Rethinking Self-Attention:
Towards Interpretability in Neural Parsing

Khalil Mrini', Franck Dernoncourt?, Quan Tran?,
Trung Bui’, Walter Chang?, and Ndapa Nakashole'

! University of California, San Diego, La Jolla, CA 92093

khalil@ucsd.edu,

nnakashole@eng.ucsd.edu

2 Adobe Research, San Jose, CA 95110

{franck.dernoncourt, gtran, bui, wachang}@adobe.com

Abstract

Attention mechanisms have improved the per-
formance of NLP tasks while allowing mod-
els to remain explainable. Self-attention is cur-
rently widely used, however interpretability is
difficult due to the numerous attention distri-
butions. Recent work has shown that model
representations can benefit from label-specific
information, while facilitating interpretation
of predictions. We introduce the Label At-
tention Layer: a new form of self-attention
where attention heads represent labels. We
test our novel layer by running constituency
and dependency parsing experiments and show
our new model obtains new state-of-the-art re-
sults for both tasks on both the Penn Treebank
(PTB) and Chinese Treebank. Additionally,
our model requires fewer self-attention layers
compared to existing work. Finally, we find
that the Label Attention heads learn relations
between syntactic categories and show path-
ways to analyze errors.

1 Introduction

Attention mechanisms (Bahdanau et al., 2014; Lu-
ong et al., 2015) provide arguably explainable atten-
tion distributions that can help to interpret predic-
tions. For example, for their machine translation
predictions, Bahdanau et al. (2014) show a heat
map of attention weights from source language
words to target language words. Similarly, in trans-
former architectures (Vaswani et al., 2017), a self-
attention head produces attention distributions from
the input words to the same input words, as shown
in the second row on the right side of Figure 1.
However, self-attention mechanisms have multiple
heads, making the combined outputs difficult to
interpret.

Recent work in multi-label text classification
(Xiao et al., 2019) and sequence labeling (Cui and
Zhang, 2019) shows the efficiency and interpretabil-
ity of label-specific representations. We introduce

731

Label Attention Head Self-Attention Head

q, o | 3 | WX Mx@xm‘x

%5
£
228 x
elect A
A- ﬂ;ﬁl’lt '
v person.

with output
from other
heads

Aggregating { \

Figure 1: Comparison of the attention head architec-
tures of our proposed Label Attention Layer and a Self-
Attention Layer (Vaswani et al., 2017). The matrix X
represents the input sentence “Select the person”.

the Label Attention Layer: a modified version of
self-attention, where each classification label corre-
sponds to one or more attention heads. We project
the output at the attention head level, rather than
after aggregating all outputs, to preserve the source
of head-specific information, thus allowing us to
match labels to heads.

To test our proposed Label Attention Layer, we
build upon the parser of Zhou and Zhao (2019) and
establish a new state of the art for both constituency
and dependency parsing, in both English and Chi-
nese. We also release our pre-trained parsers, as
well as our code to encourage experiments with the
Label Attention Layer '

2 Label Attention Layer

The self-attention mechanism of Vaswani et al.
(2017) propagates information between the words
of a sentence. Each resulting word representation

! Available at: GitHub.com/KhalilMrini/LAL-Parser

Findings of the Association for Computational Linguistics: EMNLP 2020, pages 731-742
November 16 - 20, 2020. (©2020 Association for Computational Linguistics

http://www.github.com/KhalilMrini/LAL-Parser

Example Input

The Label Attention Layer takes word vectors as input (red-contour
matrix). In the example sentence, start and end symbols are omitted.

Select

the

person

driving

Label Attention Layer

Q is a matrix of learned query vectors. There is
no more Query Matrix W<, and only one query
vector is used per attention head. Each label is
represented by one or more heads, and each
head may represent one or more labels.

The query vectors q r

Q
S
=

q,|95)|9,

represent the attention
weights from each head to
dimensions of input vectors.

Computing the matrix of

key vectors for the input.
Each head has its own %
learned key matrix WX,

-
- b3 ® b3 ®
% x% %
))))

Softmax and Dropout

Softmax and Dropout [Softmax and Dropout] [Softmax and Dropout }

vector of attention weights

The blue box outputs a
from each head to the {

Select

the
a, ||,

driving

Select

the
a, ||,

driving

words.

