg
is a linear combination of the above four scores:
Ys = yg+yr+ys+ye. Note that the final score Yg
is on a scale of 0 to 1, and all the hyper-parameters
are learned to maximize the Spearman’s correlation
with human judgments for the held-out validation
set.

4 Empirical Evaluation

In this section, we evaluate the quality of differ-
ent metrics on four NLG tasks: 1) abstractive text
summarization, 2) dialogue system, 3) text simplifi-
cation and 4) text compression.

Evaluating the metrics: We assess the perfor-
mance of an evaluation metric by analyzing how
well it correlates with human judgments. We, fol-
lowing existing literature, report Spearman’s cor-
relation p, Kendall’s correlation 7, and Pearson’s
correlation r. In addition, to tackle the correla-
tion non-independence issue (two dependent cor-
relations sharing one variable) (Graham and Bald-
win, 2014), we report William’s significance test
(Williams, 1959), which can reveal whether one
metric significantly outperforms the other.
Correlation type: Existing automatic metrics tend
to correlate poorly with human judgments at the
instance-level, although several metrics have been
found to have high system-level correlations (Cha-
ganty et al., 2018; Novikova et al., 2017; Liu et al.,
2016). Instance-level correlation is critical in the
sense that error analysis can be done more construc-
tively and effectively. In our paper, we primarily
analyze the instance-level correlations and briefly
discuss the system-level correlations.

Baselines: We compare GRUEN with the follow-
ing baselines:

e BLEU-best (Papineni et al., 2002) (best of
BLEU-N. It refers to the version that achieves
best correlations and is different across datasets.)
"We select as the model architecture the pre-trained

ALBERT-base model from https://github.com/
google—research/ALBERT.
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ROUGE-best (Lin, 2004) (best of ROUGE-N,
ROUGE-L, ROUGE-W)

METEOR (Lavie and Denkowski, 2009)
Translation Error Rate (TER) (Snover et al.,
2006)

VecSim (Pagliardini et al., 2018)

WMD-best (best of Word Mover Distance (Kus-

ner et al., 2015), Sentence Mover Distance

(Clark et al., 2019), Sentence+Word Mover Dis-

tance (Clark et al., 2019))

e MoverScore (Zhao et al., 2019)

o SUM-QE (Xenouleas et al., 2019) (we use the
“BERT-FT-M-1" model trained on the DUC-2006
(Dang, 2006) and DUC-2007 (Over et al., 2007)
datasets)

e SARI (Xu et al., 2016) (compared in the text

simplification task only)

Note that we do not include Pitler et al. (2010)
and Kate et al. (2010), since their metrics rely only
on shallow syntactic linguistic features and should
probably have no better results than SUM-QE (Xe-
nouleas et al., 2019). Besides, their implementa-
tions are not publicly available. For the complete
results of BLEU, ROUGE and WMD, please refer
to Table 12-15 in Appendix.

4.1 Abstractive Text Summarization

Dataset: We evaluate GRUEN for Text Sum-
marization using two benchmark datasets: the
CNN/Daily Mail dataset (Hermann et al., 2015;
Nallapati et al., 2016) and the TAC-2011 dataset®.

The CNN/Daily Mail dataset contains online
news articles paired with multi-sentence summaries
(3.75 sentences or 56 tokens on average). We ob-
tain the human annotated linguistic quality scores
from Chaganty et al. (2018) and use the 2,086 sys-
tem outputs from 4 neural models. Each system out-
put has human judgments on a scale from 1-3 for:
Grammar, Non-redundancy and Overall linguistic
quality of the summary using the guideline from
the DUC summarization challenge (Dang, 2006).
In addition, it measures the number of Post-edits
to improve the summary quality. For all human
judgments except Post-edits, higher scores indicate
better quality.

The TAC-2011 dataset, from the Text Analysis
Conference (TAC), contains 4488 data instances
(4.43 sentences or 94 tokens on average). It has 88

$http://tac.nist.gov/

document sets and each document set includes 4 hu-
man reference summaries and 51 summarizers. We
report correlation results on the Readability score,
which measures the linguistic quality according to
the guideline in Dang (2006).

