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Abstract
Form understanding depends on both textual
contents and organizational structure. Al-
though modern OCR performs well, it is still
challenging to realize general form under-
standing because forms are commonly used
and of various formats. The table detection
and handcrafted features in previous works
cannot apply to all forms because of their re-
quirements on formats. Therefore, we concen-
trate on the most elementary components, the
key-value pairs, and adopt multimodal meth-
ods to extract features. We consider the form
structure as a tree-like or graph-like hierar-
chy of text fragments. The parent-child re-
lation corresponds to the key-value pairs in
forms. We utilize the state-of-the-art models
and design targeted extraction modules to ex-
tract multimodal features from semantic con-
tents, layout information, and visual images.
A hybrid fusion method of concatenation and
feature shifting is designed to fuse the hetero-
geneous features and provide an informative
joint representation. We adopt an asymmetric
algorithm and negative sampling in our model
as well. We validate our method on two bench-
marks, MedForm and FUNSD, and extensive
experiments demonstrate the effectiveness of
our method.

1 Introduction

Forms are a ubiquitous document format. Numer-
ous forms are used in finance, insurance and medi-
cal industry every day. Although forms vary a lot,
we consider it as a collection of key-value pairs
and all these pairs establish a hierarchical structure
within the page. Our work in this paper focuses on
utilizing multimodal information to extract the hier-
archy from the forms. Equipped with the hierarchy,
it is oversimplified to further analyze the general
forms and extract the structural data.

Modern Optical Character Recognition (OCR)
has already provided a reliable and efficient way
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Figure 1: Example from FUNSD Dataset: (a) is part of
the original image; (b) is the hierarchical structure. Ex-
ample from MedForm Dataset: (c) is part of the origi-
nal image; (d) is the hierarchical structure.

for the computers to read the textual contents of
form pages. The contents can be divided into sev-
eral individual textual fragments. However, it is not
enough to form-understanding tasks. The informa-
tion is expressed not only through the textual data
in each section, but also through the way in which
the sections are organized. Some of the fragments
serve as headers, topics or questions of their coun-
terparts. We consider the relation as key-value pairs
in a hierarchy. Figure 1 are two examples 1. There-
fore, after preliminary processing with OCR, we
need to extract the latent structure in a form page
to convert the textual data into structured data.

Some related works build their models on the
handcrafted features (Ha et al., 1995b; Simon et al.,
1997; Ha et al., 1995a). They propose heuristic
methods and use top-down or bottom-up techniques
to build their model. However, the results only re-
veal coarse structure such as layouts or bounding
boxes, which is not enough for actual usage. Oth-
ers propose table detection techniques (Hao et al.,
2016; He et al., 2017). However, tables are a subset
of forms. Table detection doesn’t work when there

1The example images are processed and translated in this
paper for clearness.
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is no table lines or cells in the given form page. Un-
like these previous works, our method consider the
structure as a hierarchy where parent-child relation
corresponds to the key-value pairs. The key-value
pairs are the most elementary components and inde-
pendent of any formats. This ensures a wide range
of application of our method and should be the
promising direction for general form understand-
ing.

To comprehensively acquire the informative rep-
resentation for each fragment and catch the reliable
signals for the hierarchical structure, we leverage
multimodal information from semantic, layout and
visual aspects. We carefully design targeted extrac-
tion module for each modality. Following many
previous studies, we adopt the pretrained language
model, e.g. BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), to extract semantic features. The
layout and visual information are also useful. For
example, nearer fragments should be more likely
to be related and fragments with bold faces are
more likely to be the title. Therefore, we use multi-
layer perceptron and character detection algorithms
(Tian et al., 2016) to extract layout and visual fea-
tures. To fuse multimodal features, we are enlight-
ened by Wang et al. (2019); Rahman et al. (2019)
and propose a hybrid fusion method of concate-
nation and feature shifting. The features differ in
meaning and dimension. We utilize the most in-
formative features, semantic and layout features,
through concatenation. Then we take vision fea-
tures as shifting feature to refine fused features.
Finally, we design an asymmetric relation predic-
tion module and negative sampling to finish the
whole pipeline.