Figure 2: The architecture of the top of our proposed Label Attention Layer. In this figure, the example input

sentence is “Select the person driving”.

contains its own attention-weighted view of the
sentence. We hypothesize that a word represen-
tation can be enhanced by including each label’s
attention-weighted view of the sentence, on top of
the information obtained from self-attention.

The Label Attention Layer (LAL) is a novel,
modified form of self-attention, where only one
query vector is needed per attention head. Each
classification label is represented by one or more
attention heads, and this allows the model to learn
label-specific views of the input sentence. Figure 1
shows a high-level comparison between our Label
Attention Layer and self-attention.

We explain the architecture and intuition behind
our proposed Label Attention Layer through the
example application of parsing.

Figure 2 shows one of the main differences be-
tween our Label Attention mechanism and self-
attention: the absence of the Query matrix WQ.
Instead, we have a learned matrix Q of query vec-
tors representing each head. More formally, for
the attention head ¢ and an input matrix X of word
vectors, we compute the corresponding attention
weights vector a; as follows:

q; * Kz) 0

a; = softmax (

Vd

732

where d is the dimension of query and key vectors,
K, is the matrix of key vectors. Given a learned
head-specific key matrix WX, we compute K as:

K; = WKX ?2)

Each attention head in our Label Attention layer
has an attention vector, instead of an attention ma-
trix as in self-attention. Consequently, we do not
obtain a matrix of vectors, but a single vector that
contains head-specific context information. This
context vector corresponds to the green vector in
Figure 3. We compute the context vector c; of head
7 as follows:

3)

where a; is the vector of attention weights in Equa-
tion 1, and V; is the matrix of value vectors. Given
a learned head-specific value matrix W), we com-
pute V; as:

c,=a; xV;

V,=W/X)

The context vector gets added to each individual
input vector making for one residual connection
per head, rather one for all heads, as in the yellow
box in Figure 3. We project the resulting matrix of

Vector of attention weights | @ e
from the label to the words. NP | g

- ®
Computing the matrix of Wip i gg
value vectors for the input. |
Each label has its own x%
learned value matrix WY,

The green vector is an
attention-weighted sum of
value vectors. It represents
the input sentence as viewed ‘-
by the label. _

Select
the
person
driving

The sentence vector is
repeated and added to each
input vector.

The yellow vectors are word -
representations conscious

of the label’s view of the
sentence and the word they -
represent.

They are label-specific word
representations.

Figure 3: The Value vector computations in our pro-
posed Label Attention Layer.

word vectors to a lower dimension before normal-
izing. We then distribute the vectors computed by
each label attention head, as shown in Figure 4.

We chose to assign as many attention heads to
the Label Attention Layer as there are classification
labels. As parsing labels (syntactic categories) are
related, we did not apply an orthogonality loss to
force the heads to learn separate information. We
therefore expect an overlap when we match labels
to heads. The values from each head are identifi-
able within the final word representation, as shown
in the color-coded vectors in Figure 4.

The activation functions of the position-wise
feed-forward layer make it difficult to follow the
path of the contributions. Therefore we can remove
the position-wise feed-forward layer, and compute
the contributions from each label. We provide an
example in Figure 6, where the contributions are
computed using normalization and averaging. In
this case, we are computing the contributions of
each head to the span vector. The span represen-
tation for “the person” is computed following the
method of Gaddy et al. (2018) and Kitaev and Klein
(2018). However, forward and backward represen-

733

tations are not formed by splitting the entire word
vector at the middle, but rather by splitting each
head-specific word vector at the middle.

In the example in Figure 6, we show averaging
as one way of computing contributions, other func-
tions, such as softmax, can be used. Another way
of interpreting predictions is to look at the head-to-
word attention distributions, which are the output
vectors in the computation in Figure 2.

3 Syntactic Parsing Model
3.1 Encoder

Our parser is an encoder-decoder model. The
encoder has self-attention layers (Vaswani et al.,
2017), preceding the Label Attention Layer. We
follow the attention partition of Kitaev and Klein
(2018), who show that separating content embed-
dings from position ones improves performance.

Sentences are pre-processed following Zhou
and Zhao (2019). Trees are represented using a
simplified Head-driven Phrase Structure Grammar
(HPSG) (Pollard and Sag, 1994). In Zhou and Zhao
(2019), two kinds of span representations are pro-
posed: the division span and the joint span. We
choose the joint span representation as it is the
best-performing one in their experiments. Figure
5 shows how the example sentence in Figure 2 is
represented.

The token representations for our model are a
concatenation of content and position embeddings.
The content embeddings are a sum of word and
part-of-speech embeddings.

