
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 884–897
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

884

AirConcierge: Generating Task-Oriented Dialogue via Efficient
Large-Scale Knowledge Retrieval

Chieh-Yang Chen† Pei-Hsin Wang† Shih-Chieh Chang†
Da-Cheng Juan¶ Wei Wei¶ Jia-Yu Pan¶

†National Tsing-Hua University ¶Google Research
{darius107062542,peihsin}@gapp.nthu.edu.tw

scchang@cs.nthu.edu.tw
{dacheng,wewei,jypan}@google.com

Abstract

Despite recent success in neural task-oriented
dialogue systems, developing such a real-
world system involves accessing large-scale
knowledge bases (KBs), which cannot be sim-
ply encoded by neural approaches, such as
memory network mechanisms. To alleviate
the above problem, we propose AirConcierge,
an end-to-end trainable text-to-SQL guided
framework to learn a neural agent that interacts
with KBs using the generated SQL queries.
Specifically, the neural agent first learns to ask
and confirm the customer’s intent during the
multi-turn interactions, then dynamically de-
termining when to ground the user constraints
into executable SQL queries so as to fetch rel-
evant information from KBs. With the help
of our method, the agent can use less but
more accurate fetched results to generate use-
ful responses efficiently, instead of incorporat-
ing the entire KBs. We evaluate the proposed
method on the AirDialogue dataset, a large cor-
pus released by Google, containing the con-
versations of customers booking flight tickets
from the agent. The experimental results show
that AirConcierge significantly improves over
previous work in terms of accuracy and the
BLEU score, which demonstrates not only the
ability to achieve the given task but also the
good quality of the generated dialogues.

1 Introduction

The task-oriented dialogue system (Young et al.,
2013) is one of the rapidly growing fields
with many practical applications, attracting more
and more research attention recently (Zhao and
Eskénazi, 2016; Wen et al., 2016; Bordes et al.,
2017; Dhingra et al., 2017; Eric and Manning,
2017; Liu and Lane, 2017). In order to assist users
in solving a specific task while holding conversa-
tions with human, the agent needs to understand
the intentions of a user during the conversation and

Figure 1: An example of the task-oriented dialogue that
incorporates a knowledge base (KB) from the AirDia-
logue dataset. The agent ground the user constraints
into executable SQL query at the turn annotated in red.

fulfills the request. Such a process often involves
interacting with external KBs to access task-related
information. Figure 1 shows an example of a task-
oriented dialogue between a user and an airline
ticket reservation agent.

Traditional dialogue systems (Kim et al., 2008;
Deoras and Sarikaya, 2013) may rely on the prede-
fined slot-filling pairs, where a set of slots needs
to be filled during the conversation. In addition,
some works (Sukhbaatar et al., 2015; Madotto et al.,
2018; Wu et al., 2019) have considered integrating
KBs in a task-oriented dialogue system to gener-
ate a suitable response and have achieved promis-
ing performance. However, these methods either
are limited by predefined configurations or do not
scale to large KBs. Since real-world KBs typically
contain millions of records, end-to-end dialogue
systems are not able to incorporate external KBs
effectively, leading to unstable dialogue responses.

Moreover, very few research has attempted to

885

explore how to efficiently cooperate with KBs or
taken resource consumption, such as FLOPs or
memory space, into consideration when designing
the model. In order to solve the issues mentioned
above, we propose AirConcierge, an SQL-guided
task-oriented dialogue system that can efficiently
work with real-world, large-scale KBs, by formu-
lating SQL queries based on the context of the
dialogue so as to retrieve relevant information from
KBs.

We evaluate and demonstrate AirConcierge on
AirDialogue (Wei et al., 2018), a large-scale airline
reserving dataset published recently. AirDialogue
has high complexity in contexts, creating the op-
portunity and the necessity of forming diverse task-
oriented conversations. Our experiments show that
AirConcierge achieves improvements in accuracy
and resource usage compared to previous work.

2 Related Work

2.1 Task-oriented Dialogue System

Traditional task-oriented dialogue systems are usu-
ally accompanied by complex modular pipelines
(Rudnicky et al., 1999; Zue, 2000; Zue et al., 2000).
Each module is trained individually and follows
by being pipelined for testing, so error from previ-
ous modules may propagate to downstream mod-
ules. Therefore, several jointed learning (Yang
et al., 2017) and end-to-end reinforcement learning
(RL) framework (Zhao and Eskénazi, 2016) are pro-
posed to jointly train NLU and dialog manager us-
ing specifically collected supervised labels or user
utterances to migrate the above problems. Other
different end-to-end trainable dialogue systems
(Wen et al., 2016; Li et al., 2017) have also been
proposed and achieved successful performance by
using supervised learning or RL. Compared to the
pure end-to-end system, intermediate labels are still
added to the model to train NLU and DST.

Existing pipeline methods to task-oriented di-
alogue systems still have problems of structural
complexity and fragility. For example, NLU typi-
cally detects dialog domains by parsing user utter-
ances, then classifying user intentions, and filling
a set of slots to form domain-specific semantic
frames. These models may highly rely on manual
feature engineering, which makes them laborious
and time-consuming and are difficult to adapt to
new domains. Therefore, more and more research
(Manning and Eric, 2017; Sukhbaatar et al., 2015;
Dodge et al., 2016; Serban et al., 2016; Bordes

et al., 2017; Eric and Manning, 2017) dedicated
to building end-to-end dialogue systems, in which
all their components are trained entirely from the
utterances themselves without the need to assume
domains or dialog state structure, so it is easy to au-
tomatically extend to new domains and free it from
manually designed pipeline modules. For exam-
ple, (Bordes et al., 2017) treated dialogue system
learning as the problem of learning a mapping from
dialogue histories to system responses.