We validate our method, DocStruct, on two
benchmarks, MedForm and FUNSD (Jaume et al.,
2019). The first one is built by us and composed
of medical examination reports, and the second is
composed of various real, fully annotated, scanned
forms. We summarize our contribution as follows:

• We focus on the essential components, key-
value pairs, and build a hierarchical struc-
ture to realize general form understanding,
which ensures a large range application of
our method.

• We adopt a multimodal method and propose
a hybrid fusion algorithm to build the form
hierarchy from semantic, layout, and vision.

• Extensive experiments have been conducted to

demonstrate the effectiveness of our method.

2 Methodology

In this section, we will first describe the prelimi-
nary processing step and introduce an overview of
our method. Then we propose the DocStruct model
which extracts and fuses multimodal features and
predicts the hierarchical relation between text frag-
ments. Finally, the Negative Sampling training
method is also introduced in this section.

2.1 Overview

Given a general form page, the text fragments in
this page have been extracted by Optical Character
Recognition (OCR) or by human labors before-
hand. Each fragment contains complete semantic
meaning (e.g., an individual phrase, an integrated
sentence, a short paragraph). We aim at building
the latent hierarchical structure of these fragments
in the page.

The key-value relation between the extracted
text fragments depends on multiple aspects. The
preliminary processing provides us with semantic
contents and layout information of each fragment.
We further crop the image segments from the orig-
inal page for visual information. We want to ex-
tract multimodal features from the semantic, layout
and visual information and fuse them through a
carefully-designed algorithm with regard to their
differences. Equipped with the informative joint
feature, we predict the superior counterpart of each
fragment. As long as each fragment finds its corre-
sponding superior counterpart, we can construct a
tree-like or graph-like hierarchy accordingly.

We denote a form page as D and a fragment as
X . The pageD is represented as a set of fragments:
D = [X1, X2, ..., Xn], where n is the number of
fragments in this page. We have three multimodal
features for an individual fragment, so we denote
them as Xi = (XS

i , X
L
i , X

V
i ) for semantic, lay-

out, visual features, respectively. The hierarchical
structure of the fragments is represented as directed
edges between fragments. We denote the edges as
Xi → Xj , which means fragment i serves as a
topic or header of fragment j and should be consid-
ered superior to fragment j.

2.2 Proposed Model

Our proposed model, DocStruct, contains: three tar-
geted feature extraction modules for semantic, lay-
out, and visual information, respectively, a feature
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Figure 2: Feature Extraction Modules: (a), (b), (c) are for semantic, layout, visual features, respectively.

fusion module and a relation prediction module.

2.2.1 Semantic Feature Extraction Module
The semantic content of each text fragment is ac-
quired from the results of OCR or human labors.
Intuitively, semantic contents are reliable signals to
predict the hierarchical relation. We follow many
previous works and use BERT-like pretrained lan-
guage models to extract semantic features for each
text fragment. Numerous natural language pro-
cessing tasks have demonstrated the outstanding
performance of pretrained models’ ability to ex-
tract textual features. These models are designed
to give the deep bidirectional representations from
extensive unlabeled corpus with regard to both left
and right context. More importantly, independent
of the large corpus in pretraining step, the outputs
of these models can be easily used for downstream
tasks. A special tag [CLS] is added in front of the
inputs and the corresponding output can be used
for fine-tuning.

We first input the raw semantic contents to a
BERT-like pretrained language model and select
the [CLS]’s hidden state of the last layer as the
semantic feature for the text fragment.

Ti = [[CLS], w1, w2, ..., wn] (1)

Hi = Bert(Ti) (2)

XS
i = Hi[0] ∈ RdS (3)

where Ti is the raw contents of text fragment i with
the added tag [CLS]; Bert is a symbol for BERT-
like pretrained models; Hi is the last hidden states
of the pretrained model; and XS

i is our extracted
semantic feature for the fragment i. The dimension
of XS

i equals to the hidden states of pretrained
model, and we denote it as dS .

