
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 669–677
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

669

Abstract

Transformers have shown great success in

learning representations for language

modelling. However, an open challenge

still remains on how to systematically

aggregate semantic information (word

embedding) with positional (or temporal)

information (word orders). In this work, we

propose a new architecture to aggregate the

two sources of information using cascaded

semantic and positional self-attention

network (CSPAN) in the context of

document classification. The CSPAN uses

a semantic self-attention layer cascaded

with Bi-LSTM to process the semantic and

positional information in a sequential

manner, and then adaptively combine them

together through a residual connection.

Compared with commonly used positional

encoding schemes, CSPAN can exploit the

interaction between semantics and word

positions in a more interpretable and

adaptive manner, and the classification

performance can be notably improved

while simultaneously preserving a compact

model size and high convergence rate. We

evaluate the CSPAN model on several

benchmark data sets for document

classification with careful ablation studies,

and demonstrate the encouraging results

compared with state of the art.

1 Introduction

Document classification is one of the fundamental

problems in natural language processing, which is

aimed at assigning one or multiple labels to a

(typically) short text paragraph. Wide applications

can be found in sentiment analysis (Moraes et al.,

2013; Tang et al., 2015)，subject categorization

* Corresponding author.

(Wang et al., 2012),spam email detection (Sahami

et al., 1998) and doc1ument ranking (Wang et al.,

2014). In recent years, deep neural networks have

shown great potential in document classification

and updated state-of-the-art performance. Popular

approaches include Recurrent neural networks

(RNN) (Yogatama et al., 2017), convolutional

neural networks (CNN) (Zhang et al., 2015) and

Attention-based methods (Transformers) (Gong et

al., 2019; Adhikari et al., 2019), or a mixture of

them.

Different lines of methods have their respective

pros and cons. For example, RNNs are highly

effective models for exploiting word orders in

learning useful representations, thanks to the

iterative update of the hidden states that depend on

both the semantics of the current word and that of

historical words (or a concise summary of them),

and the long-range dependency made possible

through LSTMs (Yang et al., 2016; Stephen et al.,

2018; Adhikari et al., 2019). Of course, the

sequential processing nature makes it less efficient

computationally. CNNs have gained huge success

in image procesing and classification and were

recently introduced to NLP domains like document

classification (Zhang et al., 2015; Lei et al.,2015;

Conneau et al., 2016; Kim and Yang, 2018; Kim,

2014).The local convolutional operator is

sensitive to word orders but only partially and

limited by the size of the kernel, and so long-term

relations may need many layers and therefore be

challenging. Transformers, different from both,

fully exploit the modelling power of self-attention

mechanism (Shen et al., 2018; Gao et al., 2018;

Zheng et al., 2018) and have significantly

improved state of the art in many NLP tasks such

as machine translation (Vaswani et al., 2017),

Cascaded Semantic and Positional Self-Attention

Network for Document Classification

Juyong Jiang1, Jie Zhang2, Kai Zhang3*
1College of Internet of Things Engineering, Hohai University, Nanjing, China

2Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
3Department of Computer & Information Sciences, Temple University, PA, USA

1jiangjuyong@hhu.edu.cn
2jzhang080@gmail.com, 3zhang.kai@temple.edu

mailto:jiangjuyong@hhu.edu.cn
mailto:jzhang080@gmail.com
mailto:zhang.kai@temple.edu

670

language understanding (Devlin et al., 2018) and

language modeling (Dai et al., 2019), etc.

Despite the great successes, how to

systematically aggregate the semantic information

(word embedding) with the positional information

(word orders) is still an open challenge in

transformers. A common practice is the positional

encoding (Vaswani et al., 2017), which encodes the

position of the 𝑡 th word as a 𝑑 -dimensional

sinusoidal vector, as

 𝑝𝑡,2𝑖 = 𝑠𝑖𝑛(𝑡/100002𝑖/𝑑) , (1)

 𝑝𝑡,2𝑖+1 = 𝑐𝑜𝑠(𝑡/100002𝑖/𝑑) . (2)

The positional vector of each word is then added

to the 𝑑 -dimensional word embedding vector, so

that subsequent predictors can numerically utilize

the temporal information. However, empirically,

adding positional vectors to the word vectors

brings little performance gains in document

classification, compared with when no positional

encoding is adopted at all (See Section 3.4 Table 5

for detailed empirical results).

