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Abstract

Dividing biomedical abstracts into several seg-
ments with rhetorical roles is essential for sup-
porting researchers’ information access in the
biomedical domain. Conventional methods
have regarded the task as a sequence label-
ing task based on sequential sentence classi-
fication, i.e., they assign a rhetorical label to
each sentence by considering the context in
the abstract. However, these methods have
a critical problem: they are prone to misla-
bel longer continuous sentences with the same
rhetorical label. To tackle the problem, we
propose sequential span classification that as-
signs a rhetorical label, not to a single sen-
tence but to a span that consists of continuous
sentences. Accordingly, we introduce Neural
Semi-Markov Conditional Random Fields to
assign the labels to such spans by consider-
ing all possible spans of various lengths. Ex-
perimental results obtained from PubMed 20k
RCT and NICTA-PIBOSO datasets demon-
strate that our proposed method achieved the
best micro sentence-F; score as well as the
best micro span-F; score.

1 Introduction

Dividing documents into several rhetorical seg-
ments is a fundamental task in natural language pro-
cessing (NLP). For example, abstracts in PubMed,
a database of the biomedical literature, can be di-
vided into rhetorical segments such as “Objective”,
“Methods”, “Results”, and “Conclusions”. Ab-
stracts segmented for each rhetorical role allows us
to exploit advanced search. That is, researchers can
easily find information by utilizing the structured
queries such as “find abstracts that contain ‘Covid-
19’ in ‘Objective’ and ‘Remdesivir’ in ‘Methods’”.
Furthermore, the technique can also be used for
NLP applications such as academic writing support
(Huang and Chen, 2017), scientific trend analysis
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(Prabhakaran et al., 2016), and question-answering
(Guo et al., 2013).

Most previous methods in PubMed have re-
garded the task as a sequence labeling, namely se-
quential sentence classification, that assigns rhetor-
ical labels with a B (egin) /I (nside) tag set
to each sentence while considering the context in
the abstract. To this end, some statistical meth-
ods with hand-engineered features have been pro-
posed, including Hidden Markov Models (HMMs)
(Lin et al., 2006) and Conditional Random Fields
(CRFs) (Hirohata et al., 2008; Kim et al., 2011;
Hassanzadeh et al., 2014). Recently, with the suc-
cess of neural network models for NLP tasks, Der-
noncourt et al. (2017) and Jin and Szolovits (2018)
have employed BiLSTMs to obtain sentence em-
beddings based on word embeddings and CRFs
for assigning labels to the sentences. Cohan et
al. (2019) employed a pre-trained language model,
SCIBERT (Beltagy et al., 2019), which is a variant
of BERT (Devlin et al., 2019) trained with scientific
papers, to improve the performance of classifica-
tion without CRFs.

Previous methods cast the segmentation with
the labeling as a sentence classification. However,
such methods have a critical problem: their per-
formances on longer spans' is not so good since
they are designed to maximize the prediction of
rhetorical roles for a small context.

To tackle the problem, we propose a novel ap-
proach, neural sequential span classification, that
directly gives the labels for the spans while consid-
ering all possible spans of various lengths in the ab-
stract. That is, our method is designed to maximize
the performance of classification at the span level
rather than the sentence level. Consequently, we in-
troduce Neural Semi-Markov Conditional Random
Fields (SCRFs) (Ye and Ling, 2018; Kemos et al.,

'In this paper, we call a segment as a “span”, which con-
sists of continuous sentences.
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Figure 1: Overview of the neural sequential span classification. In the example, five rhetorical labels, “Background”
(B), “Objective” (0), “Methods” (M), “Results” (R), and “Conclusions” (C) can be assigned to spans. The abstract
that consists of five sentences is segmented into four spans, span(l,1), span(2,2), span(3,4), and span(5,5), and

these spans are labeled as B, M, R, and C, respectively.

2019) to handle spans of the different lengths. To
demonstrate the effectiveness of method, we con-
ducted experimental evaluations on two benchmark
datasets, PubMed 20k RCT (Dernoncourt and Lee,
2017) and NICTA-PIBOSO (Kim et al., 2011). The
results show that our method achieved the best mi-
cro sentence-F; score of 93.1 and micro span-F;
score of 84.3 in the PubMed 20k RCT dataset, and
the best micro sentence-F; score of 84.4 and mi-
cro span-F; score of 58.7 in the NICTA-PIBOSO
dataset.