2.2.2 Layout Feature Extraction Module
The preliminary processing of OCR or human labor
also offers the layout information: the relative coor-
dinates of the text fragment’s vertices. The layout
information shows the size and relative location
of the text fragment, which helps to distinguish
different text fragments with the same semantic
contents.

We calculate the rectangular closure with the
coordinates and input the 8-dimension vector into
a fully connected layer to project the vector into a
hyperspace.

Ci = [x1, y1, x2, y2, x3, y3, x4, y4] (4)

XL
i = σ(WCi + b) ∈ RdL (5)

where Ci is the coordinates of rectangular closure’s
vertices; W is the weight matrix; b is the bias;
σ(·), the activation function, is set as relu(·); and
XL

i is the layout feature for the fragment i. The
dimension of XL

i is a hyper-parameter, and we
denote it as dL.

2.2.3 Visual Feature Extraction Module
Visual information is the image part cropped from
the original page with the rectangular closure of the
fragment. Intuitively, visual information also pro-
vides worthwhile signals to predict the key-value
relation. For example, bold faces are more likely
to be superior.

Since the concerning images are parts from
pages, they mostly consist of letters or characters
and are unlikely to include ordinary pictures. This
makes some generic methods (e.g., Resnet, VGG)
unsuitable in this situation. We notice that the fea-
tures we care about mostly concentrate on the style
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of characters, such as the bold faces, italics, etc.
Enlightened by text detection tasks, we use a deep
CNN-based model to extract a feature map, fol-
lowed by an RNN-based model considering the
textual sequence.

The CNN-based model is carefully designed.
The height of the output feature map is 1 and we
concatenate the features of each channel. If we
view the concatenated features along the width of
the feature map, they are a new sequential inputs
for the RNN-based model. Each time step of the
RNN-based model symbolizes a frame of the im-
age, corresponding to each letter. Finally, Max
Pooling is used to extract the most significant fea-
tures from the hidden states of RNN.

Mi = CNN(Ii) ∈ Rc,h,w (h = 1) (6)

M ′
i = trans(Mi) ∈ Rw,c (7)

Fi = RNN(M ′
i) (8)

XV
i =Max(Fi) ∈ RdV (9)

where Ii is the image part of the fragment i; CNN ,
the CNN-based model, is set as Resnet50 with
minor changes on the last pooling layer to fit the
height restriction; c, h, w are the channel, height,
width of the feature map, respectively; the trans(·)
is to convert the original feature map into a sequen-
tial input; M ′

i ; RNN , the RNN-based model, is
set as a two-layer bi-directional LSTM; Max(·)
is the function of Max Pooling, conducted on the
hidden states Fi; and XV

i is the visual features for
fragment i. The dimension of XV

i is denoted as dV

and set as dS + dL to fit the requirement of Feature
Fusion Module.

2.2.4 Feature Fusion Module
With the feature extraction modules, we extract
multimodal features from semantic, layout and vi-
sion aspects. We design a hybrid fusion algorithm
to leverage the heterogeneous features of different
dimensions and meanings. There are two major
challenges:

Different dimension: The features are of differ-
ent dimensions, which makes them have different
significance in fusion calculation. Since the layout
feature is projected from a very low-dimension co-
ordinate feature (only 8-dimension). That makes
dL much smaller than dS and dV which are from
much more sources, semantic contents and images.

Attention 
Gate
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i

XL
i

XV
i

weighted XV
i XJ

iXSL
i

Shifting

weighted XV
i

XSL
i
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i

+ =+ =

Figure 3: Feature Fusion Module: XS
i , XL

i , XV
i are

semantic, layout, and visual features respectively. The
attention gate takes all features to calculate weights for
XV

i . The weighted XV
i is the shifting feature.

Different meaning: The features from different
modalities have different meanings. Intuitively,
they contribute unevenly to the final prediction. Se-
mantic features and layout feature should be the
most reliable one and the layout feature can also
distinguish the fragments with the same contents.
The visual feature also provide some additional
style signals and help to cope with some problem-
atic cases.