Results: Instance-level correlation scores are sum-
marized in Table 2. As expected, all the baseline
approaches except SUM-QE perform poorly be-
cause they do not aim to measure linguistic quality
explicitly. We note that most of the baselines are
highly unstable (and not robust) across the differ-
ent datasets. For instance, BLEU performs rela-
tively well on TAC-2011 but poor on CNN/Daily
Mail, while WMD performs relatively well on
CNN/Daily Mail but poor on TAC-2011. GRUEN
outperforms SUM-QE on all aspects except the
Grammar of CNN/Daily Mail, where they have
comparable performance. We performed a set of
William’s tests for the significance of the differ-
ences in performance between GRUEN and SUM-
QE for each linguistic score and each correlation
type. We found that the differences were signifi-
cant (p < 0.01) in all cases expect the Grammar of
CNN/Daily Mail, as shown in Table 8 in Appendix.

4.2 Dialogue System

Dataset: We use three task-oriented dialogue sys-
tem datasets: BAGEL (Mairesse et al., 2010),
SFHOTEL (Wen et al., 2015) and SFREST (Wen
et al., 2015), which contains 404, 875 and 1181
instances respectively. Each system output receives
Naturalness and Quality scores (Novikova et al.,
2017). Naturalness measures how likely a system
utterance is generated by native speakers. Qual-
ity measures how well a system utterance captures
fluency and grammar.

Results (Table 3): GRUEN outperforms all other
metrics by a significant margin. Interestingly, no
metric except GRUEN produces even a moderate
correlation with human judgments, regardless of
dataset or aspect of human judgments. The finding
agrees with the observations in Wen et al. (2015);
Novikova et al. (2017); Zhao et al. (2019), where
Novikova et al. (2017) attributes the poor correla-
tion to the unbalanced label distribution. Moreover,
we analyze the results further in Appendix A.3 in
an attempt to interpret them.

4.3 Text Simplification

Dataset: We use a benchmark text simplification
dataset with 350 data instances, where each in-
stance has one system output and eight human ref-
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CNN/Daily Mail ‘ TAC-2011
Overall | Grammar | Non-redun | Post-edits | Readability

p T op Tl e T op T | op r

BLEU-best 0.17 0.18 ‘ 0.11  0.12 ‘ 0.17 0.20 ‘ -0.21  -0.29 ‘ 0.26 0.38
ROUGE-best 0.17 0.19 ‘ 0.11 0.13 ‘ 020 023 | -0.24 -0.32 ‘ 0.25 0.36
METEOR 0.17 0.18 ‘ 0.10 0.12 ‘ 020 022 | -025 -0.28 ‘ 0.24 0.32
TER -0.04 -0.03 ‘ 0.03 0.02 ‘ -0.07  -0.08 ‘ 0.08 0.08 ‘ 0.21 0.34
VecSim 0.6 0.9 | 009 0.2 | 0.18 022 | -024 -034 | 0.16 033
WMD-best 026 024 ‘ 0.20 0.21 ‘ 026 0.23 ‘ -0.29  -0.26 ‘ 0.15 0.25
MoverScore 0.24 0.26 ‘ 0.15 0.17 ‘ 0.28 032 | -0.32 -0.40 ‘ 0.29 040
SUM-QE 0.46 048 ‘ 041 041 ‘ 0.45 0.44 ‘ -0.51 -0.43 ‘ 0.40 041
GRUEN 052 054 ‘ 0.43 040 ‘ 052 0.58 | -0.60 -0.58 ‘ 0.40 045

Table 2: Instance-level Spearman’s p and Pearson’s 7 correlations on the CNN/Daily Mail and TAC-2011 datasets.

BAGEL | SFHOTEL | SFREST

Naturalness | Quality | Naturalness | Quality | Naturalness |  Quality

P Tl op Tl e T op T op ro | op r
BLEU-best 0.03 0.04 ‘ 0.02 0.05 ‘ 0.00 0.07 ‘ -0.10  -0.02 ‘ 0.03 0.03 ‘ -0.03  -0.02
ROUGE-best 0.11 0.13 ‘ 0.10 0.12 ‘ -0.02 0.02 | -0.12 -0.07 ‘ 0.02 0.03 ‘ -0.06 -0.04
METEOR 0.02 0.03 ‘ 0.05 0.05 ‘ -0.04  0.02 ‘ -0.14  -0.07 ‘ 0.03 0.04 ‘ -0.01  0.00
TER 0.11  0.15 ‘ 0.11 0.15 ‘ -0.01  -0.02 ‘ -0.05 -0.03 ‘ 0.01 -0.01 ‘ -0.06  -0.08
VecSim 0.03  0.05 ‘ 0.05 0.07 ‘ -0.03 0.04 | -0.15 -0.06 ‘ 0.02 0.02 ‘ -0.05 -0.05
WMD-best 0.03 0.05 ‘ 0.05 0.08 ‘ -0.02  0.00 ‘ -0.12  -0.07 ‘ 0.03 0.05 ‘ -0.05 0.00
MoverScore 0.07 0.10 ‘ 0.06 0.10 ‘ -0.03 0.02 | -0.12 -0.06 ‘ 0.02 0.02 ‘ -0.04 -0.02
SumQE 0.14  0.17 ‘ 0.13  0.16 ‘ 0.23 0.30 ‘ 0.16 0.24 ‘ 0.09 0.11 ‘ 0.11 0.13
GRUEN 0.22 032 ‘ 0.19 0.26 ‘ 044 048 ‘ 044 0.51 ‘ 0.24 0.25 ‘ 0.27 0.27