The common point of the pipeline and end-to-
end methods is that they both need to acquire
knowledge from the knowledge base to produce
more contentful responses. For instance, (Eric and
Manning, 2017) represent each entry as several key-
value tuples and attend on each key to extract useful
information from a KB in an end-to-end fashion,
KB-InfoBot (Dhingra et al., 2017) directly model
posterior distributions over KBs according to the
user input and a prior distribution, and GLMP (Wu
et al., 2019) use a global to local memory network
(Weston et al., 2014; Sukhbaatar et al., 2015) to en-
code KBs and query it in a continuous neural. How-
ever, as the KBs continue to grow in the real-world
scenarios, such end-to-end methods of directly en-
coding and integrating whole KBs will eventually
result in inefficiency and incorrect responses.

On the other hand, some works may put the
user utterances through a semantic parser to obtain
executable logical forms and apply this symbolic
query to the KB to retrieve entries based on their at-
tributes. A common practice for generating queries
is to record the slot values that appeared in each di-
alogue turn. For instance, (Lei et al., 2018) design
text spans named belief spans to track dialogue be-
liefs and record informable and requestable slots1,
then converting them into a query with human ef-
forts. Additionally, (Bordes et al., 2017) generate
API calls from predefined candidates. Use such
pipeline methods can interact and cooperate with
the knowledge base efficiently by issuing API calls
such as SQL-like queries. However, such symbolic
operations break the differentiability of the system
and prevent end-to-end training of neural dialogue
agents.

In particular, it is unclear if end-to-end models
can completely replace and perform better than
pipeline methods in a task-directed setting. In
comparison, our end-to-end trainable text-to-SQL

1Informable slots are slots that users can use to constrain
the search, while requestable slots are slots that users can ask
a value for.

886

guided framework balances the strengths and the
weaknesses of the two research methods. We
first introduce the natural-language-to-SQL con-
cept into task-oriented systems that map context
dialogue histories and table schema to a SQL query
and choose instead to rely on learned neural repre-
sentations for implicit modeling of user intent and
current state. Moreover, we provide more efficient
labeling by only generating a query at an appropri-
ate timing based on current state representations, in-
stead of recording each slot values at each time step.
By doing this, we do not need predefined slot-value
pair or domain ontology, but just input dialogue
histories and table schema and output synthesized
SQL queries. Then we use a memory network to
encode the results retrieved from KBs. Thus, we
can access KBs more efficiently and achieve a high
task success rate.

2.2 Semantic Parsing in SQL

Another related research is text-to-SQL, a sub-task
of semantic parsing that aims at synthesizing SQL
queries from natural language. The widely adopted
dataset is the WikiSQL (Zhong et al., 2017). The
task goal is to generate a corresponding SQL query
given a natural language question and sets of table
schema (Xu et al., 2018; Yu et al., 2018a; McCann
et al., 2018; Hwang et al., 2019). Furthermore,
cross-domain semantic parsing in text-to-SQL has
been investigated (Yu et al., 2019b, 2018b, 2019a).
In comparison, the SQL generator in our model is
a task-oriented dialogue-to-SQL generator, which
aims to help users accomplish a specific task, and
dynamically determines whether to ground the dia-
logue context to an executable SQL.

3 The Proposed Framework

Our design of the AirConcierge system addresses
the following challenges in developing an effective
task-oriented dialogue system, including

• When should the system access the KBs to
obtain task-relevant information during a con-
versation?

• How does the system formulate a query that
retrieves task-relevant data from the KBs?

3.1 System Architecture of AirConcierge

AirConcierge is a task-oriented dialogue system
for flight reservations and therefore depends on

flight information in large external KBs to ful-
fill user requests. Unlike previous work that di-
rectly encodes the entire KBs, AirConcierge issues
API calls to the KBs at the appropriate time to re-
trieve the information relevant to the task. Besides,
during the dialogue with a user, AirConcierge ac-
tively prompts and guides the user for key infor-
mation, and responds with informative and human-
comprehensible sentences based on the retrieved
results from the KBs. In particular, the “dialogue-
to-SQL-to-dialogue” approach, which we imple-
ment in AirConcierge allows it to integrate with
large-scale, real-world KBs.

Figure 2 shows the system architecture of Air-
Concierge. During a dialogue with a user, Air-
Concierge processes the dialogue lines in the fol-
lowing procedures: For each new line of a dialogue,
it serves as an input to the Dialogue Encoder, which
encodes the conversation history. The hidden states
of Dialogue Encoder are next used by the Dialogue
State Tracker to determine the phase of the dia-
logue (e.g., greeting phase or the problem-solving
phase). If the system determines that enough infor-
mation about the user’s request has been collected,
the SQL generator then generates a SQL query,
according to the context of the dialogue so far, to
retrieve information from KBs. Next, the retrieved
results are encoded and stored in a Memory Net-
work. With the encoded dialogue and the memory
readout, a context-aware Dialogue Decoder gener-
ates a corresponding response. In addition to the
process described above, there is a Dialogue Goal
Generator which predicts the final status of the full
dialogue, given the entire conversation history, to
measure the agent performance.