3.2 Constituency Parsing

For constituency parsing, span representations fol-
low the definition of Gaddy et al. (2018) and Kitaev
and Klein (2018). For a span starting at the i-th
word and ending at the j-th word, the correspond-
ing span vector s;; is computed as:

Sij = [Q—Eym—ﬁl} (%)

where E and ﬁl are respectively the backward and
forward representation of the ¢-th word obtained
by splitting its representation in half. An example
of a span representation is shown in the middle of
Figure 6.

The score vector for the span is obtained by ap-
plying a one-layer feed-forward layer:

S(Z,]) = WgRCLU(LN(Wlsij+b1))+b2 (6)

Label Attention
Head #1

E)

Label Attention

Label Attention
Head #4

Label Attention

Head #2 Head #3

J | J]

A word representation is a
concatenation of all of its

head-specific
Position-wise

representations. L
The Position-wise Feed-Forward Layer

Feed-Forward Layer

Position-wise Position-wise

Feed-Forward Layer Feed-Forward Layer

Position-wise

Feed-Forward Layer may {

) J 1
' !

optionally be removed. [1 [

hSelect

person driving

Figure 4: Redistribution of the head-specific word representations to form word vectors by concatenation. We use
different colors for each label attention head. The colors show where the head outputs go in the word representa-
tions. We do not use colors for the vectors resulting from the position-wise feed-forward layer, as the head-specific

information moved.

Joint Span Structure

N

Dependency Parse Tree

W ROOT Categ <S>

ROOT VB DT NN VBG HEAD Select
Select ~ the person driving |

1 2 3 4 Categ <VP>

HEAD Select

Constituency Parse Tree VB

S Select
| 1

Categ <NP>
HEAD person

VP Categ <NP> Categ <VP>

/\ HEAD person HEAD driving
VB NP A |
Sellm —— DT NN VBG
the person driving
NP v 2 s A
— |

DT
the
2

NN
person
3

VBG
driving
4

Figure 5: Parsing representations of the example sen-
tence in Figure 2.

where LN is Layer Normalization, and W1, Wy,
b; and by are learned parameters. For the [-th
syntactic category, the corresponding score s(, 7, 1)
is then the [-th value in the S(i, j) vector.

Consequently, the score of a constituency parse
tree T is the sum of all of the scores of its spans
and their syntactic categories:

s(T)

> s

(i.5,D€T

(7)

We then use a CKY-style algorithm (Stern et al.,
2017; Gaddy et al., 2018) to find the highest scor-
ing tree T'. The model is trained to find the correct
parse tree T, such that for all trees 7', the follow-
ing margin constraint is satisfied:

s(T") = s(T) + A(T, T7) ®)

where A is the Hamming loss on labeled spans.
The corresponding loss function is the hinge loss:

L. = max (0, maxp[s(T) + A(T,T*)] — s(T™))
)]

3.3 Dependency Parsing

We use the biaffine attention mechanism (Dozat
and Manning, 2016) to compute a probability dis-
tribution for the dependency head of each word.
The child-parent score «;; for the j-th word to be
the head of the i-th word is:

T
aij = h{® Wh + U (Y +vTh{P 15 (10)

where hi(d) is the dependent representation of the

i-th word obtained by putting its representation h;
through a one-layer perceptron. Likewise, h§h) is
the head representation of the j-th word obtained
by putting its representation h; through a separate
one-layer perceptron. The matrices W, U and V
are learned parameters.

The model trains on dependency parsing by min-
imizing the negative likelihood of the correct de-
pendency tree. The loss function is cross-entropy:

Lq

1D

= —log (P (hi|di) P (li|ds, hi))
where h; is the correct head for dependent d;,
P (hj|d;) is the probability that h; is the head of
d;, and P (l;|d;, h;) is the probability of the cor-
rect dependency label [; for the child-parent pair
(di, hi).

734

Computing Head Contributions

Label Attention Mechanism without a Position-wise Feed-Forward Layer

He—

Forward and backward

representations each
contain one half of the

head-specific information

of the word they represent. h

Select Select
Information on words out
of the span is removed.
For instance, the left
subtraction removes

person

person person driving driving

—

h

Select the ~ hdriving

Span Representation of

l

Prediction:

5 I A

—

information on “Select”
from the representation of
“Select the person”.

“the person”

Computing the

contributions from each
head to the span vector: we |
sum values from the same
head together and then
normalize and average.