Table 3: Instance-level Spearman’s p and Pearson’s
datasets.

P T r
BLEU-best 0.55 040 0.58
ROUGE-best 0.61 045 0.64
METEOR 0.63 047 0.67
TER 0.55 040 0.56
VecSim 047 034 053
WMD-best  0.43 0.31 0.33
MoverScore 0.62 046 0.65
SumQE 0.62 045 0.64
SARI 035 025 040
GRUEN 0.65 049 0.65

Table 4: Instance-level Spearman’s p, Kendall’s 7 and
Pearson’s r correlations with Grammar on the text sim-
plification dataset (Xu et al., 2016).

r correlations on the BAGEL, SFHOTEL and SFREST

erences (Xu et al., 2016). Each system output in-
stance receives a human-assigned Grammar score.

Results: Table 4 presents the results on the dataset
of Xu et al. (2016). We note that both GRUEN
and METEOR have the best results. The rest of the
baseline metrics have satisfactory results too, such
as MoverScore and ROUGE. This is unlike the
results from the other datasets where most of the
baselines correlate poorly with human judgements.
A likely explanation is that each data instance from
Xu et al. (2016) has eight human references. Hav-
ing multiple human references capture more allow-
able variations in language quality and therefore,
provide a more comprehensive guideline than a
single reference. In Section 5.3, we further ana-
lyze this phenomenon and discuss how the number
of human references affects the results for each
evaluation metric.
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P T T
BLEU-best 021 0.15 0.21
ROUGE-best 0.41 029 041
METEOR 033 023 032
TER 032 023 0.33
VecSim 022 0.16 0.23
WMD-best 0.23 0.17 0.25
MoverScore 034 0.24 0.34
SumQE 038 0.23 043
GRUEN 0.50 037 0.52

Table 5: Instance-level Spearman’s p, Kendall’s 7 and
Pearson’s r correlations with Grammar on the text com-
pression dataset (Toutanova et al., 2016).

70 70
G mGU GRU ®GRUEN
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| | | ‘ | ‘ 30
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Overall ~ Grammar Non-Redun Post-Edits

G ®GU

Overall ~ Grammar Non-Redun Post-Edits

GRU ®GRUEN

Spearman
g
Pearson

8

Figure 1: Ablation study on the CNN/Daily Mail
Dataset. For better visualization, we present the abso-
lute value of Post-Edits.

4.4 Text Compression

Dataset: We use the text compression dataset col-
lected in Toutanova et al. (2016). It has 2955 in-
stances generated by four machine learning sys-
tems and each system output instance receives a
human-assigned Grammar score.

Results (Table 5): We notice that GRUEN outper-
forms all the other metrics by a significant margin.

5 Discussion

The discussion is primarily conducted for the text
summarization task considering that GRUEN can
measure multiple dimensions in Table 1 of the gen-
erated text.

5.1 Ablation study

The results of the ablation analysis (Figure 1)
show the effectiveness of G (the Grammaticality
module alone), GU (the Grammaticality+focUs
modules), GRU (the Grammaticality+non-
Redundancy+focUs modules) on the summariza-
tion output using the CNN/Daily Mail dataset. We
make the following three observations: 1) The
Grammar score is largely accounted for by our
grammaticality module, and only marginally by the
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Figure 2: Instance-level distribution of scores for the
CNN/Daily Mail dataset. Left shows the Overall score
distribution on bad (-1), moderate (0) and good (1) out-
puts. Right shows the scattered Post-edits score dis-
tribution, which is negatively correlated with the out-
put quality. The dotted line indicates a regression line,
which implies the Pearson’s correlation 7.
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Figure 3: Spearman’s Correlation and Kendall’s Corre-
lation v.s. Number of human references.

others; 2) The focus and non-redundancy module
of GRUEN more directly target the Post-edits and
Non-redundancy aspects of linguistic quality; 3)
The structure and coherence module does not have
significant improvement over the linguistic quality
dimensions. One possible reason is that structure
and coherence is a high-level feature. It is difficult
to be captured by not only the models but also the
human annotators. Please refer to Table 6 for an
example of a system output with poor structure
and coherence.