3.2 Dialogue Encoder

We implement the Dialogue Encoder using a RNN
with a gated recurrent unit (GRU) (Chung et al.,
2014). Given a sequence of the conversation history
X = {x1, x2, ..., xt}, a word embedding matrix
Wemb embeds each token xt. A GRU then models
the sequence of tokens by taking the embedded
token W emb(xt−1) and the hidden state het−1 from
time step t− 1 as inputs at the next time step t:

het = GRU(Wemb(xt−1), h
e
t−1) (1)

The whole dialogue history is encoded into the
hidden states H = (he1, . . . , h

e
T), where T is the

total number of time steps.

887

Figure 2: An overview of the system architecture of AirConcierge.

3.3 Dialogue State Tracker (Information
Gate Module)

In order to determine whether a dialogue has
reached a state where the system has received
enough initial information about a user’s need
and transitioned from the “greeting state” into the
“problem-solving state”, we design a Dialogue State
Tracker to model such a transition of states. This is
a module introduced by AirConcierge to determine
when to retrieve and incorporate data from the KBs
into the dialogue, so we also consider it as an “infor-
mation gate”. The Dialogue State Tracker takes the
information about the schema of KBs as an input to
the model. Intuitively, by matching the information
in the dialogue history with the available columns
in the KBs, a better decision can be made about
whether it is the right time to start querying the
KBs. This module takes the last hidden state heT
from the Dialogue Encoder and outputs a binary
value s ∈ {0, 1} indicating whether the current
information is sufficient to generate a query. Let
P (s) denote the probability that the agent would
send a query:

P (s|he
T , x

col
1:J) = σ(W s

2 (W s
1 h

e
T +ΣU2Wemb(x

col
1:J))), (2)

where xcol1:J denotes the tokens of the J column
names; Wemb is the word embedding matrix as in
Equation (1); U2 ∈ Rdenc×denc is a bidirectional
LSTM; W s

1 and W s
2 are fully-connected layers

with size denc × denc; and σ is the sigmoid func-
tion. Note that we denote U2Wemb(x

col
1:J) as hcol in

Figure 2.

3.4 SQL Generator
In order to enable AirConcierge to handle
large-scale KBs, we devise a SQL Generator and

deployed it in AirConcierge. If the state s from the
Dialogue State Tracker is “problem-solving state”,
AirConcierge will activate the SQL Generator and
generate a SQL query to access the KBs. A SQL
query is in the form of SELECT * FROM KBs
WHERE $COL $OP $VALUE (AND $COL
$OP $VALUE)∗, where $COL is a column name.
Here we focus on predicting the constraints in the
WHERE clause.

To predict the column $COL, we follow the
sequence-to-set idea from SQLNet (Xu et al.,
2018). That is, given the encoded column names
{hcolj }j=1...J and the last encoding of the dialogue
history heT , the model computes the probability
Pcol(x

col
j) of column j to appear in the SQL query:

Pcol(x
col
j |hcol

j , he
T) = σ(W col

1 hcol
j +W col

2 he
T) (3)

The $OP slots are predicted using similar archi-
tecture:

Pop(xopj |hcol
j , he

T) = σ(W op
1 hcol

j +W op
2 he

T) (4)

As for predicting the $VALUE slot for a particu-
lar $COL, we model it as a classification problem.
Let vji be the i-th value of the j-th column. The
predicted probability of the value vji is:

Pvalue(vji |h
col
j , he

T) =

Softmax

(
W val

1 (W val
2 he

T +W val
3 hcol

j)

) (5)

where all W col
1,2 , W op

1,2 and W val
1,2,3 are trainable ma-

trices of size denc × denc.

3.5 Knowledge Base Memory Encoder

We encode the retrieved data from the KBs with
a memory network mechanism. Unlike previous

888

work (Wei et al., 2018) which applies a hierarchical
RNN to encode the entire KBs directly, we only
model the retrieved results from the KBs. Thanks to
the SQL Generator module that filters out most of
the irrelevant data in KBs, AirConcierge is needless
to encode the entire KBs and can focus on the small
set of relevant data records.

Let the data records of flights retrieved from the
KBs be {f1, .., fF }, each flight containing 12 col-
umn attributes and one additional “flight number”
column attribute. These records are converted into
memory vectors {m1, ...,mF } using a set of train-
able embedding matrices C = {C1, . . . , CK+1},
where Ck ∈ R|V |×demb and K is the number of
hops. Note that we additionally add an empty flight
vector mempty to represent the case where no flight
in the KBs meets the customer’s intent.

An initial query vector q0 is defined to be the
output of the dialogue encoder heT . Then, the query
vector is passed through a few “hops” where, at
each hop k, a vector qk is computed as attention
weights with respect to each memory vector mi:

pki = Softmax((qk)T cki) (6)

where cki = B(Ck(fi)) is the embedding vector at
the ith memory position, andB(·) is a bag-of-word
function. Here, pki decides which ticket has higher
relevance to the customer intent. Then, the memory
readout ok is summed over ck+1 weighted by pk

as:

ok =
∑F

i=1
pki c

k+1
i (7)

To continue to the next hop, the query vector is
updated by qk+1 = qk + ok.