Heads #1

Fraction of contribution from
the heads to the span vector

Noun Phrase (NP)

Normalization
and Average

Here, heads #1 and #2 have
the highest contributions to
predicting “the person” as a

2 #3 #4d noun phrase.

Figure 6: If we remove the position-wise feed-forward layer, we can compute the contributions from each label
attention head to the span representation, and thus interpret head contributions. This illustrative example follows

the label color scheme in Figure 4.

3.4 Decoder

The model jointly trains on constituency and de-
pendency parsing by minimizing the sum of the
constituency and dependency losses:

L=L.+Ly4 (12)

The decoder is a CKY-style (Kasami, 1966;
Younger, 1967; Cocke, 1969; Stern et al., 2017)
algorithm, modified by Zhou and Zhao (2019) to
include dependency scores.

4 Experiments

We evaluate our model on the English Penn Tree-
bank (PTB) (Marcus et al., 1993) and on the Chi-
nese Treebank (CTB) (Xue et al., 2005). We use
the Stanford tagger (Toutanova et al., 2003) to pre-
dict part-of-speech tags and follow standard data
splits.

Following standard practice, we use the EVALB
algorithm (Sekine and Collins, 1997) for con-
stituency parsing, and report results without punc-
tuation for dependency parsing.

4.1 Setup

In our English-language experiments, the Label At-
tention Layer has 112 heads: one per syntactic cat-
egory. However, this is an experimental choice, as

735

the model is not designed to have a one-on-one cor-
respondence between attention heads and syntac-
tic categories. The Chinese Treebank is a smaller
dataset, and therefore we use 64 heads in Chinese-
language experiments, even though the number of
Chinese syntactic categories is much higher. For
both languages, the query, key and value vectors,
as well as the output vectors of each label attention
head, have 128 dimensions, as determined through
short parameter-tuning experiments. For the de-
pendency and span scores, we use the same hyper-
parameters as Zhou and Zhao (2019). We use the
large cased pre-trained XL Net (Yang et al., 2019)
as our embedding model for our English-language
experiments, and a base pre-trained BERT (Devlin
et al., 2018) for Chinese.

We try English-language parsers with 2, 3, 4, 6,
8, 12 and 16 self-attention layers. Our parsers with
3 and 4 self-attention layers are tied in terms of F1
score, and sum of UAS and LAS scores. The results
of our fine-tuning experiments are in the appendix.
We decide to use 3 self-attention layers for all the
following experiments, for lower computational
complexity.

4.2 Ablation Study

As shown in Figure 6, we can compute the contribu-
tions from label attention heads only if there is no
position-wise feed-forward layer. Residual dropout

PFL | RD | Prec. | Recall F1 UAS LAS
Yes Yes | 96.47 96.20 | 96.34 | 97.33 | 96.29
No Yes | 96.51 96.15 | 96.33 | 97.25 | 96.11
Yes No | 96.53 96.24 | 96.38 | 97.42 | 96.26
No No | 96.29 96.05 | 96.17 | 97.23 | 96.11

Query Matrix and Query Vector and
Concatenation Matrix Projection
WX | wix q, oo | ¢ | WX @

Table 1: Results on the PTB test set of the ablation
study on the Position-wise Feed-forward Layer (PFL)
and Residual Dropout (RD) of the Label Attention
Layer.

QV | Conc. | Prec. | Recall F1 UAS | LAS
Yes | Yes 96.53 | 96.24 | 96.38 | 97.42 | 96.26
No | Yes 96.43 96.03 | 96.23 | 97.25 | 96.12
Yes | No 96.30 | 96.10 | 96.20 | 97.23 | 96.15
No | No 96.30 | 96.06 | 96.18 | 97.26 | 96.17

Table 2: Results on the PTB test set of the ablation
study on the Query Vectors (QV) and Concatenation
(Conc.) parts of the Label Attention Layer.

in self-attention applies to the aggregated outputs
from all heads. In label attention, residual dropout
applies separately to the output of each head, and
therefore can cancel out parts of the head contribu-
tions. We investigate the impact of removing these
two components from the LAL.

We show the results on the PTB dataset of our
ablation study on Residual Dropout and Position-
wise Feed-forward Layer in Table 1. We use the
same residual dropout probability as Zhou and
Zhao (2019). When removing the position-wise
feed-forward layer and keeping residual dropout,
we observe only a slight decrease in overall perfor-
mance, as shown in the second row. There is there-
fore no significant loss in performance in exchange
for the interpretability of the attention heads.