There are two reasons which we believe are

related to the low performance gains from using

positional encodings. First, such a strategy leads to

an interaction (inner product) between the

semantic and temporal component that is hard to

interpret. To see this, let 𝑥𝑖 and 𝑝𝑖 be the word

vector and position vector for the 𝑖th word. Then

the attention score between 𝑖th and 𝑗th word will be

computed as (before normalization)

𝑒𝑖𝑗 = 〈𝑥𝑖 + 𝑝𝑖 , 𝑥𝑗 + 𝑝𝑗〉

 = 〈𝑥𝑖 , 𝑥𝑗〉 + 〈𝑝𝑖 , 𝑝𝑗〉 + 〈𝑥𝑖 , 𝑝𝑗〉

 + 〈𝑝𝑖 , 𝑥𝑗〉 (3)

where 〈∙,∙〉 denotes the inner product between two

vectors, and without loss of generality we have

assumed identity transforms in generating the key

and query views of each word.

Obviously, as the inner product between a word

vector and a positional vector, 〈𝑥𝑖 , 𝑝𝑗〉 and 〈𝑝𝑖 , 𝑥𝑗〉

do not bear meaningful interpretation. Therefore

these two terms could very likely hamper the

semantic attention term 〈𝑥𝑖 , 𝑥𝑗〉 and the positional

attention term 〈𝑝𝑖 , 𝑝𝑗〉 by behaving like noise, such

as deflating an important attention or exaggerating

a marginal one. This can negatively affect the

learned representations through the self-attention

mechanism. Indeed, similar observations were

made in (Yan et al., 2019), where the authors show

that the self-attention mechanism, when mixed

with the positional vectors, can no longer

effectively quantify the relative positional distance

between the words (namely the positional attention

term 〈𝑝𝑖, 𝑝𝑗〉 is perturbed in an undesired manner).

Second, the relative weights of the word vector

and the position vector (in their summation) is

hard-coded, leading to a fixed combination, while

in practice the relative importance of the semantic

and positional components in affecting the

similarity among the words can definitely be more

complex.

In order to solve these challenges with positional

encoding, we explore a new architecture in

combining the semantic and temporal information

in document classification, called “cascaded

semantic and positional self-attention network”

(CSPAN). There are three main characteristics of

the proposed architecture. First, instead of

combining the word vectors with positional vectors

from scratch, we choose to first explore the two

sources of information with their respective

processing layers, namely, a self-attention layer

that works only on the semantic space, and a Bi-

LSTM layer which further incorporates the

temporal order information in the updated word

representations. Second, these two layers are

cascaded so that sematic information and the

temporal information can be finally combined

through the use of a residual connection; this not

only avoids non-interpretable operations defined

between word vectors and positional vectors, but

also serves as an adaptive transformation in

combining the two information sources. Third, a

multi-query attention scheme is adopted to extract

multi-faceted, fixed dimensional document

features, which makes the resultant model highly

compact and memory efficient.

The CSPAN model is shown to effectively

improve performance of document classification in

comparison to several state-of-the-art methods

including transformer-styled architecture. In the

meantime, it demonstrates very compact model

size and fast convergence rate during the training

process, which is particularly desirable for large

problems. We also conducted careful ablation

studies to further quantify the performance gains of

each component of the CSPAN model.

Our study demonstrates the importance of the

way semantic and temporal information are

aggregated in capturing the structures and meaning

of documents, which we will continue exploring in

the more challenging language modelling tasks

671

such as sequence tagging (Huang et al., 2015),

natural language inference (Chen et al., 2016) and

modeling sentence pairs (Tan et al., 2018) in our

future research.

2 Method

The overall architecture of the proposed CSPAN

model is shown in Figure 1. It is a highly compact

model with three basic building blocks.

 First, we use a self-attention block to update the

word representations in each document. Here, the

embedding of each word will be collectively

affected by all other words with related semantics

in the same document. Note that we will not look

into any positional information in this stage.

Instead, the temporal information will be taken into

account in the next block, after the word

representations have been fully updated through

semantic self-attention alone. As we shall see, such

a sequential processing pipeline allows more

flexible combination of the semantic and positional

information.

