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Abstract 

Transformers have shown great success in 

learning representations for language 

modelling. However, an open challenge 

still remains on how to systematically 

aggregate semantic information (word 

embedding) with positional (or temporal) 

information (word orders). In this work, we 

propose a new architecture to aggregate the 

two sources of information using cascaded 

semantic and positional self-attention 

network (CSPAN) in the context of 

document classification. The CSPAN uses 

a semantic self-attention layer cascaded 

with Bi-LSTM to process the semantic and 

positional information in a sequential 

manner, and then adaptively combine them 

together through a residual connection. 

Compared with commonly used positional 

encoding schemes, CSPAN can exploit the 

interaction between semantics and word 

positions in a more interpretable and 

adaptive manner, and the classification 

performance can be notably improved 

while simultaneously preserving a compact 

model size and high convergence rate. We 

evaluate the CSPAN model on several 

benchmark data sets for document 

classification with careful ablation studies, 

and demonstrate the encouraging results 

compared with state of the art.  

1 Introduction 

Document classification is one of the fundamental 

problems in natural language processing, which is 

aimed at assigning one or multiple labels to a  

(typically)  short text paragraph. Wide applications 

can be found in sentiment analysis (Moraes et al., 

2013; Tang et al., 2015)，subject categorization 
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(Wang et al., 2012),spam email detection (Sahami 

et al., 1998) and doc1ument ranking (Wang et al., 

2014). In recent years, deep neural networks have 

shown great potential in document classification 

and updated state-of-the-art performance. Popular 

approaches include Recurrent neural networks   

(RNN) (Yogatama et al., 2017), convolutional 

neural networks (CNN) (Zhang et al., 2015) and 

Attention-based methods (Transformers) (Gong et 

al., 2019; Adhikari et al., 2019), or a mixture of 

them.  

Different lines of methods have their respective 

pros and cons. For example, RNNs are highly 

effective models for exploiting word orders in 

learning useful representations, thanks to the 

iterative update of the hidden states that depend on 

both the semantics of the current word and that of 

historical words (or a concise summary of them), 

and the long-range dependency made possible 

through LSTMs (Yang et al., 2016; Stephen et al., 

2018; Adhikari et al., 2019). Of course, the 

sequential processing nature makes it less efficient 

computationally. CNNs have gained huge success 

in image procesing and classification and were 

recently introduced to NLP domains like document 

classification (Zhang et al., 2015; Lei et al.,2015; 

Conneau et al., 2016; Kim and Yang, 2018; Kim, 

2014).The local convolutional operator is 

sensitive to word orders but only partially and 

limited by the size of the kernel, and so long-term 

relations may need many layers and therefore be 

challenging. Transformers, different from both, 

fully exploit the   modelling power of self-attention 

mechanism (Shen et al., 2018; Gao et al., 2018; 

Zheng et al., 2018) and have significantly 

improved state of the art in many NLP tasks such 

as machine translation (Vaswani et al., 2017), 
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language understanding (Devlin et al., 2018) and 

language modeling (Dai et al., 2019), etc.  

Despite the great successes, how to 

systematically aggregate the semantic information 

(word embedding) with the positional information 

(word orders) is still an open challenge in 

transformers. A common practice is the positional 

encoding (Vaswani et al., 2017), which encodes the 

position of the 𝑡 th word as a 𝑑 -dimensional 

sinusoidal vector, as  

 𝑝𝑡,2𝑖 = 𝑠𝑖𝑛(𝑡/100002𝑖/𝑑) , (1) 

                     𝑝𝑡,2𝑖+1 = 𝑐𝑜𝑠(𝑡/100002𝑖/𝑑) . (2) 

The positional vector of each word is then added 

to the 𝑑 -dimensional word embedding vector, so 

that subsequent predictors can numerically utilize 

the temporal information.  However, empirically, 

adding positional vectors to the word vectors 

brings little performance gains in document 

classification, compared with when no positional 

encoding is adopted at all (See Section 3.4 Table 5 

for detailed empirical results).  