Accordingly, we should not treat the multimodal
features in the same way and have to consider their
differences.

Inspired by the multi-modality fusion tasks in
Poria et al. (2017); Wang et al. (2019), we propose
a hybrid fusion algorithm with regard to the dif-
ferences. We first follow the most direct fusion
method, concatenation, and concatenate the seman-
tic feature and layout feature as the base feature.
According to the experiments, this semantic-layout
feature already performs well in prediction task and
there is a considerable increment compared with
the individual feature. Then we leverage visual fea-
ture to fix minor mistakes in prediction but do not
want the extra features to influence the satisfactory
results. Following Wang et al. (2019), the visual
feature is used as the shifting feature. We adopt an
attention-based influence gate to control the influ-
ence from visual feature. To be more specific, we
use a fully connected layer on the concatenation
of three features to calculate the required weight.
Finally, we add the weighted visual feature to the
semantic-layout feature and obtain the joint repre-
sentation considering all the three modalities.

XSL
i = [XS

i ;X
L
i ] (10)
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αi = σ(W [XS
i ;X

L
i ;X

V
i ] + b) ∈ R (11)

XJ
i = XSL

i + αiX
V
i ∈ RdV = RdS+dL (12)

where [; ] is a concatenation of corresponding vec-
tors; XSL

i is the semantic-layout feature; σ(·), the
activation function, is set as sigmoid(·) here; W
and b are the weight matrix and bias; αi is the gate
weight; XJ

i is the joint feature of three modalities.

2.2.5 Relation Prediction Module
This module is designed to predict the relation be-
tween two given text fragments and use a scalar to
evaluate the probability of a directed edge between
them. The hierarchical relation we care about is
asymmetric, i.e., the probability of Xi → Xj is
completely different from that of Xj → Xi. There-
fore, some common symmetric methods, e.g. Dot
Production, Euclidean distance, Poincaré distance
(Nickel and Kiela, 2017), are no longer feasible.
They can be proper metric for correlation but can-
not further evaluate the probability for asymmetric
pairs.

To model the asymmetric relation, the func-
tion Pi→j needs to meet the requirement that:
Pi→j 6= Pj→i. We utilize a parameter matrix to
model the asymmetric relation. We put the matrix
in the middle of two joint features. Given the joint
features of two text fragments, XJ

i and XJ
j , the

probability of Xi → Xj is calculated through:

Pi→j = XJ
j M(XJ

i )
T ∈ R (13)

where M is an asymmetric parameter matrix, so
Pi→j 6= Pj→i.

2.3 Training Method

It should be noted that the directed edges of the
hierarchy only exist between some pairs of text
fragments. There may be a key-value relation be-
tween two text fragments, but it is more likely that
the two random selected fragments are not related
at all. To handle the data sparsity and balance
the different number of related and unrelated pairs,
we adopt the Negative Sampling method (Mikolov
et al., 2013) to train our model.

Given an asymmetric pair, Xi → Xj , which
means fragment i and j are related and i is superior
to j, we random select a fix number of unrelated
or inferior counterparts for fragment j. We gen-
erate a negative sampling set of fixed size for Xj ,
i.e., Xk 6→ Xj for any fragment k in the negative
sampling set.

We choose to build a negative sampling set of
the superior side but not the inferior side because
one superior fragment may correspond to many
inferior ones, but one inferior fragment may only
correspond to one or two superior counterparts.
The hierarchy in the document page is more like a
tree than a graph.

As for fragment j, the training target is to enable
our model to distinguish the Xi from the negative
samples, Xk. We normalize the probability and
minimize the cross entropy of Pi→j . So we can
maximize the Pi→j and minimize the Pk→j .

L = − log
∑
i→j

ePi→j

ePi→j +
∑

k∈Neg(j) e
Pk→j

(14)

where Neg(j) is the negative sampling set of frag-
ment j and Pi→j is the probability of a directed
edge existing between fragment i and j.