Second, the updated word embeddings are fed

into a Bi-LSTM layer, so that the relative position

of the words are naturally exploited to further

refine the word representations specific to the

organization of each document. In the meantime, a

residual connection is adopted to combine the

semantic representation derived from the self-

attention block, together with the output derived

from the Bi-LSTM block; we call this ``Semantic

and Positional Residual Connection’’, because it

combines the semantic information (out of self-

attention block) with the positional information

(out of the Bi-LSTM block) using residual

connections. As we shall see, such a combination

is more flexible than directly combining word

vector with positional vector as in existing

positional encoding schemes.

Third, we adopt a multiple-query attention in the

final block to extract fixed-dimensional document

features for final classification. Compared with

multi-head attention, the multi-query attention can

significantly reduce the number of parameters in

the network, while giving promising classification

results. We describe the details of different

structures and components of our model in the

following sections.

2.1 Semantic Self-Attention

Self-attention as proposed by (Vaswani et al., 2017)

calculates attention weight between each pair of

objects to capture global correlations and improve

representation learning. We apply this framework

in computing the word representations since it can

capture long-range dependencies. However, we do

make a number of important rectifications which

prove to be quite useful in improving the

performance of document classification.

First, rather than using three independent

transformation matrices corresponding to the key,

value, and query views for each word, we discard

these transformations, and use the original word

vectors in all the three views. The reason is that we

want to activate a full, pairwise interaction between

the words in the original word embedding space

and then apply transformations in subsequent (Bi-

LSTM) layer, in order to maximally preserve the

power of self-attention based representation

learning. In comparison, if one chooses to apply

transformation (e.g. dimensionality reduction in

most cases), then chances are that the semantic

information encoded in the word vectors might

suffer certain losses before entering the next layer.

Empirically, we have observed that implementing

self-attention in the full-dimensional word vectors

leads to better performance than that on the lower

dimensional, transformed word-vectors.

 Second, rather than considering the use of the

positional information in self-attention, we choose

to implement self-attention only based on the

semantic information, and consider the positional

information in subsequent information processing

blocks. This in contrast to current practices in

Word

Embedding

Self Attention

Norm

Bi-LSTM

FC

Softmax

Output

Probabiliies

Norm



 Self Attention

Multi-Query

Soft Attention
m

Positional

Representation

Semantic

Representation

Figure 1: The architecture of the proposed CSPAN

model.

672

which the semantic information and positional

information of each word is used together in

calculating the self-attention coefficients. The

reason is that directly adding the word vector and

positional vector can lead to noisy fluctuations in

attention scores, as has been discussed in the

introduction. Therefore, the semantic information

will first be processed alone, and then subject to the

positional information through subsequent LSTM

layer, which is a more natural way of injecting

positional information.

Given these two design principles, our self-

attention block can be described as follows. Let the

input text sequence be 𝐷 = (𝑤1, 𝑤2, … , 𝑤𝐿) of 𝐿

elements where 𝑤𝑖 ∈ ℝ𝑑 is the i-th word

embedding. Self-attention compares each element

𝑤𝑖 to every other element 𝑤𝑗 in the sequence

followed by layer normalization. As a result, a new

sequence 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝐿) of the same length is

constructed, in which each element 𝑠𝑖 ∈ ℝ𝑑 is a

weighted average of all elements 𝑤𝑖 in the input

sequence, as

 𝑆 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐷, 𝐷, 𝐷)

 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐷𝐷𝑇

√𝑑
)𝐷 (4)

Here, the original word embedding matrix 𝐷 ∈

ℝ𝐿×𝑑 appears three times because we do not

differentiate among the key, value and query views.

The term 𝐷𝐷𝑇 is used to generate a weight matrix

based on the inner-product similarity of the

elements in the sequence. After normalization and

re-scaling, the weight matrix is multiplied with 𝐷

to generate the new sequence representation 𝑆 .

The self-attention can enhance the semantic

representation of word embeddings and capture

both the local and long-range dependencies.

2.2 Semantic and Positional Residual Connection

In the second block, we apply a Bi-LSTM layer to

inject temporal information in the word

representations computed via the self-attention

block. The Bi-LSTM is a powerful model in

handling sequential data, and is known to capture

long-term dependencies due to the use of the gating

mechanism (Graves and Schmidhuber, 2005).