There are two reasons which we believe are 

related to the low performance gains from using 

positional encodings. First, such a strategy leads to 

an interaction (inner product) between the 

semantic and temporal component that is hard to 

interpret. To see this, let 𝑥𝑖  and 𝑝𝑖  be the word 

vector and position vector for the 𝑖th word. Then 

the attention score between 𝑖th and 𝑗th word will be 

computed as (before normalization)  

𝑒𝑖𝑗 = 〈𝑥𝑖 + 𝑝𝑖 , 𝑥𝑗 + 𝑝𝑗〉 

                     = 〈𝑥𝑖 , 𝑥𝑗〉 + 〈𝑝𝑖 , 𝑝𝑗〉 + 〈𝑥𝑖 , 𝑝𝑗〉 

                                       + 〈𝑝𝑖 , 𝑥𝑗〉  (3) 

where 〈∙,∙〉 denotes the inner product between two 

vectors, and without loss of generality we have 

assumed identity transforms in generating the key 

and query views of each word.  

Obviously, as the inner product between a word 

vector and a positional vector, 〈𝑥𝑖 , 𝑝𝑗〉  and 〈𝑝𝑖 , 𝑥𝑗〉 

do not bear meaningful interpretation. Therefore  

these two terms could very likely hamper the 

semantic attention term 〈𝑥𝑖 , 𝑥𝑗〉  and the positional 

attention term 〈𝑝𝑖 , 𝑝𝑗〉 by behaving like noise, such 

as deflating an important attention or exaggerating 

a marginal one. This can negatively affect the 

learned representations through the self-attention 

mechanism. Indeed, similar observations were 

made in (Yan et al., 2019), where the authors show 

that the self-attention mechanism, when mixed 

with the positional vectors, can no longer 

effectively quantify the relative positional distance 

between the words (namely the positional attention 

term 〈𝑝𝑖, 𝑝𝑗〉 is perturbed in an undesired manner). 

Second, the relative weights of the word vector 

and the position vector (in their summation) is 

hard-coded, leading to a fixed combination, while 

in practice the relative importance of the semantic 

and positional components in affecting the 

similarity among the words can definitely be more 

complex.  

In order to solve these challenges with positional 

encoding, we explore a new architecture in 

combining the semantic and temporal information 

in document classification, called “cascaded 

semantic and positional self-attention network” 

(CSPAN). There are three main characteristics of 

the proposed architecture. First, instead of 

combining the word vectors with positional vectors 

from scratch, we choose to first explore the two 

sources of information with their respective 

processing layers, namely, a self-attention layer 

that works only on the semantic space, and a Bi-

LSTM layer which further incorporates the 

temporal order information in the updated word 

representations. Second, these two layers are 

cascaded so that sematic information and the 

temporal information can be finally combined 

through the use of a residual connection; this not 

only avoids non-interpretable operations defined 

between word vectors and positional vectors, but 

also serves as an adaptive transformation in 

combining the two information sources.  Third, a 

multi-query attention scheme is adopted to extract  

multi-faceted, fixed dimensional document 

features, which makes the resultant model highly 

compact and memory efficient. 

The CSPAN model is shown to effectively 

improve performance of document classification in 

comparison to several state-of-the-art methods 

including transformer-styled architecture. In the 

meantime, it demonstrates very compact model 

size and fast convergence rate during the training 

process, which is particularly desirable for large 

problems. We also conducted careful ablation 

studies to further quantify the performance gains of 

each component of the CSPAN model.  

Our study demonstrates the importance of the 

way semantic and temporal information are 

aggregated in capturing the structures and meaning 

of documents, which we will continue exploring in 

the more challenging language modelling tasks 
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such as sequence tagging (Huang et al., 2015), 

natural language inference  (Chen et al., 2016) and 

modeling sentence pairs (Tan et al., 2018) in our 

future research. 

2 Method  

The overall architecture of the proposed CSPAN 

model is shown in Figure 1. It is a highly compact 

model with three basic building blocks.  

 First, we use a self-attention block to update the 

word representations in each document. Here, the 

embedding of each word will be collectively 

affected by all other words with related semantics 

in the same document. Note that we will not look 

into any positional information in this stage. 