3 Experiment

In this section, we conduct experiments on two
benchmarks, MedForm and FUNSD (Jaume et al.,
2019) 2, to validate the effectiveness of our pro-
posed model for building the latent hierarchy in
forms. We design two tasks, Reconstruction and
Detection. The metric explanation is in Appendix.

Reconstruction: Given the labeled hierarchical
structure in a document, we predict the superior
counterpart for each text fragment so as to rebuild
the hierarchy. the Mean Average Precision (mAP)
and Mean Rank (mRank) are used as metrics.

Detection: To test the detection ability of our
model, we choose the counterpart with the highest
probability as the prediction result and calculate
the Hit@1, Hit@2 and Hit@5 as metrics.

3.1 Datasets
We select two datasets, MedForm and FUNSD. The
statistics of these two datasets are listed in Table 2.
More detailed descriptions are in Appendix.

• MedForm: We collect a large number of Chi-
nese medical examination reports and build
the dataset MedForm. The report does not
come from one institution, which means that
the formats will be different. This adds the
difficulty to analyze the structure. We first
process the pages through human labors so as

2https://guillaumejaume.github.io/
FUNSD/

https://guillaumejaume.github.io/FUNSD/
https://guillaumejaume.github.io/FUNSD/
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Table 1: Ablation Study Results

MedForm FUNSD

Reconstruction Detection Reconstruction Detection

Features mAP mRank Hit@1 Hit@2 Hit@5 mAP mRank Hit@1 Hit@2 Hit@5

DocStruct(S) 0.5928 4.48 56.96 76.24 91.85 0.4498 8.61 31.27 45.57 65.51
DocStruct(L) 0.5085 7.07 38.23 55.96 78.18 0.6295 3.75 48.35 64.17 82.79
DocStruct(V) 0.2744 22.56 17.24 27.83 44.20 0.2145 14.99 9.62 15.91 29.52

FUNSD-base 0.3019 13.33 15.79 27.98 49.52 0.2385 11.68 10.12 16.26 36.20

LayoutLM - - - - - 0.4761 7.11 32.43 45.56 66.41

DocStruct(S, L) 0.8641 2.10 84.85 92.68 97.14 0.7043 2.96 55.94 75.48 88.46

DocStruct 0.8903 1.85 88.41 94.63 98.07 0.7177 2.89 58.19 76.27 88.94

Table 2: Statistics of the Datasets

Split Pages Frag. Pairs

MedForm
Train 686 53444 44976
Test 171 14013 12281

FUNSD
Train 149 7411 4236
Test 50 2332 1076

to acquire the perfect recognition of textual
contents and layout information.

• FUNSD: We also select the dataset FUNSD
as our benchmark. FUNSD is composed of
199 real, fully annotated, scanned forms. The
documents are noisy and vary widely in ap-
pearance, making form understanding a chal-
lenging task. This dataset labels the position
of single words and the links between text
fragments.

3.2 Ablation Study and Baseline Comparison

We acquire features from three different modali-
ties, semantic, layout and vision. Ablation study
is conducted to demonstrate the effectiveness of
each modality. We remove some of the features
and construct several comparable baselines. We
also select two baselines.

• FUNSD-base: The baseline is offered in
Jaume et al. (2019), which uses semantic and
layout information.

• LayoutLM: We replace the feature extraction
modules with LayoutLM (?). Since it uses the
layout information of single words, which is

not provided by MedForm, the experiments
are not conducted on MedForm.

We compare our proposed method with these
baselines to show the improvements. The statistics
are listed in Table 1. In the feature column, S, L,
V refers to semantic feature, layout feature, and
vision features, respectively. In the baseline of {S,
L}, we calculate the joint representation through
the concatenation of semantic features and layout
features. The relation prediction module is the
same except for the different matrix dimension.

