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Abstract

Modeling the parser state is key to good perfor-
mance in transition-based parsing. Recurrent
Neural Networks considerably improved the
performance of transition-based systems by
modelling the global state, e.g. stack-LSTM
parsers, or local state modeling of contextual-
ized features, e.g. Bi-LSTM parsers. Given
the success of Transformer architectures in re-
cent parsing systems, this work explores mod-
ifications of the sequence-to-sequence Trans-
former architecture to model either global or
local parser states in transition-based parsing.
We show that modifications of the cross atten-
tion mechanism of the Transformer consider-
ably strengthen performance both on depen-
dency and Abstract Meaning Representation
(AMR) parsing tasks, particularly for smaller
models or limited training data.

1 Introduction

Transition-based Parsing transforms the task of pre-
dicting a graph from a sentence into predicting an
action sequence of a state machine that produces
the graph (Nivre, 2003, 2004; Kubler et al., 2009;
Henderson et al., 2013). These parsers are attrac-
tive for their linear inference time and interpretabil-
ity, however, their performance hinges on effective
modeling of the parser state at every decision step.

Parser states typically comprise two memories,
a buffer and a stack, from which tokens can be
pushed or popped (Kubler et al., 2009). Tradi-
tionally, parser states were modeled using hand
selected local features pertaining only to the words
on the top of the stack or buffer (Nivre et al.,
2007; Zhang and Nivre, 2011, inter-alia). With the
widespread use of neural networks, global models
of the parser state such as the stack-LSTM (Dyer
et al., 2015) allowed encoding the entire buffer and
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stack. It was later shown that local features of the
stack and buffer extracted from contextual word
representations, such as Bi-LSTMs, could outper-
form global modeling (Kiperwasser and Goldberg,
2016; Dozat and Manning, 2016).

With the rise of the Transformer model (Vaswani
et al., 2017), various approaches have been pro-
posed that leverage this architecture for parsing
(Kondratyuk, 2019; Kulmizev et al., 2019; Mrini
et al., 2019; Ahmad et al., 2019; Cai and Lam,
2020). In this work we revisit the local versus
global paradigms of state modeling in the context
of sequence-to-sequence Transformers applied to
action prediction for transition-based parsing. Sim-
ilarly to previous works for RNN sequence to se-
quence (Liu and Zhang, 2017; Zhang et al., 2017),
we propose a modification of the cross-attention
mechanism of the Transformer to provide global
parser state modeling. We analyze the role of lo-
cal versus global parser state modeling, stack and
buffer modeling, effects model size as well as task
complexity and amount of training data.

Results show that local and global state model-
ing of the parser state yield more than 2 percentage
points absolute improvement over a strong Trans-
former baseline, both for dependency and Abstract
Meaning Representation (AMR) parsing. Gains
are also particularly large for smaller train sets and
smaller model sizes, indicating that parser state
modeling, can compensate for both. Finally, we
improve the AMR transition-based oracle (Balles-
teros and Al-Onaizan, 2017a), yielding best results
for a transition-based system and second overall.

2 Global versus Local Parser State

Given pair of sentence w = w1, w2 · · ·wN and
graph g, transition-based parsers learn an action
sequence a = a1, a2 · · · aT , that applied to a state
machine yields the graph g = M(a,w). Actions
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Figure 1: Encoding of buffer and stack for action sequence a = {SHIFT,SHIFT,REDUCE,SHIFT} and sentence
w = {a, b, c}. The stack-LSTM is at the top, with hidden states representation of buffer (black) and stack (white)
displayed. The stack-Transformer is at the bottom, with masks for cross-attention heads attending buffer (black)
and stack (white) displayed. Circles indicate extra cross-attention positions relative to stack and buffer.

of the state machine generally move words from a
buffer, that initially contains the entire sentence, to
a stack. Components of the graph, such as edges
or nodes, are created by applying transformations
to words in the stack. The correct action sequence
is given by an oracle a = O(w,g), which is gen-
erally rule-based. In principle, one could learn the
sentence to action mapping w→ a as a sequence
to sequence problem

p(a | w) =
T∏
t=1

p(at | a<t,w),

similarly to e.g. Machine Translation. In prac-
tice, this approach does not accurately represent
the parser state and thus shows limited performance.
The parser state at step t is defined implicitly by
(a<t,w). This translates to an explicit state at step
t where the stack contains some tokens about to be
processed, sometimes along with new composed
vector representations, and the buffer contains the
remainder of tokens in the sentence. Buffer and
stack increase (push) or decrease (pop) their size
dynamically with each time step as shown in Fig. 1.