5.2 Alignment with Rating Scale

We compared the scores of ROUGE-2, Mover-
Score, SUM-QE and GRUEN with those of human
judgments on outputs of different quality as shown
in Figure 2. These are in-line with the findings
in Chaganty et al. (2018); Novikova et al. (2017);
Zhao et al. (2019) that existing automatic metrics
are well correlated with human ratings at the lower
end of the rating scale than those in the middle or
high end. In contrast, we observe that GRUEN is
particularly good at distinguishing high-end cases,
i.e., system outputs which are rated as good by the
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System output examples

Remarks

(a) Grammaticality: Mr Erik Meldik said the.

Incomplete sentence, and hence has low sentence
probability and bad grammar score, captured by
the BERT language model.

(b) Grammaticality: Orellana shown red card for throwing grass at
Sergio Busquets.

Bad grammar captured by the learned knowledge
on the CoLA dataset.

(c) Non-redundancy: The brutal murder of Farkhunda, a young woman

in Afghanistan, was burnt and callously chucked into a river in Kabul.

The brutal murder of Farkhunda, a young woman in Afghanistan
became pallbearers.

Unnecessary repetition (underlined), which can be
avoided by using a pronoun (i.e., she). The large
overlap between the two sentences is captured by
the inter-sentence syntactic features.

(d) Focus: The FDA’s Nonprescription Drugs Advisory Committee
will meet Oct. Infant cough-and-cold products were approved decades
ago without adequate testing in children because experts assumed that
children were simply small adults, and that drugs approved for adults
must also work in children. Ian Paul, an assistant professor of pediatrics
at Penn State College of Medicine who has studied the medicines.

Component sentences are scattered, of different
themes or even irrelevant to each other. The sen-
tence embedding similarity of each pair of adja-
cent sentences is low and thus, results in low Focus
score.

(e) Structure and Coherence: Firefighters worked with police and
ambulance staff to free the boy, whose leg was trapped for more than
half an hour down the hole. It is believed the rubber drain cover had

been kicked out of position and within hours, the accident occurred.

A 12-year-old schoolboy needed to be rescued after falling down an

The output is only a heap of related information,
where the component sentences are in a unorga-
nized, wrong or incomprehensible order. Its sen-
tence structure and readability can be much im-
proved if the three component sentences are in the

eight-foot drain in Peterborough.

order of 3,1,2.

Table 6: Case study: linguistic quality analysis

p T r
BLEU-best 051 0.38 0.61
ROUGE-best 0.52 0.38 0.71
METEOR 045 030 0.73
TER 0.64 046 0.71
VecSim 0.38 027 0.62
WMD-best 031 0.23 0.60
MoverScore 042 030 0.66
SUM-QE 0.76  0.63 0.69
GRUEN 0.87 0.69 0.85

Table 7: System-level Spearman’s p, Kendall’s 7 and
Pearson’s r correlations with Readability on the TAC-
2011 dataset.

human judges.

5.3 Impact of Number of References

Figure 3 shows how the Spearman’s correlation of
each metric varies with different numbers of human
references in the text simplification dataset. It is
clear that existing reference-based metrics show
better performance with more human references.
One possible reason is that the system outputs are
compared with more allowable grammatical and
semantic variations. These allowable variations
could potentially make the reference-based metrics
better at distinguishing high-end cases, alleviate
the shortcoming in Section 5.2, and thus allow the
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metrics to perform well. However, in most cases, it
is expensive to collect multiple human references
for each instance.

5.4 Case Study

Table 6 presents a case study on examples with
poor Grammaticality, Non-redundancy, Focus, and
Structure and Coherence. In Table 10-11 in the
Appendix, we further analyze how non-redundancy
is captured by each of the inter-sentence syntactic
features, and also present a comparative study for
each linguistic dimension.

5.5 System-level Correlation

Our results have shown that GRUEN improves
the instance-level correlation performance from
poor to moderate. At the system-level too, we
observe significant improvements in correlation.
Table 7 shows the system-level linguistic quality
correlation scores for Readability on the TAC-2011
dataset, which consists of 51 systems (i.e., summa-
rizers). At the system level, most baseline metrics
have moderate correlations, which aligns with the
findings in Chaganty et al. (2018), while GRUEN
achieves a high correlation. Note that we do not
further study the system-level correlations on other
datasets, since they have no more than four systems
and thus the correlations are not meaningful to be
compared with.