2 Proposed Method

To perform sequential span classification in an end-
to-end manner, we need to represent spans as vec-
tors and handle all possible sequences with various
lengths in the abstract. To this end, we introduce
BiLSTMs and Semi-Markov CRFs (SCRFs). Fig-
ure 1 shows an overview of our method. The BiL-
STMs layer generates span vectors from sentence
vectors incorporating the context in the abstract,
and the SCRFs layer learns the labeling of span
sequences by considering all possible sequences of
various lengths. The details are described below.

2.1 Span Representation

BiLSTMs have been successfully used to represent
spans as vectors in many NLP tasks such as se-
mantic role labeling (Ouchi et al., 2018), syntactic
parsing (Stern et al., 2017), and coreference reso-
lution (Lee et al., 2017). BiLSTMs use a forward-
LSTM function LSTM and backward-LSTM func-
tion i:STM, where the forward and backward hid-
den states of the ¢-th sentence are represented as

follows:
— ﬁ
fi = LSTM(fZ‘_l,SZ‘), bz = STM(bH_l,Si). (1)

Here, s; represents the embedding of the i-th sen-
tence. To obtain s;, we utilize BERT, which has
been pre-trained with PubMed (Peng et al., 2019).
We insert [CLS] tokens at the beginning and
[SEP] tokens at the end of sentences and then
extract vectors corresponding to [CLS] tokens in
the penultimate layer as sentence vectors. Finally,
we represent a span from the i-th sentence to the
J-th sentence as a veCtor, Vy,q, ;. 5), Which is a con-
catenation of four vectors as follows:

Vopan(i,j) = [fi—15bi; £jbj1]. (2)
2.2 Neural Semi-Markov CRFs

Neural SCRFs (Ye and Ling, 2018; Kemos et al.,
2019) learn parameters to maximize the log-
likelihood function, 3= log P(y}|X;), where
N is the number of training data, y7 is the cor-
rectly labeled sequence of spans for the j-th ab-
stract in the training data, and X is the sequence
of sentences in the j-th abstract. The conditional
probability, P(y|X), is obtained by applying the
softmax function to the score of a span sequence
as follows:

exp(score(X,y))
> ey exp(score(X,y’))

P(y[X) = 3)
Here, Y is the set of all possible labeled span se-
quences against X. We denote a labeled span se-
quence as y and its length as len(y). Then, we
represent the k-th span as a set of the start sen-
tence index, the end sentence index, and the label,
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(i, Jk, Lk ). The score of the labeled span sequence,
score(X,y), is defined as follows:

len(y) len(y)
score(X,y) = Z €(igju,ts) T Z [T
k=1 k=0

4)

The first term of the right-hand side of Equation (4)
denotes the sum of the span labeling scores. Here,
€(i,j,0) 18 defined as Wy - Vpqn(; j)- We denotes the
weight vector for the label . The second term
denotes the score of transition between labels. We
assume that no transition occurs between the same
rhetorical labels. The weight matrix for the labeling
‘W and the weight matrix for the transition between
labels T are the parameters, which are optimized
by using stochastic gradient descent (SGD). The
Viterbi algorithm is utilized to obtain the optimal
labeled span sequence.

3 Experiments

3.1 Dataset

We evaluated our method by two standard bench-
mark datasets, PubMed 20k RCT (Dernoncourt
and Lee, 2017) and NICTA-PIBOSO (Kim et al.,
2011).

PubMed 20k RCT consists of 200,000 PubMed
abstracts on randomized controlled trials annotated
with five rhetorical labels, “Background” (B), “Ob-
jective” (O), “Methods” (M), “Results” (R), and
“Conclusions” (C). PubMed 20k RCT was offi-
cially divided into 15,000 documents as the train-
ing dataset, 2,500 documents as the development
dataset, and 2,500 documents as the test dataset.