Therefore this layer is supposed to further improve

the word representations obtained from the self-

attention layer, which proceeds as

 ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑠𝑡) (5)

 ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑠𝑡) (6)

 ℎ𝑡 = [ℎ⃗ 𝑡 , ℎ⃖⃗𝑡] (7)

 𝑃 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻,𝐻, 𝐻) (8)

Here, the word vectors obtained through the

self-attention layer, 𝑠𝑖′𝑠 ∈ ℝ𝑑 are fed into a single-

layer Bi-LSTM, and then the hidden state of the

LSTM in the forward and backward directions are

concatenated as ℎ𝑡 = [ℎ⃗ 𝑡 , ℎ⃖⃗𝑡] . Finally, another

self-attention layer is used to enhance the

representations 𝐻 = [ℎ1, ℎ2, … , ℎ𝐿] , followed by a

layer-wise normalization to obtain the position-

aware representations 𝑃 = (𝑝1 , 𝑝2, … , 𝑝𝐿).

Although LSTMs are known to handle long-

range dependencies, it can still be challenging in

long documents. Therefore, following the custom

in transformers (Vaswani et al., 2017), we use a

residual connection that combines the output of the

self-attention layer with that of the Bi-LSTM layer,

computed as shown below.

 𝐹𝑡
𝑠𝑝

= 𝑠𝑡 + 𝑝𝑡 (9)

Here, 𝑠𝑡 ∈ ℝ𝑑 represents the output of first

building block (Semantic self-attention), 𝑝𝑡 ∈ ℝ𝑑

stands for the output of second building blocks (Bi-

LSTM). To guarantee that the two vectors can be

added together, the hidden-state dimension of the

Bi-LSTM is chosen as half of the input dimension,

i.e., 𝑑/2, so that the concatenated hidden state from

the forward and backward direction (7) has the

same dimension as the input word vectors. By

combining the semantic and positional information,

we obtain a final, high-level representation of each

document.

The residual connection (He et al., 2016) has

shown to be highly useful in facilitating an

effective backpropagation so that the learning

process approaches a better model. In our context,

the residual connection has an interesting

interpretation of combining sematic and positional

information in an adaptive manner. Note that the

output of the self-attention layer is all about the

semantic component of the words; on the other

hand, the output of the Bi-LSTM layer can be

deemed as word representations that incorporated

the positional information, thanks to the sequential

processing nature of the Bi-LSTM. Besides, since

the output of the Bi-LSTM layer, its hidden state,

is a transformation of the input word vectors, we

can then consider the output of the residual

connection as an adaptive combination of the

semantic components and positional components.

This not only avoids the non-interpretability of

673

directly combining word vector with position

vectors, but also successfully adjusts their relative

importance through the learning of the

transformation matrices in the Bi-LSTM model.

We speculate that this is an important reason why

the proposed architecture can effectively improve

the classification performance.

2.3 Multi-Query Soft Attention

In the final block, we learn a number of query

vectors in the space of 𝐹𝑡
𝑠𝑝

 (9) so that each query

can capture a certain aspect of the meaning of the

document, in the form of a fixed-dimensional

feature (context) vector. This is in contrast to the

single-query attention where only a single query

vector is learned to summarize the content of a

document (Yang et al., 2016). It is worthwhile to

note that the multi-query attention in extracting

document features can be computationally more

effective than multi-head attention. In the latter

case, one attention head is associated with a

independent set of transformation matrices,

therefore the model size can be quite large. In

comparison, in our approach only multiple query

vectors need to be learned in the same latent space

of word representations, which has a much smaller

memory footprint.

More Specifically, the multi-query attention is

defined as follows.

 𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝐹𝑡
𝑠𝑝

𝑊ℎ + 𝑏ℎ) (10)

 𝛼𝑖𝑡 =
𝑒𝑥𝑝(𝑢𝑡

𝑇𝑄𝑖)

∑ 𝑒𝑥𝑝(𝑢𝑡
𝑇𝑄𝑖)𝑡

 (11)

 𝐹𝑖
𝑠𝑝𝑚𝑞

= ∑ 𝛼𝑖𝑡𝑡 𝐹𝑡
𝑠𝑝

 (12)

 �̃�𝑠𝑝𝑚𝑞 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1
𝑠𝑝𝑚𝑞

, … , 𝐹𝑚
𝑠𝑝𝑚𝑞

)𝑊𝑓 (13)