5.6 Limitations and Future Work

GRUEN evaluates non-redundancy by looking for
lexical overlap across sentences. However, they
still remain unexamined for semantically relevant
components that are in different surface forms. Be-
sides, it does not handle intra-sentence redundancy,
such as “In 2012, Spain won the European Champi-
onships for a second time in 2012.”. Another chal-
lenging problem is to evaluate the referential clarity
as proposed in Dang (2006), which is particularly
important for long sentences and multi-sentence
outputs. Future work should aim for a more com-
prehensive evaluation of redundancy and tackle the
referential clarity challenge.

6 Conclusion

We proposed GRUEN to evaluate Grammaticality,
non-Redundancy, focUs, structure and coherENce
of generated text. Without requiring human ref-
erences, GRUEN achieves the new state-of-the-
art results on seven datasets over four NLG tasks.
Besides, as an unsupervised metric, GRUEN is
deterministic, free from obtaining costly human
judgments, and adaptable to various NLG tasks.
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p T r
Overall Hesksk deksk koksk
CNN/ Grammar * — _
Daily Mail Non-Redun sk sk k%
Post-edits ok wkEk kEk
TAC-2011 Readability * sk sk
sksk
BAGEL Naturalness 0.01 0.07 *
Quality 0.06 0.17 *
skskosk skskosk sksks
SFHOTEL Naturalness *
Quality sk dokk sk
SFREST Naturalness
Quality etk kst ek
Xu et al. (2016) Grammar 033 046 —
Toutanovaetal.  Grammar ddck kk kkok

(2016)

Table 8: William Significance Test on GRUEN against
the best baselines for each correlation type and each
dataset. *, ** *%¥* indicate the significance level of
<0.01, <0.001 and <0.0001 respectively. — indicates
GRUEN does not outperform the best baseline.

A Quantitative Analysis

A.1 William’s Significance Test

In Table 8, we perform William’s significance tests
on GRUEN against the best baselines for each
linguistic score and each correlation measurement
(e.g., SUM-QE for p on the Overall score of the
CNN/Daily Mail dataset, METEOR for 7 on the
Grammar score of the dataset in Xu et al. (2016)).
We found that the differences are significant (p <
0.0001) in 24 out of 39 cases.

A.2 Performance on Reliable Instances

In the human annotation process, each instance
receives a score that is the aggregate of multiple
people’s ratings. Given the subjective nature of the
task of annotating for linguistic quality, there are
some instances where annotators disagree. To ana-
lyze how we perform on reliably coded instances,
we show in Table 9 the correlation scores on the
instances where all annotators agreed perfectly on
the Overall score for the CNN/Daily Mail dataset
(N = 1323). We observe that GRUEN consis-
tently outperforms the baselines on the reliable
data instances. Importantly, GRUEN and SUM-
QE are better correlated with human judgements
on the reliable data instances than on all the data
instances.



Overall | Grammar | Non-redun | Post-edits

p T ro| op T L T ro| op T r

BLEU-best 0.17 0.14 0.20 ‘ 0.12 0.09 0.15 ‘ 0.20 0.15 023 | -023 -0.16 -0.33
ROUGE-best 0.17 0.14 0.19 ‘ 0.13  0.09 0.15 ‘ 020 0.15 0.23 ‘ -0.26  -0.18 -0.34
METEOR 0.17 0.13 0.17 ‘ 0.11 0.09 0.13 ‘ 020 0.15 021 | -0.26 -0.18 -0.31
TER -0.01  -0.00 0.01 ‘ 0.03 0.02 0.04 ‘ -0.05 -0.04 -0.04 ‘ 0.06 0.04 0.07
VecSim 0.17 0.13 0.21 ‘ 0.11 0.08 0.15 ‘ 020 0.15 0.26 ‘ -0.27  -0.18 -0.40
WMD-best 0.27 0.21 0.26 ‘ 0.24 0.18 0.25 ‘ 0.27 0.20 0.25 | -0.31 -0.21 -0.29
MoverScore 023 018 0.25 ‘ 0.17 0.13 0.20 ‘ 0.28 0.21 0.32 ‘ -0.33  -0.23 -0.41
SUM-QE 0.53 043 054 ‘ 049 038 049 ‘ 0.47 0.36 046 | -0.54 -038 -045
GRUEN 058 047 0.58 ‘ 0.50 037 048 ‘ 0.62 048 0.66 | -0.68 -0.50 -0.64

Table 9: Instance-level Spearman’s p, Kendall’s 7 and Pearson’s r correlations on the reliable data instances of the

CNN/Daily Mail dataset.