The transition-based formalism relies heavily on
the explicit representation of the state i.e. buffer
and stack configurations. Prior to widespread use
of Neural Networks, local features limited to top of
the stack and buffer already achieved good perfor-
mances (Nivre et al., 2007; Zhang and Nivre, 2011,
inter-alia). The introduction of stack-LSTMs (Dyer
et al., 2015) made possible modeling the global
state of the parser by separately encoding action
history a<t, and the dynamically changing stack
and buffer with LSTMs (Hochreiter and Schmidhu-
ber, 1997). In addition to this, stack-LSTMs used
the transition-based formalism to recursively build
vector representations of sub-graphs, similarly to a
graph neural network.

Another well known LSTM model is the Bi-
LSTM feature parser (Kiperwasser and Goldberg,
2016; Dozat and Manning, 2016). In this case, a
contextual representation of the sentence is first
built with a Bi-LSTM h = BiLSTM(w). At each
time step t the stack configuration determined by
a<t is used to select the elements from h corre-
sponding to words on the top of the stack and buffer.
Although the features utilize local information of
the buffer and stack, the use of a strong contextual
representation proved to be sufficient and this re-
mains one of the most widely used forms of parsing
today.

3 Modeling Parser State in Transformers

3.1 From stack-LSTMs to
stack-Transformers

In transition-based parsers, at a given time step t,
input tokens w may be on the buffer, stack or re-
duced. As displayed in Fig. 1 (top), to encode this
state stack-LSTMs unroll LSTMs over the stack
and buffer following their respective word order,
which can be different from the sentence’s token
order. If an element is added to the buffer or stack,
it is only necessary to unroll one additional LSTM
cell. If an element is removed under a pop opera-
tion (e.g. REDUCE), stack-LSTMs move back a
pointer to reuse previously computed hidden states.
This allows efficient encoding of the dynamically
changing stack and buffer.

Unlike LSTMs, Transformers (Vaswani et al.,
2017) encode sequences through an attention mech-
anism (Bahdanau et al., 2015) as a weighted sum of
tokens plus position embeddings. One can take ad-
vantage of this mechanism to replace LSTMs with
Transformers for stack and buffer encoding. Since
Transformers just sum token representations, under
a pop operation elements can be masked out and
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there is no need for a pointer. Furthermore, since
Transformers use multiple heads one can have sep-
arate modeling of stack and buffer by specializing
two heads of the attention mechanism, see Fig. 1
(bottom), while the other heads remain free.

In practical terms, we modify the cross-attention
mechanism of the Transformer decoder. For ex-
ample, for the head attending the stack, the score
function between action history encoding bt (query)
and hidden representation of word hi (key) is given
by

estack
ti =

btW
Q
(
(hi + pstack

ti )WK
)T

√
d

+mstack
ti ,

where mti is a {−∞, 0} mask, pti are the position
embeddings for elements in the stack, h = f(w)
is the output of the Transformer encoder. The at-
tention would be computed from the score function
as

αti = softmax(et)i

Both mask and positions change for each word and
time-step as the parser state changes, but they im-
ply little computation overhead and can be precom-
puted for training. Henceforth this modification
will be referred to as stack-Transformer.

3.2 Labeled SHIFT Multi-task
It is common practice for transition-based systems
to add an additional Part of Speech (POS) or word
prediction task (Bohnet and Nivre, 2012). This is
achieved by labeling the SHIFT action, that moves
a word from the buffer to the stack, with the word’s
tag. This decorated actions become part of the
action history a<t, which was expected to give
better visibility into stack/buffer content and ex-
ploit Transformer’s attentional encoding of history.
In initial experiments, POS tags produced a small
improvement while word prediction led to perfor-
mance decrease. It was observed, however, that
prediction of only 100− 300 most frequent words,
leaving SHIFT undecorated otherwise, led to large
performance increases. This is thus the method
reported in the experimental setup as alternative
parser state modeling.