That is, we first feed the 𝐹𝑡
𝑠𝑝

∈ ℝ𝑑 through a

one-layer MLP to get 𝑢𝑡 ∈ ℝ𝑑 as a hidden

representation of 𝐹𝑡
𝑠𝑝

∈ ℝ𝑑 , then we measure the

importance of the word as the similarity of 𝑢𝑡 with

a query vector 𝑄𝑖 ∈ ℝ𝑑 and get a normalized

importance weight 𝛼𝑖 ∈ ℝ𝐿 through a softmax

function. The multi-query matrix is randomly

initialized and jointly learned during the training

process. After that, we compute the 𝐹𝑖
𝑠𝑝𝑚𝑞

∈ ℝ𝑑 as

a weighted sum of the 𝐹𝑡
𝑠𝑝

∈ ℝ𝑑 based on the

weighting. Finally, we concatenate all 𝐹𝑖
𝑠𝑝𝑚𝑞

vectors and then use a fusion matrix 𝑊𝑓 ∈ ℝ𝑚𝑑×𝑑

to get a high-level representation of each document.

Here we discuss in more detail the memory

footprint of the proposed multi-query attention, in

comparison and commonly used multi-head

attention. Let the dimension of the residual

connection be 𝑑; the number of query vectors be

𝑚. Then the model space complexity is 𝑂(𝑚𝑑 +

𝑑2). In comparison, if one adopts the multi-head

attention with 𝑚 attention heads, then the model

space complexity will be 𝑂(𝑚𝑑2) since each

attention head will have its own transformation

parameters. As can be seen, the memory saving is

almost proportional to the dimensionality; the

higher the word vector dimensions, the more

significant the memory saving. This will be a

desired property for real-world applications. It is

also worthwhile to note that the CSPAN model

only has 3 blocks, while the standard transformer

has a cascade of 6 layers of self-attention each of

which may require an independent set of

transformation matrices.

2.4 Classification Layer

In the final layer we apply a softmax classifier on

the document representation �̃�𝑠𝑝𝑚𝑞 to get a

predicted label �̂� , where �̂� ∈ 𝑌 and 𝑌 is the class

label set, i.e.,

 �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑌|�̃�𝑠𝑝𝑚𝑞) (14)

where

 𝑝(𝑌|�̃�𝑠𝑝𝑚𝑞) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜�̃�𝑠𝑝𝑚𝑞 + 𝑏𝑜) (15)

Here, 𝑊𝑜 and 𝑏𝑜 are the transformation matrix

and the bias term, respectively. Therefore, we can

use the negative log-likelihood to define the loss

function as follows:

 𝐿 = − log 𝑝(�̂�|�̃�𝑠𝑝𝑚𝑞) (16)

3 Experiments

In this section, we will report a number of

experimental results on 4 benchmark datasets for

document classification, together with careful

ablation studies to illustrate the effectiveness of the

building blocks of the proposed method.

3.1 Datasets and Methods

We evaluate the effectiveness of the proposed

CSPAN model on four document classification

datasets as in (Zhang et al., 2015). The detailed

statistics of the data sets are shown in Table 1.

AG’s News. Topic classification over four

categories of internet news articles composed of

titles plus description classified into: World,

Sports, Business and Sci/Tech. The number of

674

training samples for each class is 30,000 and test-

ing 1900.

Yelp Review Polarity. The same dataset of text

reviews from Yelp Dataset Challenge in 2015,

except that a coarser sentiment definition is

considered: 1 and 2 are negative, and 4 and 5 as

positive. The polarity dataset has 280,000 training

samples and 19,000 test samples in each polarity.

Yelp Review Full. The dataset is obtained from

the Yelp Dataset Challenge in 2015 on sentiment

classification of polarity star labels ranging from 1

to 5. The full dataset has 130,000 training samples

and 10,000 testing samples in each star.

Yahoo! Answer. Topic classification over ten

largest main categories from Yahoo Answers

Comprehensive Questions and Answers version

1.0: Society & Culture, Science & Mathematics,

Health, Education & Reference, Computers &

Internet, Sports, Business & Finance, Enter-

tainment & Music, Family & Relationships and

Politics & Government. The document we use

includes question titles, question contexts and best

answers. Each class contains 140,000 training

samples and 5,000 testing samples.

Methods. We have included altogether eleven

competing methods from (Zhang et al., 2015) and

(Gong et al., 2019). For our approach, we have two

versions: the CSPAN (base) using single-layer Bi-

LSTM and 16 query vectors, and CSPAN (big)

using three hidden layers in Bi-LSTM and 128

query vectors. We trained the base models for 30

epochs and the big models for 60 epochs.