We observe an increase in performance when re-
moving residual dropout only. This suggests that all
head contributions are important for performance,
and that we were likely over-regularizing.

Finally, removing both position-wise feed-
forward layer and residual dropout brings about
a noticeable decrease in performance. We continue
our experiments without residual dropout.

4.3 Comparison with Self-Attention

The two main architecture novelties of our pro-
posed Label Attention Layer are the learned Query
Vectors that represent labels and replace the Query
Matrix in self-attention, and the Concatenation of
the outputs of each attention head that replaces the
Matrix Projection in self-attention.

In this subsection, we evaluate whether our pro-
posed architecture novelties bring about perfor-

o] | || o i | e [S
i | person

ﬁ Repeated .@ + X

Aggregating
with output seect
from other person

heads

Figure 7: The two hybrid parser architectures for the
ablation study on the Label Attention Layer’s Query
Vectors and Concatenation.

mance improvements. To this end, we establish
an ablation study to compare Label Attention with
Self-Attention. We propose three additional model
architectures based on our best parser: all models
have 3 self-attention layers and a modified Label
Attention Layer with 112 attention heads. The three
modified Label Attention Layers are as follows: (1)
Ablation of Query Vectors: the first model (left
of Figure 7) has a Query Matrix like self-attention,
and concatenates attention head outputs like Label
Attention. (2) Ablation of Concatenation: the
second model (right of Figure 7) has a Query Vec-
tor like Label Attention, and applies matrix pro-
jection to all head outputs like self-attention. (3)
Ablation of Query Vectors and Concatenation:
the third model (right of Figure 1) has a 112-head
self-attention layer.

The results of our experiments are in Table 2.
The second row shows that, even though query
matrices employ more parameters and computa-
tion than query vectors, replacing query vectors by
query matrices decreases performance. There is a
similar decrease in performance when removing
concatenation as well, as shown in the last row.
This suggests that our Label Attention Layer learns
meaningful representations in its query vectors, and
that head-to-word attention distributions are more
helpful to performance than query matrices and
word-to-word attention distributions.

In self-attention, the output vector is a matrix

736

Table 3: Constituency Parsing on PTB & CTB test sets.

projection of the concatenation of head outputs. In
Label Attention, the head outputs do not interact
through matrix projection, but are concatenated.
The third and fourth rows of Table 2 show that
there is a significant decrease in performance when
replacing concatenation with the matrix projection.
This decrease suggests that the model benefits from
having one residual connection per attention head,
rather than one for all attention heads, and from
separating head-specific information in word rep-
resentations. In particular, the last row shows that
replacing our LAL with a self-attention layer with
an equal number of attention heads decreases per-
formance: the difference between the performance
of the first row and the last row is due to the Label
Attention Layer’s architecture novelties.

4.4 English and Chinese Results

Our best-performing English-language parser does
not have residual dropout, but has a position-wise
feed-forward layer. We train Chinese-language
parsers using the same configuration. The Chinese
Treebank has two data splits for the training, de-
velopment and testing sets: one for Constituency
(Liu and Zhang, 2017b) and one for Dependency
parsing (Zhang and Clark, 2008).

Finally, we compare our results with the state
of the art in constituency and dependency pars-
ing in both English and Chinese. We show our
Constituency Parsing results in Table 3, and our
Dependency Parsing results in Table 4. Our LAL
parser establishes new state-of-the-art results in
both languages, improving significantly in depen-
dency parsing.