We use the pointer G = (g1, . . . , gF) to pick the
most relevant ticket and also filter out unimportant
or unqualified tickets. K denotes the last hop.

gK
i = Softmax

((
qK
)>

cKi

)
(8)

3.6 Dialogue Decoder

We adopt a GRU model as the Dialogue Decoder
to generate the agent’s response. At each time step,
the Dialogue Decoder generates a token based on
the encoded dialogue heT and flight ticket infor-
mation gKi , by calculating a probability over all
tokens:

hdt = GRU(Wemb(ŷt−1), h
d
t−1),

P (ŷt) = Softmax(Wdech
d
t)

(9)

where Wdec ∈ Rdenc×|V | is a trainable matrix, and
h0 is initialized as a concatenation of qK and heT ,
ŷt is output tokens at timestep t.

3.7 Dialogue Goal Generator

As stated in the AirDialogue (Wei et al., 2018),
three final dialogue goals sa, sn, sf are generated
by the agent to examine the correctness at the end
of conversations. sn represents the name of the
customer. The flight state sf is the flight num-
ber selected from F flights in the KBs. The ac-
tion sa that accomplished at the end of a dia-
logue can be one of the following five choices:
“booked”, “changed”, “no flight found”, “no reser-
vation” and “cancel”. We feed heT into three fully-
connected layers, W goal

i , to predict the three goals
(i ∈ {n,f,a}), respectively:

P (si) =W goal
i heT . (10)

3.8 Objective Function

In order to train the dialogue system in an end-to-
end fashion, loss functions are defined for the above
modules. The loss for Dialogue State Tracker,
Lgate, is the binary cross entropy (BCE). The loss
for SQL generator consists of three parts: LSQL =
Lcol + Lop + Lvalue. The loss for the $COL slots
Lcol is the BCE, and the loss for both $OP and
$VALUE slots is CE. For the KB memory encoder,
we use CE:Lmem = −

∑N
i=1

∑F
j=1(yij ·log(gKij)),

where gKij is the pointer, N is the number of sam-
ples, and F is the number of flights retrieved from
KBs. For the state generator, CE is used for all
three states, that is, Lgoal = Lname + Lflight +
Laction.

The overall loss function is formed by summing
up the losses of all modules:

L = Lgate + LSQL + Lmem + Lgoal (11)

4 Experiments

4.1 Dataset

AirDialogue Dataset We evaluate the proposed
framework on the AirDialogue dataset, a large-
scale task-oriented dialogue dataset released by
Google. The dataset contains 402,038 conversa-
tions, with an average length of 115. For data
pre-processing, we follow the steps in the original
paper (Wei et al., 2018) and their official code 2.

2https://github.com/google/airdialogue

889

Labels for State Tracker Since the original Air-
Dialogue dataset lacks the labels for learning the
Dialogue State Tracker, we devise a method to
annotate each dialogue turn with a “ground-truth”
state label. We define two dialogue states: At the
beginning of a dialogue, while the customer ex-
presses travel constraints and the agent asks for in-
formation, we define this as the “greeting state” of
the dialogue. Once the agent receives adequate in-
formation from the user and decides to send a query,
we define that the dialogue enters the “problem-
solving state” and will remain in this state after-
ward.

We use a rule-based model to annotate. For most
dialogues, the first turn of the “problem-solving
state” is where the flight number is mentioned.
With this observation, we label the turn where the
flight number first occurs to be the starting point of
the “problem-solving state”. As for the dialogues
that either issue multiple SQL queries or have no
mention of the flight number, we apply a set of
keywords to mark the problem-solving state.

Labels for SQL Generator In the original Air-
Dialogue dataset, each dialogue is accompanied
with an intention indicating the customer’s travel
constraints. We construct the “ground-truth query”
based on the user’s intention of each dialogue.

4.2 Training Details

We conduct experiments using one 2080 Ti GPU
and the Pytorch (Paszke et al., 2017) environment.
We use Adam (Kingma and Ba, 2015) to optimize
the model parameters with a learning rate 1e−3

and a batch size of 32. The word embedding size
and GRU hidden dimension are 256. The hop of
the memory encoder K is set to 3. For Dialogue
Decoder, a greedy strategy is used instead of beam-
search. The accelerated training technique used in
Wei et al. (2018) is also adopted in our model. The
models are trained for 5 epochs, roughly equals to
44000 steps.

4.3 Evaluation

There are two important perspectives about the
model: the quality of the dialogue and the correct-
ness of the exact information. In order to properly
evaluate these two, we use the BLEU score to eval-
uate the dialogues and use accuracy to evaluate the
dialogue goals and SQL queries. While providing
a human-like interaction with the customers is im-
portant, it is even more critical to guarantee that all

Figure 3: Inference time under different numbers of
KB records on the AirDialogue dev set. “1x.” denotes
30 records in the KBs, “10x.” is 300 records, and so
on.

Figure 4: Memory consumption under different
amounts of KB data on the AirDialogue dev set. “1x.”
denotes 30 records in the KBs, “10x.” is 300 records,
and so on.

of the provided information is correct.
For example, the agent might reply “We have

found a flight number 1011 which meets your need.
Should I book it?”. Suppose the actual correct
flight number is 1012, this sentence may have a
high BLEU score while the provided information
is misleading. Such an error further reveals the
importance of the accuracy of Dialogue Goal Gen-
erator.

As for the correctness of the provided informa-
tion, we evaluate the performance by SQL accuracy
and state accuracy. The SQL accuracy is critical in
filtering and accessing data from the KBs.