3.2 Model configuration and training

In the experiments, we use 300-dimensional GloVe

6B pre-trained word embedding (Pennington et al.,

2014) to initialize the word embedding at

https://nlp.stanford.edu/projects/glove. We choose

150 hidden units for the Bi-LSTM models. The

Adam Optimizer (Kingma et al., 2014) with

learning rate of 1e-3 and weight decay of 1e-4 is

used to train the model parameters. The size of

mini-batch is set to 64 and the number of multi-

query to 16. We train all neural networks for 30

epochs and the learning rate divides by 10 at 20 and

25 epochs. All of our experiments are performed

on NVIDIA TITAN RTX GPUs, with PyTorch

1.1.0 as the backend framework.

3.3 Results and analysis

The experimental results on all data sets are shown

in Table 2. The results of the competing methods

are directly cited from the respective papers as

listed in Table 2.

From Table 2 we can see that CSPAN model

achieves the best performance on all the 4 datasets

of AG’s News, Yelp P, Yelp F. and Yahoo datasets

(rows 12/ 13), which demonstrates its effectiveness

in document classification. Particularly, CSPAN

consistently outperforms the baseline deep

learning networks using RNN/CNN, such as

LSTM, CNN-char and CNN-word by a substantial

margin on all datasets (rows 1, 2 and 3).

Compared to the CSPAN (base), the CSPAN (big)

gives a comparable or slightly better performance

on all the datasets. This observation shows that the

CSPAN actually prefers simpler models against

highly complex ones, which is an advantage for

large problems.

3.4 Ablation Study

Component-wise gains. To investigate the impact

of each of the key components of CSPAN model for

document classification, we conducted an ablation

study on the AG’s News dataset. Firstly, we

validate the impact of each component, including

semantic self-attention, semantic and positional

residual connection, and multi-query soft attention.

The results are shown in Table 3.

The standard Bi-LSTM baseline provides a test

accuracy of 89.36. As we expected, integrating

semantic self-attention significantly improved the

classification performance with test accuracy of

92.61. It shows that using self-attention can

Dataset Classes Train Test Average #s Max #s Average #w Max #w

AG’s News 4 120,000 7,600 1.3 15 46.6 277

Yelp Review Polarity 2 560,000 38,000 8.4 119 161.4 1345

Yelp Review Full 5 650,000 50,000 8.4 151 163.3 1418

Yahoo! Answers 10 1,400,000 60,000 5.7 515 115.9 2746

Table 1: Detailed statistics of the datasets: #s denotes the number of sentences (average and maximum per

document), #w denotes the number of words (average and maximum per document).

https://nlp.stanford.edu/projects/glove

675

enhance the semantic. Furthermore, integrating

residual connection improves the classification

performance from 92.61 to 93.03. Finally, when

multi-query attention is adopted, the classification

performance is significantly improved with an

overall gain of 4.32% over the baseline.

Model Size. As mentioned in (Adhikari et al.,

2019), increasingly complex network components

and modeling techniques are accompanied by

smaller and smaller improvements in effectiveness

on standard benchmark datasets. We have observed

similar trend in CSPAN, as shown in Table 4.

From Table 4, we can see that when the number

of hidden layer in Bi-LSTM is set to 3, the

performance can be worse than 1-layer or 2-layer

Bi-LSTMS (the latter with even less query vectors).

In other words, a compact Bi-LSTM is preferred.

On the other hand, the optimal number of query

vectors seems to be around 16 for 1-layer Bi-

LSTM; more query vectors than this brings limited

or even negative performance gains.

Fusion Methods. We also conducted extensive

comparative studies on the performance of

different ways in combining the semantic and the

positional information, as shown in Figure 2.

From Table 5,we can see that directly com-

bining the positional vector with the word vector

(fusion method (b), a “light-weight” transformer)

brings an improvement of 0.33% compared with

the baseline (method (a), without any positional

information). In addition, using relative positional

 Methods AGNews Yelp P. Yelp F. Yahoo

Zhang et al., 2015 LSTM 86.06 94.74 58.17 70.84

 CNN-char 89.13 94.46 62.02 69.98

 CNN-word 91.45 95.11 60.48 70.94

Gong et al., 2019 Deep CNN 91.27 95.72 64.26 73.43

 FastText 92.50 95.70 63.90 72.30

 HAN 92.36 95.59 63.32 75.80

 SASEM 91.50 94.90 63.40 -

 DiSAN 92.51 94.39 62.08 76.15

 LEAM 92.45 95.31 64.09 77.42

 SWEM 92.24 93.76 61.11 73.53

 HLAN 92.89 95.83 63.78 77.55

This paper CSPAN (base) 93.68 96.11 65.93 77.61

 CSPAN (big) 93.62 96.18 65.95 77.75

Table 2: Test accuracy of competing methods on benchmark document classification tasks, in percentage.