Instead, the temporal information will be taken into 

account in the next block, after the word 

representations have been fully updated through 

semantic self-attention alone. As we shall see, such 

a sequential processing pipeline allows more 

flexible combination of the semantic and positional 

information.  

Second, the updated word embeddings are fed 

into a Bi-LSTM layer, so that the relative position 

of the words are naturally exploited to further 

refine the word representations specific to the 

organization of each document. In the meantime, a 

residual connection is adopted to combine the 

semantic representation derived from the self-

attention block, together with the output derived 

from the Bi-LSTM block; we call this ``Semantic 

and Positional Residual Connection’’, because it 

combines the semantic information (out of self-

attention block) with the positional information 

(out of the Bi-LSTM block) using residual 

connections. As we shall see, such a combination 

is more flexible than directly combining word 

vector with positional vector as in existing 

positional encoding schemes.  

Third, we adopt a multiple-query attention in the 

final block to extract fixed-dimensional document 

features for final classification. Compared with 

multi-head attention, the multi-query attention can 

significantly reduce the number of parameters in 

the network, while giving promising classification 

results. We describe the details of different 

structures and components of our model in the 

following sections. 

2.1 Semantic Self-Attention 

Self-attention as proposed by (Vaswani et al., 2017) 

calculates attention weight between each pair of 

objects to capture global correlations and improve 

representation learning. We apply this framework 

in computing the word representations since it can 

capture long-range dependencies. However, we do 

make a number of important rectifications which 

prove to be quite useful in improving the 

performance of document classification. 

First, rather than using three independent 

transformation matrices corresponding to the key, 

value, and query views for each word, we discard 

these transformations, and use the original word 

vectors in all the three views. The reason is that we 

want to activate a full, pairwise interaction between 

the words in the original word embedding space 

and then apply transformations in subsequent (Bi-

LSTM) layer, in order to maximally preserve the 

power of self-attention based representation 

learning. In comparison, if one chooses to apply 

transformation (e.g. dimensionality reduction in 

most cases), then chances are that the semantic 

information encoded in the word vectors might 

suffer certain losses before entering the next layer. 

Empirically, we have observed that implementing 

self-attention in the full-dimensional word vectors 

leads to better performance than that on the lower 

dimensional, transformed word-vectors. 

 Second,  rather than considering the use of the 

positional information in self-attention, we choose 

to implement self-attention only based on the 

semantic information, and consider the positional  

information in subsequent information processing 

blocks. This in contrast to current practices in 
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Figure 1: The architecture of the proposed CSPAN 

model. 
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which the semantic information and positional 

information of each word is used together in 

calculating the self-attention coefficients. The 

reason is that directly adding the word vector and 

positional vector can lead to noisy fluctuations in 

attention scores, as has been discussed in the 

introduction. Therefore, the semantic information 

will first be processed alone, and then subject to the 

positional information through subsequent LSTM 

layer, which is a more natural way of injecting 

positional information.  

Given these two design principles, our self-

attention block can be described as follows. Let the 

input text sequence be 𝐷 = (𝑤1, 𝑤2, … , 𝑤𝐿)  of  𝐿 

elements where 𝑤𝑖 ∈ ℝ𝑑   is the i-th word 

embedding. Self-attention compares each element 

𝑤𝑖  to every other element 𝑤𝑗  in the sequence 

followed by layer normalization. As a result, a new 

sequence 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝐿)  of the same length is 

constructed, in which each element  𝑠𝑖 ∈ ℝ𝑑 is a 

weighted average of all elements 𝑤𝑖  in the input 

sequence, as 

 𝑆 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐷, 𝐷, 𝐷) 

  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐷𝐷𝑇

√𝑑
)𝐷  (4) 

Here, the original word embedding matrix 𝐷 ∈

ℝ𝐿×𝑑  appears three times because we do not 

differentiate among the key, value and query views.  

The term 𝐷𝐷𝑇  is used to generate a weight matrix 

based on the inner-product similarity of the 

elements in the sequence. After normalization and 

re-scaling, the weight matrix is multiplied with 𝐷 

to generate the new sequence representation  𝑆 . 

The self-attention can enhance the semantic 

representation of word embeddings and capture 

both the local and long-range dependencies.   