NICTA-PIBOSO consists of 1,000 biomedical
abstracts with 6 rhetorical labels, “Background”,
“Other”, “Intervention”, “Study design”, “Popula-
tion”, and “Outcome”. Since the dataset is rela-
tively small, we performed 10-fold cross-validation.
The ratio of the training dataset, the development
dataset, and the test dataset is 8:1:1.

3.2 Compared Methods

To demonstrate the effectiveness of sequential span
classification, we compared it with a combination
of sequential sentence classification methods, BiL.-
STMs+CREFs as a simple baseline, and two state-
of-the-art methods, i.e., those of Jin and Szolovits
(2018) and Cohan et al. (2019).

As with our method, BiLSTMs+CRFs employ
sentence vectors obtained from BERT pre-trained

with PubMed (Peng et al., 2019). Thus, the differ-
ence between our method and BiILSTMs+CRFs is
whether CRFs or SCRFs are used for the sequence
labeling.

Jin and Szolovits (2018) is also based on the
BiLSTMs+CRFs framework. However, the sen-
tence vectors used as input to the BILSTMs layers
are generated by considering the importance of
words by using word-based BiRNN with attention.
Cohan et al. (2019) obtain the sentence vectors
from SCIBERT (Beltagy et al., 2019). Unlike our
method, they extract vectors corresponding to to-
kens [SEP ], which are inserted into the sentence
boundary, from the top-layer as sentence vectors.

3.3 Model Parameters

We used the batch size of 30, the hidden layer size
of 50, 100, or 200, and the learning rate of 0.005,
0.01, 0.02, or 0.05 as hyperparameters. The param-
eters of all methods are optimized with the training
dataset,” and the hyperparameters are tuned with
the development dataset.’

3.4 Evaluation Measures

As evaluation measures, we employ the micro
sentence-F; score, a de-fact standard evaluation
measure to measure the performance of the label-
ing at the sentence level and the micro span-F;
score to measure the performance of the labeling
at the span level.* Sentence-F; is defined as a
harmonic mean of sentence-precision and sentence-
recall based on a perfect match of sentence-by-
sentence labels (e.g., “Background”, “Method”).
However, we believe that sentence-F; is not suit-
able for measuring the performance of the segmen-
tation. For example, when an abstract consists of
five sentences with the gold label sequence, ‘B-M-
M-R-C’ and a prediction, ‘B-M-R-R-C’ are given,
sentence-precision and sentence-recall are 4/5 and
sentence-F; is also 4/5. While the result seems that
the prediction performs well, the segmentation of
“Method” and “Results” are failed. Thus, we intro-
duced span-F; that is defined as a harmonic mean
of precision and recall based on a perfect match of
span-by-span labels. Span-F; of the above example
is lower than sentence-F; ; the score is 2/4.

2See the Supplemental Materials about the number of pa-
rameters, training time, and epochs.

3The best model is the hidden layer size of 100 and the
learning rate of 0.01.

“The hyperparameters are tuned to maximize the sentence-
F1 score.
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Sentence-F;  Span-F;
Proposed 93.1 84.3
BiLSTMs+CRFs 91.8 81.2
Jin and Szolovits 92.8 82.9
Cohan et al. 92.9 82.2

Table 1: Micro sentence-F; and span-F; scores ob-
tained from PubMed 20k RCT.

Sentence-F;  Span-F;
Proposed 84.4 58.7
BiLSTMs+CRFs 84.1 57.7
Jin and Szolovits 82.3 51.1
Cohan et al. 83.0 54.3

Table 2: Micro sentence-F; and span-F; scores ob-
tained from NICTA-PIBOSO.

3.5 Results

Tables 1 and 2 show the results for the micro-
averaged sentence-F; scores and span-F; scores
against PubMed 20k RCT and NICTA-PIBOSO, re-
spectively.’ The results of Jin and Szolovits (2018)
and Cohan et al. (2019) are obtained by running
their codes.®

Our method achieved the best scores for both
evaluation measures in both datasets. Remarkable
differences between our method and the other meth-
ods could be observed in span-F;. In particular, the
significant gain of our method’s score against Bil-
STMs+CRFs, which employs the same sentence
vectors as our method, implies that sequential span
classification performs better than sequential sen-
tence classification. We observe both sentence- and
span-F; scores in NICTA-PIBOSO are lower than
those in PubMed 20k RCT. We believe that the
results are caused by the small number of train-
ing data and the large number of rhetorical label
sequence types in the training data.’