Layers

(BiLSTM)
Query Memory(MB) Accuracy

1 1 1557 92.84

1 8 1641 92.95

1 16 1739 93.68

2 8 1665 93.05

2 16 1765 92.88

2 32 1961 93.04

3 32 1997 92.92

3 64 2401 92.71

3 128 3201 93.14

Table 4: Impact of model size.

Component Accuracy

Standard Bi-LSTM(baseline) 89.36

+ self-att 92.61

+ residual 93.03

+ multi-query 93.68

Table 3: Impact of each building block in the

proposed CSPAN model on AG’s News dataset.

Methods Accuracy

(a) Embedding 92.38

(b) Embedding + Position 92.71

(c) Embedding + Relative-Position 92.39

(d) Embedding + Bi-LSTM 93.03

(e) Embedding // Bi-LSTM 93.68

Table 5: Different ways in combining the semantic and

the positional information and their accuracy on AG’s

News dataset.

676

encoding schemes (Shaw et al., 2018) (fusion

method (c)) leads to almost the same result as the

baseline method. If we use Bi-LSTM directly on

the input word vectors, i.e., a parallel combination

scheme of the semantic and positional information

(fusion method (d)), the performance gain

approaches 0.65%. Finally, the proposed fusion

scheme in CSPAN (fusion method (e)), i.e.,

sequential processing of semantic and positional

information equipped with a residual connection,

the performance gain is around 1.30%. This

comparative study clearly demonstrates the

advantage of the proposed CSPAN model in

combining semantic and positional information.

Computational Considerations. It is usually

believed that transformers are computationally

efficient by virtue of the parallel processing

pipeline associated with the self-attention

mechanism. However, empirically, we find that the

large model size and extensive, pairwise self-

attention cost can significantly slow down the

computation. For example, standard transformers

have 6 layers of self-attention in the encoding stage

alone, leading to a huge set of transformation

matrix parameters 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 and the cost of

back-propagation can be huge. On the other hand,

𝑂(𝑛2) time and space are needed in each layer in

computing the self-attention among a document of

𝑛 words. Therefore, standard transformer is time

consuming in our experimental evaluations and

typically won’t converge until after tens or even

100 epochs even on the smallest data set (AG’s

News). This is why we implemented and compared

with the “light-weight” version of transformers in

our experiments (e.g., method (b) in Figure 2). The

proposed CSPAN model, on the other hand, is

more compact and approaches a satisfactory result

in just a few epochs, and the time taken for each

epoch is also much less than standard transformers.

Therefore, our approach is computationally very

efficient, especially for classification of short or

median-length documents.

4 Conclusion

We presented the cascaded semantic and positional

self-attention to aggregate semantic and positional

information in document classification. It

overcomes the limitation of existing positional

encoding schemes, and shows encouraging

performance against state-of-the-art methods using

transformers and CNNs. In the meantime, it has a

compact model size and is computational efficient.

Our studies demonstrate the importance of

properly aggregating semantic and positional

components, and we will further extend it more

challenging NLP tasks in our future research.

Acknowledgments

Jie Zhang is supported by NSFC 61973086,

Shanghai Municipal Science and Technology

Major Project (No.2018SHZDZX01) and ZJ Lab.

References

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Docbert: Bert for document

classification. arXiv preprint arXiv:1904.08398.

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Rethinking complex neural

network architectures for document classification.

In NAACL-HLT, volume 1, pages 4046-4051.

Alexis Conneau, Holger Schwenk, Loıc Barrault, and

Yann Lecun. 2016. Very deep convolutional

networks for natural language processing. arXiv

preprint arXiv:1606.017812.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui

Bi-LSTM



Bi-LSTM

(d) (e)(a)

Positional

Encoding


(b)

Relative

Position

(c)

 Self Attention
Self AttentionSelf AttentionSelf Attention

Self Attention

Self Attention

Word Embedding Word Embedding Word Embedding Word EmbeddingWord Embedding

Figure 2: Different schemes of combining the semantic and position information for a comparative study, where

(b) corresponds to a “light-weight”-transformer, and (e) is the proposed architecture.