Example Outputs Feature
(1): The monkey took a bunch of bananas on the desk. It took a bunch of bananas on the desk. ABCD
(2): The monkey took a bunch of bananas on the desk. The monkey took a bunch of bananas on the =~ ABD
desk, and they are the fruits reserved for the special guests invited tonight.

(3): The monkey took a bunch of bananas on the desk. The monkey took a large bunch of bananas on CD

the red desk.

(4): The monkey took a bunch of bananas on the desk. It took bunches of banana on the desks. C

Table 10: Example with poor non-redundancy. The features that contribute to the non-redundancy penalty are

labeled on the right.

A.3 Analysis on the Dialogue System
Datasets

Table 3 has shown an extremely poor correlation
with human ratings for the baseline metrics on
the BAGEL, SFHOTEL and SFREST datasets.
Novikova et al. (2017) hypothesizes the reason to
be the unbalanced label distribution. It turns out
that the majority of system outputs are good for
Naturalness with 64% and Quality (58%), whereas
bad examples are only 7% in total.” Our discussion
in Section 5.2 further explains the reason. Existing
metrics are bad at assigning high scores to good
outputs and thus, have a very poor correlation in
such datasets with mostly good examples. In con-
trast, GRUEN is capable of assigning high scores
to good outputs and thus, achieves decent correla-
tion results.

While our correlation results may appear to be
slightly different from Table 3 in Novikova et al.
(2017), they are in fact the same. The only differ-
ence is the result presentation format. Novikova
et al. (2017) presents only the best correlation re-

°In a 6-point scale, bad comprises low ratings (<2), while
good comprises high ratings (>5).

sults for each dataset (i.e., BAGEL, SFHOTEL
and SFREST) and each NLG system (i.e., TGEN,
LOLS and RNNLG), while we present the aver-
age correlation score for each dataset. Therefore,
in Table 3 of Novikova et al. (2017), a correla-
tion metric that performs well on one NLG system
does not mean it performs equally well on another
NLG system. As an example of measuring Infor-
mativeness, BLEU-1 performs well on the TGEN
system for the BAGEL dataset, while it performs
poorly on the LOLS system for the BAGEL dataset.
Therefore, BLEU-1 has only a mediocre correla-
tion score over informativeness for the BAGEL
dataset, as presented in our result. The analysis in
Novikova et al. (2017) is more focused in that it an-
alyzes different metrics in a more restricted manner,
whereas our analysis of metrics is more general in
that we compare correlation scores regardless of
which NLG system the output was generated from.

B Qualitative Analysis

B.1 Analysis on Non-redundancy

To evaluate the non-redundancy score y, of a sys-
tem output, we capture repeated components of a
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Example Outputs

Module Scores

(a) Grammaticality: Orellana shown red card for throwing grass at Sergio Busquets.

(b) Grammaticality: Orellana was shown a red card for throwing grass at Sergio Busquets.

(c) Non-redundancy: The brutal murder of Farkhunda, a young woman in Afghanistan, whose body
was burnt and callously chucked into a river in Kabul. The brutal murder of Farkhunda, a young
woman in Afghanistan became pallbearers, hoisting the victim’s coffin on their shoulders draped with
headscarves.

(d) Non-redundancy: The brutal murder of Farkhunda, a young woman in Afghanistan, whose body
was burnt and callously chucked into a river in Kabul. She became pallbearers, hoisting the victim’s
coffin on their shoulders draped with headscarves.

(e) Focus: The FDA’s Nonprescription Drugs Advisory Committee will meet Oct. Infant cough-and-
cold products were approved decades ago without adequate testing in children because experts assumed
that children were simply small adults, and that drugs approved for adults must also work in children.
Tan M. Paul, an assistant professor of pediatrics at Penn State College of Medicine who has studied the
medicines.

(f) Focus: On March 1, 2007, the Food/Drug Administration (FDA) started a broad safety review of
children’s cough/cold remedies. They are particularly concerned about use of these drugs by infants.
By September 28th, the 356-page FDA review urged an outright ban on all such medicines for children
under six. Dr. Charles Ganley, a top FDA official said “We have no data on these agents of what’s a
safe and effective dose in Children.” The review also stated that between 1969 and 2006, 123 children
died from taking decongestants and antihistamines. On October 11th, all such infant products were
pulled from the markets.