User simulator For self-play evaluation, we
build a simulator to model a user’s utterances.
The simulator generates a response based on three
things: a list of travel constraints, the user’s intent
({“book”, “change”, “cancel”}), and the dialogue
history. Similar to the previous work, we adopt a

890

Model Name Acc. Flight Acc. State Acc. BLEU

Supervised (2018) (AirDialogue dev) 0.9 % 1.2% 12% 23.26
RL (2018) (AirDialogue dev) 1% 4% 29% 19.65
AirConcierge (AirDialogue dev) 100% 72.2% 90.0% 32.59

Supervised (2018) (Synthesized dev) 0% 8% 32% 68.72
RL (2018) (Synthesized dev) 0% 35% 39% 62.71
AirConcierge (Synthesized dev) 100% 58.9% 86.0% 73.51

Human (AirDialogue test) 98% 91.4% 91.8% -

Table 1: Dialogue performance under self-play evaluation. The agent model is the model in the first column, while
the customer is the user simulator described in section 4.3. The supervised model and the Reinforcement Learning
(RL) model are the baseline models reported in the original AirDialogue paper.

sequence-to-sequence model to build the simulator.

SQL evaluation We use logical-form accuracy
(Acclf) and execution accuracy (Accex) (Zhong
et al., 2017) to measure the SQL quality. ForAcclf ,
we directly compare the generated SQL query with
the ground truth to check whether they match each
other. For Accex, we execute both the generated
query and the ground truth and compare whether
the retrieved results match each other. We also eval-
uate the accuracy of the 3 components ($COL, $OP,
and $VALUE) of a WHERE condition: Acccol,
Accop, and Accval, respectively. For each dialogue,
we evaluate only the SQL query at the turn when
the “problem-solving state” first occurs.

4.4 Experimental Results: Accuracy

In Table 1, we compare the performance of Air-
Concierge with the baseline in the AirDialogue
paper. On generating a response that matches the
ground-truth dialogue line, AirConcierge achieves
improvements on the BLEU score by 9.33 and 4.79
on the dev set and the synthesized set, respectively.
In the self-play evaluation, AirConcierge achieves
significant improvements on NameAcc, FlightAcc,
and ActionAcc. We attribute the high accuracy to
the correctness of SQL queries, since the data re-
trieved from KBs is correctly filtered and thus helps
the agent make suitable and better predictions.

Besides the model’s overall performance in ac-
complishing a user’s task, we are interested in the
accuracy of the SQL queries generated by Air-
Concierge based on the dialogue context. In this
evaluation, we consider two cases: the accuracy of
the 6 essential attributes (departure airport, return
airport, departure month, return month, departure
day, and return day), and the accuracy on all 12 at-

tributes. The 6 essential attributes are the ones that
are essential in identifying a ticket and therefore
appear in nearly all dialogue samples.

Table 2 shows the model’s accuracy in gener-
ating SQL queries. The model achieves outstand-
ing accuracy in predicting the column-name slots,
the operator slots, and the value slots. The metric
Acclf evaluates whether two queries are exactly the
same, so its value is typically smaller than Acccol,
Accop, or Accval, especially when more conditions
are considered. This can be observed in the ta-
ble, where the accuracy Acclf under 12 conditions
is much smaller than that under only 6 essential
conditions.

Furthermore, we break down the performance of
overall SQL queries into each $VALUE slot, results
presented in Table 3. AirConcierge achieves high
accuracy on predicting the values of the 6 essential
conditions, but performs not as good on the other 6
conditions (departure time, return time, class, price,
connections, and airline). This may be due to that
the essential 6 conditions are provided in nearly
all dialogues, while the other conditions are only
provided from time to time. Having fewer data
about the other conditions makes it harder for the
model to learn about them.

4.5 Experimental Results: Scalability

An important contribution of AirConcierge is the
efficiency in cooperating with KBs. By employ-
ing the SQL Generator, AirConcierge increases the
model’s ability to handle large-scale KBs. In Fig-
ure 3, we show the model’s inference time with
respect to the number of data records in the KBs.
The “1x.” at the x-axis corresponds to having 30
data records in the KBs, and “10x.” corresponds to
300 entries in the KBs, and so on. As shown in the

891

Experiment Acccol Accop Accval Acclf Accex

AirConcierge† 98.96% 99.7% 97.9% 95.54% 96.44%
AirConcierge‡ 97.24% 98.6% 61.4% 28.11% 86.28%

Table 2: Performance on the AirDialogue dataset. † indicates considering only 6 conditions, such as departure city,
return city, departure month, return month, departure day, and return day. ‡ means considering all 12 conditions.
The models of † and ‡ are the same. We report the average accuracy.

Experiment dep. city ret. city dep. month ret. month dep. day ret. day
AirConcierge 98.89% 97.93% 97.52% 97.49% 97.27% 97.29%
Experiment dep. time ret. time class price connections airline

AirConcierge 49.60% 52.46 % 42.74% 37.60% 95.36% 42.12%

Table 3: Performance of each $VALUE slot to be generated in the query.

figure, the inference time of AirConcierge remains
short as the KBs grows larger. On the contrary, the
baseline model, AirDialogue , requires obviously
more inference time: when the KBs are 70 times
larger, AirDialogue takes 5 times longer to com-
plete the dialogue. We also compare the memory
consumption of AirConcierge with that of AirDia-
logue. In Figure 4, it is shown that AirConcierge
consumes a constant amount of memory regardless
of the KBs size, while AirDialogue requires more
memory as the KBs size grows. This indicates
that AirConcierge is scalable from the aspect of
memory consumption as well.