We perform significant tests using the permuta-
tion test with Bonferroni correction at significance
level=0.05. There were significant differences be-
tween our method and BiLSTMs+CRFs, Jin and

3See the Supplemental Materials about validation perfor-
mance.

Their codes are available at
https://github.com/jindl11/
HSLN-Joint-Sentence-Classification and

https://github.com/allenai/sequential_
sentence_classification, respectively.

"The number of correct rhetorical label sequences of
PubMed 20k RCT and NICTA-PIBOSO are 45 and 168, re-
spectively.

Szolovits (2018), and Cohan et al. (2019) in span-
F1 of PubMed, between our method and Jin and
Szolovits (2018), and Cohan et al. (2019) in span-
F; of NICTA-PIBOSO. There were no significant
differences between our method and baselines in
sentence-F; scores on both datasets. As we men-
tioned before, we believe that span-F; is more
suitable than sentence-F; for measuring the per-
formance of the segmentation. Thus, the results
demonstrate the effectiveness of our method.

To evaluate the effectiveness of our method in
detail, we examined span-F; scores for each rhetor-
ical label. The results are shown in Tables 3 and 4.
In PubMed 20k RCT, our method achieved the best
scores on four rhetorical labels and a comparable
score for “Conclusions”. In NICTA-PIBOSO, our
method achieved the best scores on four rhetorical
labels. These results also indicate the effectiveness
of sequential span classification. In particular, sig-
nificant improvements were confirmed for “Back-
ground”, “Methods”, and “Results” in Pubmed 20k
RCT and “Background”, “Other”, and “Outcome”
in NICTA-PIBOSO, which contain a larger number
of sentences than the other rhetorical labels. This
is a significant advantage of sequential span classi-
fication over sequential sentence classifications.

Figure 2 shows the results of BiLSTMs+CRFs
and our proposed method for an abstract obtained
from PubMed 20k RCT. In the abstract, “Results”
consists of six sentences. BILSTMs+CRFs failed
the labeling of the last sentence in “Results.” As
a result, that failed the labeling of the two spans,
“Results” and “Conclusions”. On the other hand,
our method successfully labeled all spans.

4 Conclusions

In this paper, we proposed the neural sequential
span classification that directly assigns rhetorical
labels to each span in a biomedical abstract by
considering all possible spans of various lengths.
To perform this classification technique, we intro-
duced neural Semi-Markov CRFs. Evaluation re-
sults obtained from PubMed 20k RCT and NICTA-
PIBOSO datasets show that our method outper-
formed state-of-the-art sequential sentence clas-
sification methods. In other words, our method
achieved the best scores for both micro sentence-
and span-F; scores. In particular, we found a re-
markable improvement in the span-F; score. Fur-
thermore, the classification accuracy for long spans,
that is, rhetorical labels containing a larger num-
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Background Objective Methods Results Conclusions
# of sentences 2.6 1.5 4.1 4.2 1.8
Proposed 74.7 73.8 88.5 85.8 91.9
BiLSTMs+CRFs 70.2 68.6 85.8 83.1 90.1
Jin and Szolovits 73.8 73.8 86.7 83.1 90.8
Cohan et al. 70.6 70.8 86.3 83.9 92.0

Table 3: Average number of sentences in spans and span-F; scores for each rhetorical label in PubMed 20k RCT.

Background Other

Intervention Study design Population Outcome

# of sentences 2.8 2.6 1.3 1.0 1.1 52
Proposed 60.5 44.8 343 62.4 72.9 64.3
BiLSTMs+CRFs 57.7 43.5 38.1 64.7 72.6 63.5
Jin and Szolovits 53.5 34.0 31.7 64.1 70.8 51.4
Cohan et al. 55.5 41.0 36.9 63.0 69.9 57.4

Table 4: Average number of sentences in spans and span-F; scores for each rhetorical label in NICTA-PIBOSO.

Sentence

Gold Base

Prop.