2.2 Semantic and Positional Residual Connection 

In the second block, we apply a Bi-LSTM layer to 

inject temporal information in the word 

representations computed via the self-attention 

block. The Bi-LSTM is a powerful model in 

handling sequential data, and is known to capture 

long-term dependencies due to the use of the gating 

mechanism (Graves and Schmidhuber, 2005).  

Therefore this layer is supposed to further improve 

the word representations obtained from the self-

attention layer, which proceeds as 

 ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑠𝑡)  (5) 

 ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑠𝑡)  (6) 

 ℎ𝑡 = [ℎ⃗ 𝑡  ,  ℎ⃖⃗𝑡]  (7) 

 𝑃 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻,𝐻, 𝐻)  (8) 

Here, the word vectors obtained through the 

self-attention layer, 𝑠𝑖′𝑠 ∈ ℝ𝑑  are fed into a single-

layer Bi-LSTM, and then the hidden state of the 

LSTM in the forward and backward directions are 

concatenated as ℎ𝑡 = [ℎ⃗ 𝑡  , ℎ⃖⃗𝑡] . Finally, another 

self-attention layer is used to enhance the 

representations 𝐻 = [ℎ1, ℎ2, … , ℎ𝐿] , followed by a 

layer-wise normalization to obtain the position-

aware representations  𝑃 = (𝑝1 , 𝑝2, … , 𝑝𝐿). 

Although LSTMs are known to handle long-

range dependencies, it can still be challenging in 

long documents. Therefore, following the custom 

in transformers (Vaswani et al., 2017), we use a 

residual connection that combines the output of the 

self-attention layer with that of the Bi-LSTM layer, 

computed as shown below. 

 𝐹𝑡
𝑠𝑝

= 𝑠𝑡 + 𝑝𝑡   (9) 

Here, 𝑠𝑡 ∈ ℝ𝑑  represents the output of first 

building block (Semantic self-attention), 𝑝𝑡 ∈ ℝ𝑑 

stands for the output of second building blocks (Bi-

LSTM). To guarantee that the two vectors can be 

added together, the hidden-state dimension of the 

Bi-LSTM is chosen as half of the input dimension, 

i.e., 𝑑/2, so that the concatenated hidden state from 

the forward and backward direction (7) has the 

same dimension as the input word vectors. By 

combining the semantic and positional information, 

we obtain a final, high-level representation of each 

document. 

The residual connection (He et al., 2016) has 

shown to be highly useful in facilitating an 

effective backpropagation so that the learning 

process approaches a better model. In our context, 

the residual connection has an interesting 

interpretation of combining sematic and positional 

information in an adaptive manner. Note that the 

output of the self-attention layer is all about the 

semantic component of the words; on the other 

hand, the output of the Bi-LSTM layer can be 

deemed as word representations that incorporated 

the positional information, thanks to the sequential 

processing nature of the Bi-LSTM. Besides, since 

the output of the Bi-LSTM layer, its hidden state, 

is a transformation of the input word vectors, we 

can then consider the output of the residual 

connection as an adaptive combination of the 

semantic components and positional components. 

This not only avoids the non-interpretability of 
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directly combining word vector with position 

vectors, but also successfully adjusts their relative 

importance through the learning of the 

transformation matrices in the Bi-LSTM model. 

We speculate that this is an important reason why 

the proposed architecture can effectively improve 

the classification performance.     

2.3 Multi-Query Soft Attention 

In the final block, we learn a number of query 

vectors in the space of 𝐹𝑡
𝑠𝑝

 (9) so that each query 

can capture a certain aspect of the meaning of the 

document, in the form of a fixed-dimensional 

feature (context) vector. This is in contrast to the 

single-query attention where only a single query 

vector is learned to summarize the content of a 

document  (Yang et al., 2016). It is worthwhile to 

note that the multi-query attention in extracting 

document features can be computationally more 

effective than multi-head attention. In the latter 

case, one attention head is associated with a 

independent set of transformation matrices, 

therefore the model size can be quite large. In 

comparison, in our approach only multiple query 

vectors need to be learned in the same latent space 

of word representations, which has a much smaller 

memory footprint.  

More Specifically, the multi-query attention is 

defined as follows.  

 𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝐹𝑡
𝑠𝑝

𝑊ℎ + 𝑏ℎ)  (10) 

 𝛼𝑖𝑡 =
𝑒𝑥𝑝(𝑢𝑡

𝑇𝑄𝑖)

∑ 𝑒𝑥𝑝(𝑢𝑡
𝑇𝑄𝑖)𝑡

  (11) 

 𝐹𝑖
𝑠𝑝𝑚𝑞

= ∑ 𝛼𝑖𝑡𝑡 𝐹𝑡
𝑠𝑝

  (12) 

 �̃�𝑠𝑝𝑚𝑞 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1
𝑠𝑝𝑚𝑞

, … , 𝐹𝑚
𝑠𝑝𝑚𝑞

)𝑊𝑓  (13) 

That is, we first feed the  𝐹𝑡
𝑠𝑝

∈ ℝ𝑑  through a 

one-layer MLP to get  𝑢𝑡 ∈ ℝ𝑑  as a hidden 

representation of  𝐹𝑡
𝑠𝑝

∈ ℝ𝑑 , then we measure the 

importance of the word as the similarity of 𝑢𝑡 with 

a query vector  𝑄𝑖 ∈ ℝ𝑑  and get a normalized 

importance weight  𝛼𝑖 ∈ ℝ𝐿  through a softmax 

function. The multi-query matrix is randomly 

initialized and jointly learned during the training 

process. After that, we compute the  𝐹𝑖
𝑠𝑝𝑚𝑞

∈ ℝ𝑑 as 

a weighted sum of the  𝐹𝑡
𝑠𝑝

∈ ℝ𝑑  based on the 

weighting. Finally, we concatenate all  𝐹𝑖
𝑠𝑝𝑚𝑞

 

vectors and then use a fusion matrix 𝑊𝑓 ∈ ℝ𝑚𝑑×𝑑 

to get a high-level representation of each document. 

Here we discuss in more detail the memory 

footprint of the proposed multi-query attention, in 

comparison and commonly used multi-head 

attention. Let the dimension of the residual 

connection be 𝑑; the number of query vectors be 

𝑚. Then the model space complexity is 𝑂(𝑚𝑑 +

𝑑2). In comparison, if one adopts the multi-head 

attention with 𝑚 attention heads, then the model 

space complexity will be 𝑂(𝑚𝑑2)  since each 

attention head will have its own transformation 

parameters. As can be seen, the memory saving is 

almost proportional to the dimensionality; the 

higher the word vector dimensions, the more 

significant the memory saving. This will be a 

desired property for real-world applications. It is 

also worthwhile to note that the CSPAN model 

only has 3 blocks, while the standard transformer 

has a cascade of 6 layers of self-attention each of 

which may require an independent set of 

transformation matrices. 

2.4 Classification Layer  

In the final layer we apply a softmax classifier on 

the document representation  �̃�𝑠𝑝𝑚𝑞  to get a 

predicted label  �̂� , where  �̂� ∈ 𝑌  and 𝑌  is the class 

label set, i.e., 

 �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑌|�̃�𝑠𝑝𝑚𝑞)  (14) 

where 

         𝑝(𝑌|�̃�𝑠𝑝𝑚𝑞) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜�̃�𝑠𝑝𝑚𝑞 + 𝑏𝑜)  (15) 

Here, 𝑊𝑜 and  𝑏𝑜 are the transformation matrix 

and the bias term, respectively. Therefore, we can 

use the negative log-likelihood to define the loss 

function as follows: 

 𝐿 = − log 𝑝(�̂�|�̃�𝑠𝑝𝑚𝑞)  (16) 

3 Experiments 

In this section, we will report a number of 

experimental results on 4 benchmark datasets for 

document classification, together with careful 

ablation studies to illustrate the effectiveness of the 

building blocks of the proposed method.   

3.1 Datasets and Methods 

We evaluate the effectiveness of the proposed  

CSPAN model on four document classification 

datasets as in (Zhang et al., 2015).  The detailed 

statistics of the data sets are shown in Table 1. 

AG’s News. Topic classification over four 

categories of internet news articles composed of 

titles plus description classified into: World, 

Sports, Business and Sci/Tech. The number of 
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training samples for each class is 30,000 and test-

ing 1900. 