We inflate the size of KBs by augmenting ad-
ditional data records. To generate a variant data
record, we choose an existing ground-truth record
and modify the values of some of its columns. The
modified column value is sampled from a prior dis-
tribution defined for that column. We experiment
with different numbers of columns to modify. For
an augmentation where the last i columns subject
to variations, we denote such an augmentation as
“#Augment-column-i”.

Intuitively, the more columns are subject to vari-
ations, the more diverse the records are. Therefore,
fewer records will match the query when more
columns are subject to variations. This is shown
in Figure 5. When more records are added in the
KBs, for an augmentation that has more variant
columns (e.g., #Augment-column-10), the growth
of the number of records returned for a SQL query
is slower than the growth experienced by augmenta-
tion with fewer variation columns (e.g., #Augment-
column-6). This also illustrates the importance of
having a high-quality SQL Generator. Since gener-

Figure 5: Number of returned data from different aug-
ment types of KBs using SQL queries generated by our
model.

ating precise SQL queries can effectively cut down
the data records to be considered.

5 Conclusions

We propose AirConcierge, a task-oriented dialogue
system that has high accuracy in achieving the
user’s tasks. By employing a subsystem, includ-
ing a Dialogue State Tracker and a SQL Generator,
AirConcierge can issue a precise SQL query at the
right time during a dialogue and retrieve relevant
data from KBs. As a result, AirConcierge can han-
dle large-scale KBs efficiently, in terms of shorter
processing time and less memory consumption. Us-
ing a precise SQL query also filters out noise and
irrelevant data from the KBs, which improves the
quality of the dialogue responses. Our experiments
demonstrate the better performance and efficiency
of AirConcierge, over the previous work.

892

References
Antoine Bordes, Y-Lan Boureau, and Weston Jason.

2017. Learning end-to-end goal-oriented dialog. In
ICLR.

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. ArXiv, abs/1412.3555.

Anoop Deoras and Ruhi Sarikaya. 2013. Deep belief
network based semantic taggers for spoken language
understanding. In INTERSPEECH.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. In ACL.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine
Bordes, Sumit Chopra, Alexander H. Miller, Arthur
Szlam, and Jason Weston. 2016. Evaluating prereq-
uisite qualities for learning end-to-end dialog sys-
tems. CoRR, abs/1511.06931.

Mihail Eric and Christopher D. Manning. 2017. Key-
value retrieval networks for task-oriented dialogue.
In SIGDIAL.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

Kyungduk Kim, Cheongjae Lee, Sangkeun Jung, and
Gary Geunbae Lee. 2008. A frame-based probabilis-
tic framework for spoken dialog management using
dialog examples. In SIGDIAL Workshop.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Wenqiang Lei, Xisen Jin, Zhaochun Ren, Xiangnan
He, Min-Yen Kan, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In ACL.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng
Gao, and Asli Çelikyilmaz. 2017. End-to-end
task-completion neural dialogue systems. ArXiv,
abs/1703.01008.

Bing Liu and Ian Lane. 2017. An end-to-end trainable
neural network model with belief tracking for task-
oriented dialog. ArXiv, abs/1708.05956.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung.
2018. Mem2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. ArXiv, abs/1804.08217.

Christopher D. Manning and Mihail Eric. 2017. A
copy-augmented sequence-to-sequence architecture
gives good performance on task-oriented dialogue.
In EACL.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary Devito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In
NIPS-W.

Alexander I. Rudnicky, Eric H. Thayer, Paul C. Con-
stantinides, Chris Tchou, R. Shern, Kevin A. Lenzo,
Weiyang Xu, and Alice H. Oh. 1999. Creating natu-
ral dialogs in the carnegie mellon communicator sys-
tem. In EUROSPEECH.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron C. Courville, and Joelle Pineau. 2016. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. In AAAI.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In NIPS.

Wei Wei, Quoc V. Le, Andrew M. Dai, and Jia Li. 2018.
Airdialogue: An environment for goal-oriented dia-
logue research. In EMNLP.

Tsung-Hsien Wen, David Vandyke Lina Maria Rojas-
Barahona, Milica Gasic, Nikola Mrksic, Pei hao
Su, Stefan Ultes, and Steve J. Young. 2016. A
network-based end-to-end trainable task-oriented di-
alogue system. In EACL.

Jason Weston, Sumit Chorpa, and Antoine Bordes.
2014. Memory networks. arXiv:1410.3916.

Chien-Sheng Wu, Richard Socher, and Caiming Xiong.
2019. Global-to-local memory pointer networks for
task-oriented dialogue. ArXiv, abs/1901.04713.

Xiaojun Xu, Chang Liu, and Dawn Song. 2018. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. In ICLR.

Xuesong Yang, Yun-Nung Chen, Dilek Z. Hakkani-Tür,
Paul Crook, Xiujun Li, Jianfeng Gao, and Li Deng.
2017. End-to-end joint learning of natural language
understanding and dialogue manager. 2017 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5690–5694.

Steve J. Young, Milica Gasic, Blaise Thomson, and Ja-
son D. Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101:1160–1179.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
NAACL.