4 Experiments and Results

To test the proposed approach, different parsing
tasks were selected. Dependency parsing in the
English-Treebank, is well known and well re-
sourced (40K sentences). The AMR2.0 seman-
tic parsing task is more complex, encompassing

named entity recognition, word sense disambigua-
tion and co-reference among other sub-tasks, also
well resourced (36K sentences). AMR1.0 has
around 10K sentences and can be considered as
AMR with limited train data.

The dependency parsing setup followed Dyer
et al. (2015), in the setting with no POS tags. This
has only SHIFT, LEFT-ARC(label), and RIGHT-
ARC(label) base action with a total of 82 differ-
ent actions. Results were measured in terms of
(Un)labeled Attachment Scores (UAS/LAS).

The AMR setup followed Ballesteros and Al-
Onaizan (2017a), which introduced new actions to
segment text and derive nodes or entity sub-graphs.
In addition, we use the alignments and wikification
from Naseem et al. (2019). Unlike previous works,
we force-aligned the unaligned nodes to neighbour-
ing words and allowed attachment to the leaf nodes
of entity sub-graphs, this increased oracle Smatch
from 93.7 to 98.1 and notably improved model
performance. We therefore provide results for the
Naseem et al. (2019) oracle for comparison. Both
previous works predict a node creation action and
then a node label, or call a lemmatizer if no label is
found. Instead, we directly predicted the label and
added COPY actions to construct node names from
lemmas1 or surface words, resulting in a maximum
of 9K actions. Node label predictions were limited
to those seen during training for the word on the top
of the stack. Results were measured in Smatch (Cai
and Knight, 2013) using the latest version 1.0.42.

Regarding model implementation, all models
were implemented on the fairseq toolkit and trained
with only minor modifications over the MT model
hyper-parameters (Ott et al., 2018). This used cross-
entropy training with learning rate 5e−4, inverse
square root scheduling with min. 1e−9, 4000 warm-
up updates with learning rate 1e−7, and maximum
3584 tokens per batch. Adam parameters 0.9 and
0.98, label smoothing was reduced to 0.013. All
models used 6 layers of encoding and decoding
with size 256 and 4 attention heads, except the
normal Transformers in AMR, which performed
better on a 3/8 layer configuration instead of 6/6.
To study the effect of model size, small versions
of all models using a 2/2 configuration were also
tested.

1We used https://spacy.io/ as lemmatizer
2Note that bug fixes in Smatch seem to yield 0.3 improve-

ments against its 2019 version.
3see https://github.com/pytorch/fairseq/

tree/master/examples/scaling_nmt

https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
https://github.com/pytorch/fairseq/tree/master/examples/scaling_nmt
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Penn-Treebank AMR 1.0 AMR 2.0
Model UAS LAS Smatch Smatch
a) vanilla sequence-to-sequence Transformer 93.9±0.2 92.0±0.3 70.5 ±0.1 77.7±0.1

b) label top 100 SHIFT multi-task 95.2±0.1 93.5±0.1 74.9±0.3 79.0±0.1

c) 1 head attends stack, 1 head attends buffer 95.7±0.1 94.1±0.2 76.3±0.0 79.5±0.2
d) 1 head attends stack, 1 head attends buff. + stack/buff. positions 94.8±0.1 92.7±0.2 70.7±0.2 70.4±2.6

e) 1 head attends entire buffer 95.8±0.1 94.0±0.1 76.2±0.1 79.7±0.0
f) 1 head attends entire stack 95.5±0.1 93.8±0.1 75.9±0.2 79.4±0.2

g) 1 head attends top two words of the buffer 95.7±0.1 93.8±0.1 75.9±0.2 79.4±0.1

h) 1 head attends top two words of the stack 95.4±0.1 93.8±0.1 76.1±0.2 79.4±0.2

+ label top 100 SHIFT multi-task 95.4±0.1 93.8±0.1 76.5±0.1 79.4±0.0

small a) sequence-to-sequence Transformer 91.0±0.6 88.5±0.6 66.5±0.1 74.4±0.2

small b) label top 100 SHIFT multi-task 94.6±0.2 92.5±0.2 72.6±0.1 76.7±0.1

small c) 1 head attends stack, 1 head attends buffer 95.5±0.1 93.7±0.1 75.8±0.0 79.1±0.1