Yelp Review Polarity. The same dataset of text 

reviews from Yelp Dataset Challenge in 2015, 

except that a coarser sentiment definition is 

considered: 1 and 2 are negative, and 4 and 5 as 

positive. The polarity dataset has 280,000 training 

samples and 19,000 test samples in each polarity. 

Yelp Review Full. The dataset is obtained from 

the Yelp Dataset Challenge in 2015 on sentiment 

classification of polarity star labels ranging from 1 

to 5. The full dataset has 130,000 training samples 

and 10,000 testing samples in each star. 

Yahoo! Answer. Topic classification over ten 

largest main categories from Yahoo Answers 

Comprehensive Questions and Answers version 

1.0: Society & Culture, Science & Mathematics, 

Health, Education & Reference, Computers & 

Internet, Sports, Business & Finance, Enter-

tainment & Music, Family & Relationships and 

Politics & Government. The document we use 

includes question titles, question contexts and best 

answers. Each class contains 140,000 training 

samples and 5,000 testing samples. 

Methods. We have included altogether eleven 

competing methods from (Zhang et al., 2015) and 

(Gong et al., 2019). For our approach, we have two 

versions: the CSPAN (base) using single-layer Bi-

LSTM and 16 query vectors, and  CSPAN (big) 

using three hidden layers in Bi-LSTM and 128 

query vectors. We trained the base models for 30 

epochs and the big models for 60 epochs. 

3.2 Model configuration and training  

In the experiments, we use 300-dimensional GloVe 

6B pre-trained word embedding (Pennington et al., 

2014) to initialize the word embedding at 

https://nlp.stanford.edu/projects/glove. We choose 

150 hidden units for the Bi-LSTM models. The 

Adam Optimizer (Kingma et al., 2014) with 

learning rate of 1e-3 and weight decay of 1e-4 is 

used to train the model parameters. The size of 

mini-batch is set to 64 and the number of multi-

query to 16. We train all neural networks for 30 

epochs and the learning rate divides by 10 at 20 and 

25 epochs. All of our experiments are performed 

on NVIDIA TITAN RTX GPUs, with PyTorch 

1.1.0 as the backend framework. 

3.3 Results and analysis 

The experimental results on all data sets are shown 

in Table 2. The results of the competing methods 

are directly cited from the respective papers as 

listed in Table 2.  

From Table 2 we can see that CSPAN model 

achieves the best performance on all the 4 datasets 

of AG’s News, Yelp P, Yelp F. and Yahoo datasets 

(rows 12/ 13), which demonstrates its effectiveness  

in document classification. Particularly, CSPAN 

consistently outperforms the baseline deep 

learning networks using RNN/CNN, such as 

LSTM, CNN-char and CNN-word by a substantial 

margin on all datasets (rows 1, 2 and 3).  

Compared to the CSPAN (base), the CSPAN (big) 

gives a comparable or slightly better performance 

on all the datasets. This observation shows that the 

CSPAN actually prefers simpler models against 

highly complex ones, which is an advantage for 

large problems. 

3.4 Ablation Study 

Component-wise gains. To investigate the impact 

of each of the key components of CSPAN model for 

document classification, we conducted an ablation 

study on the AG’s News dataset. Firstly, we 

validate the impact of each component, including 

semantic self-attention, semantic and positional 

residual connection, and multi-query soft attention. 

The results are shown in Table 3. 

The standard Bi-LSTM baseline provides a test 

accuracy of 89.36. As we expected, integrating 

semantic self-attention significantly improved the 

classification performance with test accuracy of 

92.61. It shows that using self-attention can 

Dataset Classes Train Test Average #s Max #s Average #w Max #w 

AG’s News 4 120,000 7,600 1.3 15 46.6 277 

Yelp Review Polarity 2 560,000 38,000 8.4 119 161.4 1345 

Yelp Review Full 5 650,000 50,000 8.4 151 163.3 1418 

Yahoo! Answers 10 1,400,000 60,000     5.7     515 115.9 2746 

Table 1:  Detailed statistics of the datasets:  #s denotes the number of sentences (average and maximum per 

document),  #w denotes the number of words (average and maximum per document). 
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enhance the semantic. Furthermore, integrating 

residual connection improves the classification 

performance from 92.61 to 93.03. Finally, when 

multi-query attention is adopted, the classification 

performance is significantly improved with an 

overall gain of 4.32% over the baseline.  