677

 Jiang, and Diana Inkpen. 2016. Enhanced lstm for

natural language inference. arXiv preprint

arXiv:1609.06038.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep

bidirectional transformers for language under-

standing. arXiv preprint arXiv:1810.04805.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime

Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.

2019. Transformer-xl: Attentive language models

beyond a fixed-length context. arXiv preprint

arXiv:1901.02860.

Shang Gao, Arvind Ramanathan, and Georgia Tourassi.

2018. Hierarchical convolutional attention net-

works for text classification. The Third Workshop

on Representation Learning for NLP.

Alex Graves and Jürgen Schmidhuber. 2005.

Framewise phoneme classification with bi-

directional LSTM and other neural network

architectures. Neural networks, 18(5-6): 602-610.

Changjin Gong, Kaize Shi, and Zhendong Niu. 2019.

Hierarchical Text-Label Integrated Attention Net-

work for Document Classification. Proceedings of

the 2019 3rd High Performance Computing and

Cluster Technologies Conference.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015.

Bidirectional LSTM-CRF models for sequence tag-

ging. arXiv preprint arXiv:1508.01991.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2016. Deep residual learning for image recog-

nition. In CVPR, pages 770-778.

Taehoon Kim, and Jihoon Yang. 2018. Abstractive text

classification using sequence-to-convolution neural

networks. arXiv preprint arXiv:1805.07745.

Yoon Kim. 2014. Convolutional neural networks for

sentence classification. arXiv: 1408.5882.

Diederik P. Kingma, and Jimmy Ba. 2014. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.

Molding cnns for text: non-linear, non-consecutive

convolutions. arXiv preprint arXiv:1508.04112.

Rodrigo Moraes, JoãO Francisco Valiati, and Wilson P.

GaviãO Neto. 2013. Document-level sentiment

classification: An empirical comparison between

SVM and ANN. Expert Systems with Applications,

40(2): 621-633.

Stephen Merity, Nitish Shirish Keskar, and Richard

Socher. 2018. Regularizing and optimizing LSTM

language models. In ICLR.

Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. 2014. Glove: Global vectors for word

representation. In EMNLP.

Mehran Sahami, Susan Dumais, David Heckerman,

and Eric Horvitz. 1998. A Bayesian approach to

filtering junk e-mail. In Learning for Text Cate-

gorization: Papers from the 1998 workshop,

volume 62, pages 98-105.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.

2018. Self-attention with relative position repre-

sentations. arXiv preprint arXiv:1803.02155.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, and

Chengqi Zhang. 2018. Bi-directional block self-

attention for fast and memory-efficient sequence

modeling. arXiv preprint arXiv:1804.00857.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document

modeling with gated recurrent neural network for

sentiment classification. In EMNLP.

Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv,

and Ming Zhou. 2018. Multiway Attention

Networks for Modeling Sentence Pairs. In IJCAI.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In NIPS, pages 5998-6008.

Mingqiang Wang, Mengting Liu, Shi Feng, Daling

Wang, and Yifei Zhang. 2014. A novel calibrated

label ranking based method for multiple emotions

detection in Chinese microblogs. In Natural

Language Processing and Chinese Computing,

pages 238-250.

Sida Wang, and Christopher D. Manning. 2012.

Baselines and bigrams: Simple, good sentiment and

topic classification. In ACL.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,

Alex Smola, and Eduard Hovy. 2016. Hierarchical

attention networks for document classification. In

NAACL-HLT, pages1480-1489.

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu.

2019. TENER: Adapting Transformer Encoder for

Name Entity Recognition. arXiv preprint

arXiv:1911.04474.

Dani Yogatama, Chris Dyer, Wang Ling, and Phil

Blunsom. 2017. Generative and discriminative text

classification with recurrent neural networks. arXiv

preprint arXiv:1703.01898.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.

Character-level convolutional networks for text

classification. In NIPS.

Jianming Zheng, Fei Cai, Taihua Shao, and Honghui

Chen. 2018. Self-interaction attention mechanism-

based text representation for document classi-

fication. Applied Sciences, 8(4): 613.