Table 1: Dev-set performance for PTB (simpler parsing task), AMR2.0 (complex parsing task) and AMR1.0 (one
third of AMR2.0 train data). Top: encoding parser state through multi-task or multi-head attention modification.
Middle: different encodings of global/local state by multi-head attention modification. Bottom: Effect of small
model size (4 layers). All models use fixed RoBERTa-base contextualized embeddings, checkpoint average and
beam 10. All results are average of 3 different random seeds with standard deviation indicated with ±.

Model UAS LAS

Dozat and Manning (2016) 95.7 94.0
F-Gonz. and G-Rodr. (2019) 96.0 94.4
Moh. and Hen. (2020)β 96.7 95.0
Mrini et al. (2019)X 97.3 96.3
a) Transformer 94.4±0.1 92.6±0.2

b) Transformer + (mul.-task) 96.0±0.1 94.4±0.1

e) Stack-Transformer (buff) 96.3±0.0 94.7±0.0

c) Stack-Transformer 96.2±0.1 94.7±0.0

Table 2: Test-set performance for Table 1 selections
and prior art on the English Penn-Treebank.

We used RoBERTa-base (Liu et al., 2019) em-
beddings without fine-tuning as input, averaging
wordpieces to obtain word representations. Weight
averaging of the best 3 checkpoints (Junczys-
Dowmunt et al., 2016) and beam 10 were used
in all models. This improves results at most by
0.4/0.8 points for AMR2.0/AMR1.0 with no sig-
nificant differences across models. Models were
trained for a fixed number of epochs, selecting the
best model on validation by either LAS or Smatch.
A maximum epoch number of 80− 120 was set to
guarantee a margin of 5 epochs from best model
to last epoch. No other hyper-parameters were
changed across models or tasks. Training took at
most 6h on a Nvidia Tesla v100 GPU. It should
be noted that this is around 10 times faster than
our Pytorch stack-LSTM implementation for the
same data. The labeled SHIFT strategy used the
100 most frequent words.

5 Analysis of Results

Table 1 compares the standard Transformer, with
and without multi-task with the stack-Transformer,
its components, and smaller versions of all models.
Comparing LAS and Smatch, stack-transformer
provides around 2 points improvement against
Transformer on PTB and AMR2.0, and 0.5 points
improvement against its multi-task version (a-c).
This improvement becomes sensibly larger for the
smaller train set AMR1.0 with 5.8 and 1.4 point
gains over the Transformer and its multi-task ver-
sion respectively. Differences are also larger for
the 4 layer version of the models. Under this set-
ting, the stack-Transformer looses only 0.4 points
against a 12 layer model in AMR2.0. In this same
setting, the Transformer and its multi-task version
loose 3.3 and 2.3 points respectively, pointing to
the fact that modeling parser state compensates for
less training data or smaller models.

Regarding ablation of the stack-Transformer
components, the use of stack/buffer positions
seems clearly detrimental (d) in all scenarios. This
was a consistent pattern across various variants for
which we do not report numbers such as sinusoidal
versus learnable positions and reducing the posi-
tion range to top three of the stack and buffer. One
possible explanation is that positions varying after
each time step may be hard to learn, particularly if
injected directly in the decoder. It is also worth not-
ing, than the combination of multi-task and stack-
Transformer produced little improvement or was
even detrimental pointing to their similar role. Re-
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Model AMR1.0 AMR2.0
Lyu and Titov (2018) (G.R.) 73.7 74.4
Naseem et al. (2019)B - 75.5
Zhang et al. (2019) (G.R.) B 71.3 77.0
Cai and Lam (2020) β 74.0 78.7
Cai and Lam (2020) (G.R.) β 75.4 80.2
a∗) Transformer 68.8±0.1 75.9±0.3

a) Transformer 69.2±0.2 77.2±0.2

b) Transformer (mul.-task) 74.0±0.2 78.0±0.1

e) Stack-Transformer (buff) 75.1±0.3 78.8±0.1

c) Stack-Transformer 75.4±0.0 79.0±0.1

Table 3: Test-set performance for Table 1 selections
and prior art on the AMR1.0 and AMR2.0 in terms of
Smatch.

sults for the weakest of the stack-Transformer vari-
ants are provided (h).