(g) Coherence and Structure: Firefighters worked with police and ambulance staff to free the boy,
whose leg was trapped for more than half an hour down the hole. It is believed the rubber drain cover
had been kicked out of position and within hours, the accident occurred. A 12-year-old schoolboy
needed to be rescued after falling down an eight-foot drain in Peterborough.

(h) Coherence and Structure: A 12-year-old schoolboy needed to be rescued after falling down an
eight-foot drain in Peterborough. Firefighters worked with police and ambulance staff to free the boy,
whose leg was trapped for more than half an hour down the hole. It is believed the rubber drain cover
had been kicked out of position and within hours, the accident occurred.

(i) Overall: The monkey took a bottle of a water bottle in a bid to cool it down with bottle in hand.
The monkey is the bottle to its hands before attempting to quench its thirst. It is the the bottle of the
bottle in its mouth and a bottle. It’s the bottle. A bottle in the water bottle.

(j) Overall: The footage was captured on a warm day in Bali, Indonesia. Tour guide cools monkey
down by spraying it with water. Monkey then picks up bottle and casually unscrews the lid. Primate
has drink and remarkably spills very little liquid.

yg = 0.2
yg = 0.7
yr = —0.4
yr = 0.0
yr = —0.1
yr = 0.0
ye = —0.1
Yye = 0.0
Ys = 0.0
Ys =0.8

Table 11: A comparative study on good and bad example outputs for each linguistic aspect.
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pair of sentences by four empirical inter-sentence
syntactic features: (A) length of longest common
substring, (B) length of longest common words, (C)
edit distance, and (D) number of common words.
Features (A) and (B) focus on continuous word
overlap of a pair of sentences. Intuitively, when
most characters of a sentence already appears in the
other sentence, the system output should probably
have a poor non-redundancy score. However, fea-
tures (A) and (B) fail to make a quality evaluation
when the repeated components are of a inflected
form (e.g., stemming, lemmatization) or not con-
tinuous. To account for the above limitation, we
introduce features (C) and (D) that measures the
edit distance and the number of common words
respectively.

To gain more intuition, we present a few exam-
ples of poor non-redundancy in Table 10. The fea-
tures that contribute to the non-redundancy penalty
are labeled on the right. Case (1) has two almost
identical sentences and therefore, captured by all
four features. However, when the word lengths
of the two sentences differ a lot, feature (C) is
no longer effective as shown in case (2). In case
(3) where the word overlap is not continuous (i.e.,
“The monkey took a” and “bunch of bananas on
the”), the non-redundancy can only be detected
by features (C) and (D). In case (4), the compos-
ing words are of an inflected form and thus, can
not be captured by exact word matching features
(i.e., features (A), (B), (D)). As such, we have the
four features to complement each other and aim to
capture non-redundancy well.

B.2 Comparative Study

Table 11 presents a comparative study on good
and bad examples for each linguistic quality aspect,
together with their corresponding module scores.
Besides, we compare two examples with good and
bad overall linguistic quality scores.

C Complete Results

We present the complete results of BLEU, ROUGE
and WMD for all tasks in Table 12-15.
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p T r

BLEU-1 038 028 041

BLEU-2 047 033 049
BLEU-3 052 037 0.55
BLEU-4 0.55 040 0.58
ROUGE-1 051 037 0.56
ROUGE-2 054 039 0.58
ROUGE-3 052 038 0.55
ROUGE-4 050 036 0.51
ROUGE-L 056 040 0.59
ROUGE-W 0.61 045 0.64

WMD 043 031 0.33
SMD 030 021 0.30
S+WMD 040 029 034

Table 12: Instance-level Spearman’s p, Kendall’s 7 and
Pearson’s r correlations with Grammar on the text sim-
plification dataset (Xu et al., 2016).

p T T
BLEU-1 0.07 0.05 0.17
BLEU-2 0.12 0.08 0.18

BLEU-3 0.17 0.12 0.19
BLEU-4 021 0.15 021

ROUGE-1 021 0.15 0.24
ROUGE-2 033 024 0.34
ROUGE-3 035 026 0.37
ROUGE-4 035 025 0.36
ROUGE-L 039 0.28 0.37
ROUGE-W 041 029 041
WMD 0.18 0.13 0.16
SMD 023 0.17 0.25
S+WMD 020 0.14 0.21

Table 13: Instance-level Spearman’s p, Kendall’s 7 and
Pearson’s r correlations with Grammar on the text com-
pression dataset (Toutanova et al., 2016).