From the results, we find that the performance
of both tasks on both datasets improves with more
modalities considered. If we only consider single
modality, semantic features offer strong signals to
judge the hierarchical relation but it cannot deal
with the fragment with the same textual contents,
which is responsible for the corresponding low per-
formance. The layout and visual information can
be a great help, but they serve as auxiliary fea-
tures since they are not as informative as seman-
tic features. A great improvement can be seen if
we merge semantic features and layout features
together. After adding the visual features, all the
metric factors are even higher. This proves the
effectiveness of the hybrid feature fusion module.

3.3 Fusion Method Comparison

From the results of ablation study, we observe that
multimodal features contribute unevenly to the final
prediction. Because of the different dimension and
different meaning of features, it is vital to figure
out the proper method to leverage all the aspects
and fuse them together.

In our proposed method, we adopt a hybrid fea-
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Table 3: Fusion Method Comparison

MedForm

Fusion method mAP mRank Hit@1 Hit@2 Hit@5

Concatenation 0.8706 2.10 85.87 92.68 97.23
Concat. + Feature shifting w/o gate 0.8677 2.07 85.23 92.92 97.34

Concat. + Feature shifting with gate (ours) 0.8903 1.85 88.41 94.63 98.07

FUNSD

Fusion method mAP mRank Hit@1 Hit@2 Hit@5

Concatenation 0.7028 2.97 56.36 74.38 87.71
Concat. + Feature shifting w/o gate 0.7024 3.10 55.82 74.76 88.84

Concat. + Feature shifting with gate (ours) 0.7177 2.89 58.19 76.27 88.94

ture fusion method of concatenation and feature
shifting, which uses gate mechanism to control the
weight of the shifting feature to be added to the
concatenated feature. In our settings, the visual
feature serves as the shifting feature and the base
feature is the concatenation of semantic and layout
feature. We adopt another two different feature
fusion methods as comparison to demonstrate the
effectiveness of our adopted method.

Concatenation (Concat.): Concatenation is the
simplest fusion method, which concatenates all the
concerning features and produces a long vector as
joint representation.

Concat. + Feature shifting w/o gate (Concat.
Shift w/o gate): Our proposed hybrid fusion
method (Concat. + Feature shifting with gate, Con-
cat. Shift) uses an attention gate to calculate weight
for vision feature to be added to the base feature.
In Concat. + Feature shifting w/o gate, (Concat.
Shift w/o gate), the gate mechanism is removed, i.e.,
the weight is always 1. The joint representation is
calculated by the sum of base feature and shifting
feature.

The comparison results are shown in Table 3.
From the results, we can see the Concat. + Fea-
ture shifting with gate achieves the highest perfor-
mance. We also find that adding more features
does not always mean better performance. In the
experiments on FUNSD dataset, the reconstruction
results of Concatenation and Concat. + Feature
shifting fusion w/o gate perform even worse than
the comparative baseline of {S, L}. This shows
that the extra features may interfere with the ex-

isting features unless they are fused by a proper
method. That’s why we propose the hybrid fusion
method to merge the concerning features with re-
gard to their differences. We would like to control
the influence through the attention-based gate, and
the increments demonstrate the effectiveness.

3.4 Case Study

Figure 4 and 5 shows two examples from experi-
ments on FUNSD dataset. Through the two real
cases, the need of multimodal features has once
again been proven.

1 2

Figure 4: Case 1 from FUNSD: the baseline of {S, L}
predicts [NAME OF ACCOUNT (1)]→ [Morris Corp];
the baseline of {S} predicts [NAME OF ACCOUNT
(2)]→ [Morris Corp].

In Figure 4, we ask the baseline of {S} and the
baseline of {S, L} to predict the superior counter-
part for the text fragment [Morris Corp]. According
to the label, its right answer is the text fragment
[NAME OF ACCOUNT (1)] which is right above
it. However, there are more than one fragments
whose textual content is “NAME OF ACCOUNT”.
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The baseline of {S} cannot distinguish them and
gives a wrong answer.

Figure 5: Case 2 from FUNSD: our proposed model
predicts [Name of Account] → [Quik Stop]; the base-
line of {S, L} predicts [Quality Dairy]→ [Quik Stop].