737

English Chinese English Chi

Model LR LP F1 LR LP L Model UASng lISJAS UAS me[iiS
Shen et al. (2018) 920 | 917 | 918 | 866 | 864 | 865
Fried and Klein (2018) | - - 02 |- R 87.0 Kuncoro et al. (2016) 94.26 | 92.06 | 88.87 | 87.30
Teng and Zhang (2018) | 922 | 925 | 924 | 86.6 | 88.0 | 87.3 Li et al. (2018) 94.11 | 92.08 | 88.78 | 86.23
Vaswani et al. (2017) - - 92.7 - - - .
Dyer et al. (2016))) 33 |-) 846 Ma and Hovy (2917) 94.88 | 92.98 | 89.05 | 87.74
Kuncoro et al. (2017) - - 936 | - R B Dozat and Manning (2016) 95.74 | 94.08 | 89.30 | 88.23
Charniak et al. (2016) - - 93.8 | - - - Choe and Charniak (2016) 959 |94.1 - -
Liu and Zhang (2017b) | 91.3 | 92.1 | 91.7 | 859 | 852 | 855
Lin and Zhans G017 | - ’ s | 8 o Ma et al. (2018) 95.87 | 94.19 | 90.59 | 89.29
Suzuki et al. (2018) - - 9432 | - - . Jietal. (2019) 95.97 | 9431 | - -
Takase et al. (2018) - - 94.47 Fernandez-Gonzélez and Gomez- | 96.04 | 94.43 | -
Fried et al. (2017) - - 94.66 Rodriguez (2019)
Kitaev and Klein (2018) | 94.85 | 95.40 | 95.13 | - - -
Kitaev et al. (2018) 95.51 | 96.03 | 95.77 | 91.55 | 91.96 | 91.75 Kuncoro et al. (2017) 958 | 946 |-
Zhou and Zhao (2019) | 95.70 | 95.98 | 95.84 | 92.03 | 92.33 | 92.18 Clark et al. (2018) 96.61 | 95.02 | -
(z]iERT') d Zhao (2019) | 9621 | 96.46 | 96.33 Wang etal. (2018) 96.35 | 9525 | - -
ey Zhao (019) | 36:21 | 9646, %6. Zhou and Zhao (2019) (BERT) | 97.00 | 95.43 | 91.21 | 89.15
Our work 96.24 | 96.53 | 96.38 | 91.85 | 93.45 | 92.64 Zhou and Zhao (2019) (XLNet) | 97.20 | 95.72 | - -

Our work 97.42 | 96.26 | 94.56 | 89.28

Table 4: Dependency Parsing on PTB & CTB test sets.

4.5 Interpreting Head Contributions

We follow the method in Figure 6 to identify which
attention heads contribute to predictions. We col-
lect the span vectors from the Penn Treebank test
set, and we use our LAL parser with no position-
wise feed-forward layer for predictions.

Figure 8 displays the bar charts for the three most
common syntactic categories: Noun Phrases (NP),
Verb Phrases (VP) and Sentences (S). We notice
several heads explain each predicted category.

We collect statistics about the top-contributing
heads for each predicted category. Out of the NP
spans, 44.9% get their top contribution from head
35, 13.0% from head 47, and 7.3% from head O.
The top-contributing heads for VP spans are heads
31 (61.1%), 111 (13.2%), and 71 (7.5%). As for S
spans, the top-contributing heads are 52 (48.6%),
31 (22.8%), 35 (6.9%), and 111 (5.2%). We see
that S spans share top-contributing heads with VP
spans (heads 31 and 111), and NP spans (head
35). The similarities reflect the relations between
the syntactic categories. In this case, our Label
Attention Layer learned the rule S — NP VP.

Moreover, the top-contributing heads for PP
spans are 35 (29.6%), 31 (26.7%), 111 (10.3%),
and 47 (9.4%): they are equally split between NP
spans (heads 35 and 47) and VP spans (heads 31
and 111). Here, the LAL has learned that both verb
and noun phrases can contain preposition phrases.

We see that head 52 is unique to S spans. Actu-
ally, 64.7% of spans with head 52 as the highest
contribution are S spans. Therefore our model has
learned to represent the label S using head 52.

All of the aforementioned heads are represented
in Figure 8. We see that heads that have low contri-
butions for NP spans, peak in contribution for VP

1.0 Spans

iiibition .

i predicted
04 as NP

(Noun Phrase)

10 Spans
08 Contritition Predicted

04 as VP
0.4 (Verb Phrase)

08 Contiifiiion Spans
06 Predicted
0.4 as$

(Sentence)

(%) suedg JO S10329 03 UOIINQLIIUOD) dSLIAY

0 3 s 47 #52 #71 111

T =
Attention Head Number

Figure 8: Average contribution of select heads to span
vectors with different predicted syntactic categories.

spans (heads 31, 71 and 111), and vice-versa (heads
0, 35 and 47). Moreover, NP spans do not share any
top-contributing head with VP spans. This shows
that our parser has also learned the differences be-
tween dissimilar syntactic categories.