CNN/Daily Mail | TAC-2011

Overall | Grammar | Non-redun | Post-edits | Readability

p ro|op ro|op | op T op r

BLEU-1 007 008 | 0.05 005|006 006 | -008 -0.10 | 0.17 034
BLEU-2 0.3 0.4 ] 009 009 | 013 0.14 ] -0.16 -0.20 | 0.21 035
BLEU-3 0.6 0.8 | 0.10 0.2 ] 017 0.19 | 021 -0.27 | 0.24 036
BLEU-4 0.7 0.8 | 0.11 0.2 | 0.17 020 | -021 -0.29 | 026 0.38
ROUGE-1  0.17 019 | 0.11 013 | 020 023 | -024 -0.32 | 025 036
ROUGE-2  0.14 0.3 | 0.09 0.10 | 0.15 0.15 | -0.18 -0.21 | 025 0.26
ROUGE-3  0.12 0.0 | 0.08 0.09 | 0.13 0.11 | -0.16 -0.16 | 0.24 0.19
ROUGE-4  0.10 0.08 | 0.08 0.08 | 0.11 0.09 | -0.14 -0.13 | 0.20 0.15
ROUGE-L  0.12 0.3 [ 010 0.2 | 0.11 0.2 | -0.17 -0.19 | 0.25 0.36
ROUGE-W 0.14 0.4 | 0.10 012 | 0.13 0.14 | -0.18 -0.19 | 026 0.34
WMD 0.18 0.1 [ 0.12 010 | 019 0.1 | 023 -0.15 | 0.19 0.17
SMD 026 024 | 020 021 | 026 023 |-029 -026 | 0.15 0.25
S+WMD 021 0.7 | 0.15 0.5 | 022 0.7 | 026 -021 | 0.19 0.24

Table 14: Instance-level Spearman’s p and Pearson’s r correlations on the CNN/Daily Mail and TAC-2011 datasets.

SMD 0.00 004 | 002 0.07
S+WMD 0.02 0.05 | 004 008

0.00 001 | -0.09 -0.06 | -0.01 0.03 | -0.07 -0.01
-0.11  -0.07 | 0.02 0.05

BAGEL ‘ SFHOTEL ‘ SFREST
Naturalness | Quality | Naturalness | Quality | Naturalness |  Quality
p T op T op Tl op T op ro|op r
BLEU-1 -0.02  -0.02 ‘ -0.02  -0.01 ‘ 0.03 0.11 | -0.04 0.04 ‘ 0.03 0.03 | -0.03 -0.02
BLEU-2 0.00  0.00 ‘ -0.01  0.01 ‘ 0.01  0.09 ‘ -0.08  0.00 ‘ 0.03 0.02 ‘ -0.03  -0.03
BLEU-3 0.01 0.03 ‘ 0.01 0.03 ‘ 0.00 0.08 ‘ -0.10  -0.01 ‘ 0.03 0.02 ‘ -0.03  -0.03
BLEU-4 0.03 0.04 ‘ 0.02 0.05 ‘ 0.00 0.07 | -0.10 -0.02 ‘ 0.03 0.03 | -0.03 -0.02
ROUGE-1 0.10 0.12 ‘ 0.10 0.12 ‘ -0.01 0.06 ‘ -0.11  -0.03 ‘ 0.02 0.01 ‘ -0.05 -0.04
ROUGE-2 0.11 0.13 ‘ 0.10 0.12 ‘ -0.02 0.02 | -0.12 -0.07 ‘ 0.02 0.03 | -0.06 -0.04
ROUGE-3 0.08 0.10 ‘ 0.07 0.09 ‘ -0.03 0.01 ‘ -0.12  -0.06 ‘ 0.01 0.04 ‘ -0.06 -0.03
ROUGE-4 0.04  0.09 ‘ 0.04  0.08 ‘ -0.04 0.00 | -0.12 -0.06 ‘ 0.02 0.05 | -0.04 -0.01
ROUGE-L  0.08 0.10 ‘ 0.09 0.11 ‘ -0.01 0.07 | -0.11 -0.03 ‘ 0.01 0.01 | -0.06 -0.04
ROUGE-W  0.08 0.10 ‘ 0.08 0.10 ‘ -0.02  0.04 ‘ -0.12  -0.05 ‘ 0.05 0.05 ‘ -0.03  -0.02
WMD 0.03 0.05 ‘ 0.05 0.08 ‘ -0.02 0.00 | -0.12 -0.07 ‘ 0.03 0.05 | -0.05 0.00
| |
|

-0.01  0.00 -0.06 -0.01

Table 15: Instance-level Spearman’s p and Pearson’s r correlations on the BAGEL, SFHOTEL and SFREST
datasets.

108