In Figure 5, we compare the baseline of {S, L}
with our proposed model. They predict the superior
counterpart for the fragment [Quik Stop]. The right
answer is [Name of Account], the topic at the head
of the column. Although semantic contents and
layout information are considered, the baseline of
{S, L} cannot give the right answer. After adding
the extra visual features and fusing them with the
feature fusion module, our proposed model consid-
ers the bold and larger letters, and then gives the
right answer.

3.5 Error Analysis

We also observe some errors when our proposed
method processes forms in our datasets. Although
our proposed method has provided satisfactory re-
sult and can predict the right superior counterpart in
most cases, further analysis of error cases is helpful
to our future research.

COURT:

LORILLARD
ENTITIES:

San Francisco Superior ...

Lorillard Tobacco Company

DIVISION: FULL _____ PARTIAL _____

DIVISION NAME: _____
DIVISION NAME: _____

Figure 6: Error 1 from FUNSD: our proposed model
wrongly predicts [COURT:] → [Lorillard Tobacco
Company]. The probability is 0.9865. The right answer
is [LORRILLARD ENTITIES] → [Lorillard Tobacco
Company].

In Figure 6, our model make a mistake when
predicting superior part of the fragment [Lorillard
Tobacco Company]. The probability produced by
our model is 0.9865. The right answer’s proba-
bility is 0.0107 and ranks 2 among all 18 candi-
dates. We attribute the error to the use of unknown

word. ”Lorillard” is an uncommon word and the
tokenizer will map all unknown words to the same
token [UNK]. The model cannot learn the relation
without enough semantic information.

COURT:

LORILLARD
ENTITIES:

San Francisco Superior ...

Lorillard Tobacco Company

DIVISION: FULL _____ PARTIAL _____

DIVISION NAME: _____
DIVISION NAME: _____

Figure 7: Error 2 from FUNSD: our proposed model
wrongly predicts [DIVISION NAME:]→ [PARTIAL].
The probability is 0.9865. The right answer is [DIVI-
SION]→ [PARTIAL].

In Figure 7, our model make a mistake when pre-
dicting superior part of the fragment [PARTIAL].
The probability produced by our model is 0.6686.
The right answer’s probability is 0.3313 and ranks
2 among all 75 candidates. We attribute the error to
the too similar textual contents and nearer position.

4 Related Work

Form Understanding Form understanding de-
pends on two sub-tasks: the recognition of tex-
tual contents and the construction of the structure.
Numerous existing works have produced satisfac-
tory solutions for the first task (Liao et al., 2017;
Deng et al., 2018; Liu et al., 2016; Wang and Hu,
2017). Meanwhile, different directions have been
proposed to deal with the form structure which is
our focus in this paper.

Structure analysis used to be based on heuris-
tic methods with handcrafted features (Ha et al.,
1995b; Simon et al., 1997; Ha et al., 1995a). These
early jobs focus on the segmentation and layout
of document pages, which provides coarse struc-
tural information. Some recent works adopt table
detection techniques to build the structure (Hao
et al., 2016; He et al., 2017). Table candidates are
first selected out through some basic rules and then
further filtered by convolutional neural network
(CNN). In this way, the structure of forms can be
clearly figured out when the contents are associ-
ated in a table. In our task, however, form is a more
general concept and does not necessarily contain a
table. It should be a collection of key-value pairs,
which forms a hierarchical structure. We catch the
basic components of a form document and design
a reliable pipeline to extract the hierarchy through
multiple modalities.
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Feature Extraction We acquire the features
through three modalities: semantic, layout, and
vision. To extract semantic features from texts ,
the performance of pretrained language models,
e.g. BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), has been proved in many natural lan-
guage processing tasks. And these models can also
be used in many downstream tasks through fine-
tuning. As for visual feature extraction, methods
based on convolutional neural networks are widely
studied and used (He et al., 2016; Simonyan and
Zisserman, 2014; Szegedy et al., 2015). A recur-
rent neural network layer is usually added to further
suit the character sequence (Shi et al., 2016). We
follow these previous works and design the feature
extraction modules in our model.