4.6 Error Analysis

Head-to-Word Attention. We analyze prediction
errors from the PTB test set. One example is the
span “Fed Ready to Inject Big Funds”, predicted
as NP but labelled as S. We trace back the atten-
tion weights for each word, and find that, out of
the 9 top-contributing heads, only 2 focus their at-
tention on the root verb of the sentence (Inject),
while 4 focus on a noun (Funds), resulting in a
noun phrase prediction. We notice similar patterns
in other wrongly predicted spans, suggesting that
forcing the attention distribution to focus on a rele-
vant word might correct these errors.

Top-Contributing Heads. We analyze
wrongly predicted spans by their true category. Out
of the 53 spans labelled as NP but not predicted as
such, we still see the top-contributing head for 36 of
them is either head 35 or 47, both top-contributing
heads of spans predicted as NP. Likewise, for the
193 spans labelled as S but not predicted as such,
the top-contributing head of 141 of them is one of
the four top-contributing heads for spans predicted
as S. This suggests that a stronger prediction link
to the label attention heads, through a loss function
for instance, may increase the performance.

5 Related Work

Since their introduction in Machine Translation, at-
tention mechanisms (Bahdanau et al., 2014; Luong

738

et al., 2015) have been extended to other tasks, such
as text classification (Yang et al., 2016), natural lan-
guage inference (Chen et al., 2016) and language
modeling (Salton et al., 2017).

Self-attention and transformer architectures
(Vaswani et al., 2017) are now the state of the
art in language understanding (Devlin et al., 2018;
Yang et al., 2019), extractive summarization (Liu,
2019), semantic role labeling (Strubell et al., 2018)
and machine translation for low-resource languages
(Rikters, 2018; Rikters et al., 2018).

While attention mechanisms can provide expla-
nations for model predictions, Serrano and Smith
(2019) challenge that assumption and find that at-
tention weights only noisily predict overall impor-
tance with regard to the model. Jain and Wallace
(2019) find that attention distributions rarely cor-
relate with feature importance weights. However,
Wiegreffe and Pinter (2019) show through alter-
native tests that prior work does not discredit the
usefulness of attention for interpretability.

Xiao et al. (2019) introduce the Label-Specific
Attention Network (LSAN) for multi-label docu-
ment classification. They use label descriptions to
compute attention scores for words, and follow the
self-attention of Lin et al. (2017). Cui and Zhang
(2019) introduce a Label Attention Inference Layer
for sequence labeling, which uses the self-attention
of Vaswani et al. (2017). In this case, the key and
value vectors are learned label embeddings, and the
query vectors are hidden vectors obtained from a
Bi-LSTM encoder. Our work is unrelated to these
two papers, as they were published towards the end
of our project.

6 Conclusions

In this paper, we introduce a new form of self-
attention: the Label Attention Layer. In our pro-
posed architecture, attention heads represent labels.
We incorporate our Label Attention Layer into the
HPSG parser (Zhou and Zhao, 2019) and obtain
new state-of-the-art results on the Penn Treebank
and Chinese Treebank. In English, our results show
96.38 F1 for constituency parsing, and 97.42 UAS
and 96.26 LAS for dependency parsing. In Chi-
nese, our model achieves 92.64 F1, 94.56 UAS and
89.28 LAS.

We perform ablation studies that show the Query
Vector learned by our Label Attention Layer out-
perform the self-attention Query Matrix. Since
we have only one learned vector as query, rather

than a matrix, we can significantly reduce the num-
ber of parameters per attention head. Finally, our
Label Attention heads learn the relations between
the syntactic categories, as we show by computing
contributions from each attention head to span vec-
tors. We show how the heads also help to analyze
prediction errors, and suggest methods to correct
them.

Acknowledgements

We thank the anonymous reviewers for their helpful
and detailed comments.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Eugene Charniak et al. 2016. Parsing as language mod-
eling. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 2331-2336.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree Istm for natural language inference.
arXiv preprint arXiv:1609.06038.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331-2336, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914—
1925.

John Cocke. 1969. Programming languages and their
compilers: Preliminary notes.

Leyang Cui and Yue Zhang. 2019. Hierarchically-
refined label attention network for sequence labeling.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4106—
4119.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

739

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-2009.

Daniel Ferndndez-Gonzdlez and Carlos Gomez-
Rodriguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710-716.

Daniel Fried and Dan Klein. 2018. Policy gradient as
a proxy for dynamic oracles in constituency parsing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 469—476, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Daniel Fried, Mitchell Stern, and Dan Klein. 2017. Im-
proving neural parsing by disentangling model com-
bination and reranking effects. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
161-166.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
Whats going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999-1010.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543-3556.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based
dependency parsing with graph neural networks. In
Proceedings of the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 2475—
2485.