893

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze Shi,
Zihan Li, Youxuan Jiang, Michihiro Yasunaga, Sun-
grok Shim, Tao Chen, Alexander R. Fabbri, Zifan Li,
Luyao Chen, Yuwen Zhang, Shreya Dixit, Vincent
Zhang, Caiming Xiong, Richard Socher, Walter S.
Lasecki, and Dragomir R. Radev. 2019a. Cosql: A
conversational text-to-sql challenge towards cross-
domain natural language interfaces to databases. In
EMNLP/IJCNLP.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018b. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In
EMNLP.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David N Proctor, Sungrok Shim, Jonathan Kraft,
Vincent Zhang, Caiming Xiong, Richard Socher,
and Dragomir R. Radev. 2019b. Sparc: Cross-
domain semantic parsing in context. In ACL.

Tiancheng Zhao and Maxine Eskénazi. 2016. Towards
end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In
SIGDIAL Conference.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

Victor Zue. 2000. Conversational interfaces: advances
and challenges. Proceedings of the IEEE, 88:1166–
1180.

Victor Zue, Stephanie Seneff, James R. Glass, Joseph
Polifroni, Christine Pao, Timothy J. Hazen, and
I. Lee Hetherington. 2000. Juplter: a telephone-
based conversational interface for weather informa-
tion. IEEE Trans. Speech Audio Process., 8:85–96.

A Appendices

A.1 Data Statistics
For the data records in the KBs, each of them
is generated using the prior distributions defined
in Table 4. In section 4.5, we conduct experi-
ments under different scales of the KBs, where the
newly augmented records are generated according
to these prior distributions. The original AirDia-
logue dataset contains 30 records in the KBs, and
we augment the KBs to “10x.”, “50x.”, and “70x.”.
That is, we additionally add 270 records, sampled
according to the prior distributions, into the “10x.”
KBs. Similar things are done to the “50x.” KBs
and “70x.” KBs.

A.2 Qualitative Analysis

We provide samples of dialogues generated by our
agent and the user simulator under the self-play
evaluation. The user simulator has a pre-defined
intent that belongs to one of the three: “book”,
“change”, “’cancel’, as well as a list of travel con-
straints. On the other hand, responses provided
by the agent may result in one of the five ac-
tions: booked”, “changed”, “cancelled”, “no flight
found”, “no reservation”. The user intent “book”
could lead to the agent action “booked” or “no
flight found”, while both “change” and “cancel”
may lead to “no reservation”. However, the user in-
tent “change” could be successfully achieved, and
result in the agent action “changed”. Similarly,
“cancel” could lead to “cancelled”.

We show several samples according to the
agent’s action. First, Table 5 shows the two sam-
ples of the agent action “booked”. We see that the
user tends to provide the destination and return air-
port codes spontaneously, followed by the agent
requiring the travel dates. After the ticket is found,
the agent informs the user about the flight details,
which is a human-like behaviour. Finally, the ticket
is confirmed by the user, and both the user and
agent ends the dialogue through the thankfulness.

Table 6 shows the samples for the action
“changed”. At the beginning, the user and the
agent greets with each other. Then, the user not
only expresses the intent to change the flight, but
also gives a reason for changing. We see that the
agent learns to judge whether the user has provided
his/her name. In the first, or say upper, sample,
the user mentioned his/her name right after greet-
ing, and hence the agent go through to check the
KBs. However, in the second, or say lower, sample,
the agent identified that the user hasn’t told his/her
name yet, so the agent requires the name before
querying the KBs.

For the action “cancelled”, samples are provided
in Table 7. We observe similar patterns to the action
“changed”. The user first describes the need to
cancel the ticket, and followed by the agent asking
the name if necessary. Lastly, the agent found the
ticket and confirm the cancellation with the user.

Table 8 provides the samples of the action “no
flight found”. Similar to the samples of “booked”,
the user describes the travel constraints and ask
to book a ticket. The difference is that the agent
could not find a matched flight, and thus responds
with no flight available. One thing special is that

894

feature dep./ret.city dep./ret. month dep./ret. day dep./ret. time
range categorical 1-12 1-31 00-23
prob. uniform uniform uniform uniform

feature class price connections airline
range business,economy 0-5000 0,1,2 categorical

prob.
economy (7%)
business (3%)

any (90%)

≤200 (25%)
≤500 (25%)
≤1000 (25%)

any (25%)

0 (7%) 1 (90%)
any (3%)

standard fare (5%)
UA, Delta

AA, Hawaiian any (95%)

Table 4: Flight features of the AirDialogue dataset.

Samples of dialogues with state “booked”.

Usr Hello .
Agt Hello . How can I help you ?
Usr I am Dennis Carter . I am planning to visit Detroit , can you please book me a ticket from AUS to DTW ?
Agt Sure , I will help you to book a flight ticket . Can you please share me your travelling dates ?
Usr My preferable journey dates are from 03/19 to 03/21 .
Agt Ok , give me a moment .
Usr Sure , take your own time .
Agt Here , I found a flight for you with single connection . flight number is <fl 1020> .
Usr Please book my ticket with this airlines .
Agt Your ticket is booked .
Usr Thank you for booking my ticket .
Agt Welcome .