Compare the effect of financial incentives on response to a cancer survivors’ postal questionnaire.

O

0]

[e)

3

Prostate cancer survivors in Ireland, 1.5-18 years after diagnosis, were randomized to the (1) “lottery’
arm [a 1 lottery scratch card sent with the questionnaire (n=2,413)] or (2) “prize” arm [entry into a
draw on return of a completed questionnaire (n=2,407)].

M

M

M

Impact of interventions on response overall and by survival period (“short term”: <5 years after
diagnosis; “long term”: 5 years after diagnosis) was compared as was cost-effectiveness.

Adjusted response rate was 54.4%.

Response was higher among younger men (P<0.001) and those with earlier stage disease (P=0.002).

A modest 2.6% higher response rate was observed in the lottery compared with the prize arm
[multivariate relative risk (RR)=1.06; 95% confidence interval (CI): 1.00, 1.11].
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When stratified by survival period , higher response in the lottery arm was only observed among
long-term survivors (multivariate RR=1.10; 95% CI: 1.02, 1.19; short-term survivors: RR=1.01; 95%
CI: 0.94, 1.09).

Costs per completed questionnaire were 4.54 and 3.57 for the lottery and prize arms, respectively.

Compared with the prize arm, cost per additional questionnaire returned in the lottery arm was 25.65.

Although more expensive, to optimize response to postal questionnaires among cancer survivors,
researchers might consider inclusion of a lottery scratch card.
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[@i==l-"}

Figure 2: Examples of label predictions for PubMed 20k RCT abstract by BILSTMS+CRFs (Base) and our pro-
posed method (Prop.). The PMID of the abstract is 25704725.

ber of sentences, e.g., “Methods”, “Results”, “Out-
come” was improved by our method.
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A Number of Parameters

Table 5 shows the number of parameters that are
optimized in the training phase. The methods of
Jin and Szolovits and Cohan et al. use word vec-
tors as input, while the proposed method and BiL-
STMs+CRFs use sentence vectors as input. This
is the reason why the number of parameters in
the proposed method and BiLSTMs+CRFs is much
smaller than that in the other two methods. If we re-
gard the parameters of BERT as a part of the param-
eters of our proposed methods and BILSTM+CRFs,
the number of parameters in the proposed method,
BiLSTMs+CRFs, and Cohan et al. is almost the
same.

# of parameters

Proposed 328,872
BiLSTMs+CRFs 329,069
Jin and Szolovits 10,663,048
Cohan et al. 110,058,391

Table 5: Number of parameters in each method.

B Training Time and Epochs

Table 6 shows the training time and the number of
epochs for PubMed 20k RCT. Table 7 shows the
average of training time and the average number



of epochs in 10-fold cross-validation for NICTA-
PIBOSO. We trained all models on a single Nvidia
GeForce GTX 1080 Ti GPU.

training time epochs

Proposed 3.24 x 10° 60
BiLSTMs+CRFs  5.40 x 103 30
Jin and Szolovits  1.35 x 10° 90
Cohan et al. 1.84 x 10° 2

Table 6: Training time (seconds) and the number of
epochs in the PubMed 20k RCT development dataset.

training time epochs
Proposed 4.15 x 10% 98.7
BiLSTMs+CRFs  1.94 x 102 19.4
Jin and Szolovits ~ 2.14 x 103 11.9
Cohan et al. 4.92 x 102 4.1

Table 7: Training time (seconds) and the number of
epochs in the NICTA-PIBOSO development dataset.

C Validation Performance

Tables 8 and 9 show the validation performance on
PubMed 20k RCT and NICTA-PIBOSO develop-
ment datasets, respectively.

sentence-F;  span-F;

Proposed 93.2 83.5
BiLSTMs+CRFs 92.3 82.0
Jin and Szolovits 93.2 83.6
Cohan et al. 93.1 82.9

Table 8: Validation performance on the PubMed 20k
RCT development dataset.

sentence-F;  span-F;

Proposed 85.7 62.1
BiLSTMs+CRFs 85.8 62.5
Jin and Szolovits 82.4 53.3
Cohan et al. 84.3 57.2

Table 9: Validation performance on the NICTA-
PIBOSO development dataset.

877