Comparing across different attention modifica-
tions (e-h), most methods perform similarly al-
though there seems to be some evidence for global
(full buffer, full stack) variants being more perfor-
mant. Modeling of the buffer seems also more
important than modeling of the stack. One possible
explanation for this is that, since the total number
of heads is kept fixed, it may be more useful to gain
an additional free head than modeling the stack
content. Furthermore without recursive represen-
tation building, as in stack-LSTMs, the role of the
stack can be expected to be less important.

Tables 2 and 3 compare with prior works. Pre-
trained embeddings used are indicated as XL-
net-largeX (Yang et al., 2019), BERT baseβ and
largeB (Devlin et al., 2019), Graph Recategoriza-
tion, which utilizes an external entity recognizer
(Lyu and Titov, 2018; Zhang et al., 2019) as (G.R.)
and a∗ indicates the Naseem et al. (2019) oracle.

Overall, the stack-Transformer is competitive
against recent works particularly for AMR, likely
due to the higher complexity of the task. Com-
pared to prior AMR systems, it is worth noting the
large performance increase against stack-LSTM
(Naseem et al., 2019), while sharing a similar ora-
cle and embeddings and not using reinforcement
learning fine-tuning. The stack-Transformer also
matches the best reported AMR system (Cai and
Lam, 2020) on AMR1.0 without graph recatego-
rization, but using RoBERTa instead of BERT em-
beddings and provided the second best reported
scores on the higher resourced AMR2.0 4.

4Code available under https://github.com/IBM/
transition-amr-parser/

6 Related Works

While inspired by stack-LSTMs (Dyer et al., 2015),
the stack-Transformer lacks their elegant recur-
sive composition, where representations for partial
graph components are added to the stack and used
in subsequent representations. It allows, however,
to model the global parser state in a simple way that
is easy to parallelize, and shows large performance
gains against stack-LSTMs on AMR. The proposed
modified attention mechanism, could also be inter-
preted as a form of feature-based parser (Kiper-
wasser and Goldberg, 2016), where the parser state
is used to select encoder representations, integrated
into a Transformer sequence to sequence model.

The modification of the attention mechanism to
reflect the parse state has been applied in the past
to RNN sequence-to-sequence models. Liu and
Zhang (2017) propose the use of a boundary to
separate stack and buffer attentions. While simple,
this precludes the use of SWAP actions needed for
AMR parsing and non-projective parsing. Zhang
et al. (2017) mask out reduced words and add a
bias to the attention weights for words in the stack.
While being the closest to the proposed technique,
this method does not separately model stack and
buffer nor retains free attention heads, which we
consider a fundamental advantage. We also pro-
vide evidence that modeling the parser state still
produces gains when using pre-trained Transformer
embeddings and provide a detailed analysis of com-
ponents. Finally, RNN (Ma et al., 2018) and self-
attention (Ahmad et al., 2019) Stack-Pointer net-
works sum encoder representations based on local
graph structure, which can be interpreted as masked
uniform attention over 3 words and is related to the
previous methods.

7 Conclusions

We have explored modifications of sequence-to-
sequence Transformers to encode the parser state
for transition-based parsing, inspired by stack-
LSTM’s global modeling of the parser state. While
simple, these modifications consistently provide
improvements against a normal sequence to se-
quence Transformer in transition-based parsing,
both for dependency parsing and AMR parsing
tasks. Results also point to the benefits of mod-
eling the parser state as a way to compensate for
limited training resources or limitation in model
sizes.

https://github.com/IBM/transition-amr-parser/
https://github.com/IBM/transition-amr-parser/
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