Usr Hello .
Agt Hello , how may I help you ?
Usr I am Andrew Young . I want to book a flight ticket from DCA to MSP . Could you help me in booking ?
Agt Sure , may I know your trip dates please ?
Usr My travelling dates are from May 10 - 12 .
Agt Do you have any other requirements ?
Usr I need a connecting flight .
Agt Ok , please wait .Ok , please wait .
Usr Sure .
Agt Thank you for waiting and we have found a flight in economy class with 1 connection in Spirit airlines and the fare of

your flight will be 200 . Do you like me to proceed your booking with this flight ? flight number is <fl 1026> .
Usr Please proceed .
Agt Ok , your ticket is booked .
Usr Thank you .
Agt Most welcome .

Table 5: Samples of dialogues with state “booked”.

895

Samples of dialogue with state “changed”.

Usr Hello .
Agt Hello . How can I help you ?
Usr I am Jeffrey Miller . I want to change my existing reservation due to postpone of my exams . Can you please help me

with this ?
Agt Sure , please wait for a while .
Usr sure .
Agt I found your reservation , can you please share your travelling dates ?
Usr My travelling dates are July 28 and July 30 .
Agt Can I know your airport codes ?
Usr My airport codes are PHL and MSP .
Agt Do you have any other specifications ?
Usr No .
Agt Ok , please wait for a while .
Usr Sure .
Agt There is a flight with single connection in UA airlines and the ticket fare is 200 only . Can I book the ticket for you ?

flight number is <fl 1025> .
Usr You can proceed .
Agt Your ticket is confirmed in economy class .
Usr Thank you .
Agt Thank you for choosing us .

Usr Hello .
Agt Hello . How can I help you ?
Usr I want to change my existing reservation due to postpone of my exams . Can you please help me with this ?
Agt Sure , I will help you to change your reservation .
Usr Thank you .
Agt May I know your name please ?
Usr My name is David Martinez .
Agt Ok , please wait a moment .
Usr Sure .
Agt Thank you for waiting , I have found your reservation and cancelled it successfully .
Usr Thank you for your help .
Agt Thank you for reaching us .

Table 6: Samples of dialogue with state “changed”.

Samples of dialogue with state “cancelled”.

Usr Hello .
Agt Hello . How can I help you ?
Usr I am Amy White . I want to cancel my recent reservation due to sudden cancellation of my trip . Can you help me ?
Agt Sure , I will help you to cancel your reservation .
Usr Thank you .
Agt Happy to inform you that we found a reservation on your name . Shall I cancel it ?
Usr Yes , please cancel it .
Agt Your ticket has been cancelled .
Usr Thank you for your help .
Agt Welcome .

Usr Hello .
Agt Hello . How can I help you ?
Usr I am Jacob Clark . I want to cancel my recent reservation due to sudden cancellation of my trip . Can you help me ?
Agt Sure , I will help you to cancel your reservation .
Usr Thank you .
Agt Please give me a moment .
Usr Sure .
Agt I found your reservation and I have successfully cancelled your reservation .
Usr Thank you for your help .
Agt Welcome .

Table 7: Samples of dialogue with state “cancelled”.

896

Samples of dialogue with state “no flight found”.

Usr Hello .
Agt Hello , how may I help you ?
Usr I am Paul Phillips . I am planning to attend music concert at CLT , can you please help me with booking a flight

ticket from BOS ?
Agt Sure , may I know your trip dates please ?
Usr Sure , I would like to take off on Mar 10 and return on Mar 12 .
Agt Do you have any other requirements ?
Usr Yes , I need a connecting flight .
Agt Please wait .
Usr Sure , take your time .
Agt Sorry , there are no flights available on your preferred dates .
Usr Ok , no issues . Thank you for checking .
Agt Thank you for choosing us .

Usr Hello .
Agt Hello , how may I help you ?
Usr I am Robert Lee . I am planning to visit Atlanta , will you help me in booking the flight ticket from PHL to ATL ?
Agt Sure , can I know your travelling dates ?
Usr My travelling dates are 10/03 and 10/05 .
Agt Sorry , there is no flight available on your route .
Usr That ’s ok , thank you for checking .
Agt Most welcome .

Table 8: Samples of dialogue with state “no flight found”.

Samples of dialogue with state “no reservation”.

Usr Hello .
Agt Hello . How can I help you ?
Usr I am Steven Allen . I want to change my existing reservation due to some health issues , can you please help me with

that ?
Agt Sure , I will help you to change your reservation .
Usr Thank you .
Agt Please give me a moment .
Usr Sure .
Agt Sorry , there is no reservation found on your name .
Usr Ok , no problem . Thank you for your information .
Agt Welcome .

Usr Hello .
Agt Hello , how may I help you ?
Usr I am Karen Gonzalez . I want to cancel my recent reservation due to sudden cancellation of my trip . Can you help

me ?
Agt Sure , please wait for a moment .
Usr Ok .
Agt Sorry , there is no reservation found on your name .
Usr No problem , thank you for the information .
Agt Thank you for reaching us .

Table 9: Samples of dialogue with state “no reservation”.

897

the agent responds no matching flight along with a
reason. For instance, the agent in the upper sample
mentions that no matching flights found is due to
the mismatching dates.

For “no reservation”, Table 9 shows the corre-
sponding samples, where the upper sample is with
the user intent “change” and the lower sample is
with the intent “cancel”. We see similar patterns
to samples of “changed” and “cancelled”. At the
beginning, the user says the intent of changing, or
cancelling, the ticket with some reason. The agent
asks for the name if needed, and confirm the action
of changing, or cancel, with the user.