Tadao Kasami. 1966. An efficient recognition
and syntax-analysis algorithm for context-free lan-
guages. Coordinated Science Laboratory Report no.
R-257.

Nikita Kitaev, Steven Cao, and Dan Klein. 2018. Multi-
lingual constituency parsing with self-attention and
pre-training. arXiv preprint arXiv:1812.11760.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676-2686.

https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/P18-2075
https://doi.org/10.18653/v1/P18-2075

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1249—1258.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one MST parser. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1744—-1753, Austin, Texas. Asso-
ciation for Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3203-3214, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Jiangming Liu and Yue Zhang. 2017a. In-order
transition-based constituent parsing. Transactions
of the Association for Computational Linguistics,

5:413-424.

Jiangming Liu and Yue Zhang. 2017b. Shift-reduce
constituent parsing with neural lookahead features.
Transactions of the Association for Computational
Linguistics, 5:45-58.

Yang Liu. 2019. Fine-tune BERT for extractive sum-
marization. CoRR, abs/1903.10318.

Thang Luong, Hieu Pham, and Christopher D Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412-1421.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective MST parsing. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 59—69, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403-1414, Melbourne, Australia.
Association for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

740

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Matiss Rikters. 2018. Impact of corpora quality
on neural machine translation. arXiv preprint
arXiv:1810.08392.

Matiss Rikters, Marcis Pinnis, and Rihards Krislauks.
2018. Training and adapting multilingual nmt for
less-resourced and morphologically rich languages.
In Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation
(LREC-2018).

Giancarlo Salton, Robert Ross, and John Kelleher.
2017. Attentive language models. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 441-450.

Satoshi Sekine and Michael Collins. 1997. Evalb
bracket scoring program. URL: http://www. cs. nyu.
edu/cs/projects/proteus/evalb.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? arXiv preprint arXiv:1906.03731.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171-1180, Melbourne, Australia. Association for
Computational Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 818-827.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. arXiv preprint arXiv:1804.08199.

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto
Morishita, and Masaaki Nagata. 2018. An empirical
study of building a strong baseline for constituency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 612—-618.

Sho Takase, Jun Suzuki, and Masaaki Nagata. 2018.
Direct output connection for a high-rank language
model. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4599-4609.

Zhiyang Teng and Yue Zhang. 2018. Two local mod-
els for neural constituent parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 119-132, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180
https://www.aclweb.org/anthology/C18-1271
https://doi.org/10.1162/tacl_a_00045
https://doi.org/10.1162/tacl_a_00045
http://arxiv.org/abs/1903.10318
http://arxiv.org/abs/1903.10318
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/P18-1108
https://www.aclweb.org/anthology/C18-1011
https://www.aclweb.org/anthology/C18-1011

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173—180. Association for computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Wenhui Wang, Baobao Chang, and Mairgup Mansur.
2018. Improved dependency parsing using im-
plicit word connections learned from unlabeled data.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2857-2863, Brussels, Belgium. Association
for Computational Linguistics.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11-20.

Lin Xiao, Xin Huang, Boli Chen, and Liping Jing.
2019. Label-specific document representation for
multi-label text classification. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 466—475.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering, 11(2):207-238.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-1489.

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189-208.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based

741

and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562—
571, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on penn treebank. arXiv
preprint arXiv:1907.02684.

A Additional Experiment Results

We report experiment results for hyperparameter
tuning based on the number of self-attention layers
in Table 5.

https://doi.org/10.18653/v1/D18-1311
https://doi.org/10.18653/v1/D18-1311
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059

Self-Attention Layers | Precision | Recall F1 | UAS | LAS
2 96.23 | 96.03 | 96.13 | 97.16 | 96.09
3 96.47 | 96.20 | 96.34 | 97.33 | 96.29
4 96.52 | 96.15 | 96.34 | 97.39 | 96.23
6 96.48 | 96.09 | 96.29 | 97.30 | 96.16
8 96.43 | 96.09 | 96.26 | 97.33 | 96.15
12 96.27 | 96.06 | 96.16 | 97.24 | 96.14
16 96.38 | 96.02 | 96.20 | 97.32 | 96.11

Table 5: Performance on the Penn Treebank test set of our LAL parser according to the number of self-attention
layers. All parsers here include the Position-wise Feed-forward Layer and Residual Dropout.

742