Feature Fusion Multimodal features is com-
monly used to improve performance. Many fusion
methods are proposed to properly utilize the fea-
tures. In Poria et al. (2017), direct concatenation
is used to get a joint representation for a sentence.
A two-stage fusion hierarchy is proposed as well
(Majumder et al., 2018). Previous works have also
proposed a feature shifting method to use shifting
feature to fix the base features (Wang et al., 2019).

5 Conclusion

In this paper, we proposed a multimodal method to
extract key-value pairs and build the hierarchy in
forms to improve the general form understanding.
We leveraged advanced models, e.g. BERT, Resnet,
LSTM, to acquire features from multiple aspects:
semantic, layout and vision. For the first time, het-
erogeneous features are combined to extract the
hierarchical structure in forms. And the proposed
hybrid fusion method of concatenation and fea-
ture shifting effectively obtains the joint feature
and eliminates the interference. We also adopted
negative sampling technique to train our model.
Furthermore, extensive experiments demonstrate
the advantages of our method to build the form
hierarchy.

In the future, we will apply our method to other
challenging benchmarks and strive to combine the
idea of pretraining with our method.
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Appendix

A Details about Datasets

A.1 MedForm
MedForm dataset is built by us. Our research group
cooperates with medical examination agencies and
collects a large number of medical examination
forms. The forms may be from different agencies,
so the formats are not the same. We recruit 10
skilled annotators to label the data and another 5
annotators to further check the quality. The annota-
tion includes the area of text fragments in a form
page, the textual contents in each fragment, the
exact coordinates and the hierarchical relation be-
tween the fragments. Because of privacy concerns,
we cannot make this dataset public.

A.2 FUNSD
FUNSD dataset is a new and public dataset for
form understanding tasks. It consists of various
real fully annotated, scanned forms. It offers the
textual contents and exact coordinates of each
fragments. The dataset can be downloaded in
https://guillaumejaume.github.io/FUNSD/.

B Metric Explanation

B.1 Mean Average Precision (mAP)
Mean Average Precision is a metric widely used
in the area of object detection. It measures the
average precision value for different recall value,
so the larger mAP is, the better the model performs.

In our reconstruction task, we detect the superior
counterpart for a given text fragment. For exam-
ple, the given text fragment x has n candidates
y1, y2, ..., yn and m of them are the right answers.
The recall value can be i

m , where i = 0, 1, ...,m.
We calculate the biggest precision value for each
recall value. We denote the biggest precision when
recall equals i

m as pi and calculate mAP as fol-
lowed:

mAP =

m∑
i=0

pi ∗
1

m
(15)

B.2 Mean Rank (mRank)
Mean Rank is also a metric used in the area of ob-
ject detection. It measures the average number of
wrong answers that rank higher than right answers,
so the smaller mRank is, the better the model per-
forms.

It is easier to think the mRank as the average
number of right-wrong reverse pairs in ranking

list. For example, our given text fragment x has
n candidates y1, y2, ..., yn. Among the candidates,
m of them are right answers and the corresponding
indices are i1, i2, ..., im in an ascending order. For
the first right answer yi1 , the number of wrong
answers that rank higher than it is i1 − 1. For
the second right answer yi2 , the number of wrong
answers that rank higher than it is i2−2 (excluding
yi1 before it). Therefore, we calculate mRank as
followed:

mRank =

m∑
k=1

ik − k =

m∑
k=1

ik −
(1 +m)m

2

(16)

B.3 Hit@k
Hit@k is a metric that measures the ratio of cases
whose right answers appear in the top k prediction
candidates. In our detection task, we detect the
superior counterpart for a given text fragment. We
predict the probability for every text fragment in
a page and count the number of fragments whose
true superior counterparts appears in the top k can-
didates. We calculate Hit@k through division of
the number and the total number of fragments.

https://guillaumejaume.github.io/FUNSD/