Model Size. As mentioned in (Adhikari et al., 

2019), increasingly complex network components 

and modeling techniques are accompanied by 

smaller and smaller improvements in effectiveness 

on standard benchmark datasets. We have observed 

similar trend in CSPAN, as shown in Table 4. 

From Table 4, we can see that when the number 

of hidden layer in Bi-LSTM is set to 3, the 

performance can be worse than 1-layer or 2-layer 

Bi-LSTMS (the latter with even less query vectors). 

In other words, a compact Bi-LSTM is preferred. 

On the other hand, the optimal number of query 

vectors seems to be around 16 for 1-layer Bi-

LSTM; more query vectors than this brings limited 

or even negative performance gains. 

Fusion Methods. We also conducted extensive 

comparative studies on the performance of 

different ways in combining the semantic and the 

positional information, as shown in Figure 2.  

From Table 5,we can see that directly com-

bining the positional vector with the word vector 

(fusion method (b), a “light-weight” transformer)  

brings an improvement of 0.33% compared with 

the baseline (method (a), without any positional 

information). In addition, using relative positional 

 Methods AGNews Yelp P. Yelp F. Yahoo 

Zhang et al., 2015 LSTM 86.06 94.74 58.17 70.84 

 CNN-char 89.13 94.46 62.02 69.98 

 CNN-word 91.45 95.11 60.48 70.94 

Gong et al., 2019 Deep CNN 91.27 95.72 64.26 73.43 

 FastText 92.50 95.70 63.90 72.30 

 HAN 92.36 95.59 63.32 75.80 

 SASEM 91.50 94.90 63.40 - 

 DiSAN 92.51 94.39 62.08 76.15 

 LEAM 92.45 95.31 64.09 77.42 

 SWEM 92.24 93.76 61.11 73.53 

 HLAN 92.89 95.83 63.78 77.55 

This paper CSPAN (base) 93.68 96.11 65.93 77.61 

 CSPAN (big) 93.62 96.18 65.95 77.75 

Table 2:  Test accuracy of competing methods on benchmark document classification tasks, in percentage. 

 

 
Layers 

(BiLSTM) 
Query Memory(MB) Accuracy 

1 1 1557 92.84 

1 8 1641 92.95 

1 16 1739 93.68 

2 8 1665 93.05 

2 16 1765 92.88 

2 32 1961 93.04 

3 32 1997 92.92 

3 64 2401 92.71 

3 128 3201 93.14 

Table 4:  Impact of model size. 

 

 

Component Accuracy 

Standard Bi-LSTM(baseline) 89.36 

+ self-att 92.61 

+ residual 93.03 

+ multi-query 93.68 

Table 3:  Impact of each building block in the 

proposed CSPAN model on AG’s News dataset. 

 

 

# Methods Accuracy 

(a) Embedding 92.38 

(b) Embedding + Position 92.71 

(c) Embedding + Relative-Position 92.39 

(d) Embedding + Bi-LSTM 93.03 

(e) Embedding // Bi-LSTM 93.68 

Table 5:  Different ways in combining the semantic and 

the positional information and their accuracy on AG’s 

News dataset. 

 

 

 



676 
 
 

encoding schemes (Shaw et al., 2018) (fusion 

method (c)) leads to almost the same result as the 

baseline method. If we use Bi-LSTM directly on 

the input word vectors, i.e., a parallel combination 

scheme of the semantic and positional information 

(fusion method (d)), the performance gain 

approaches 0.65%. Finally, the proposed fusion 

scheme in CSPAN (fusion method (e)), i.e., 

sequential processing of semantic and positional 

information equipped with a residual connection, 

the performance gain is around 1.30%. This 

comparative study clearly demonstrates the 

advantage of the proposed CSPAN model in 

combining semantic and positional information.  

Computational Considerations. It is usually 

believed that transformers are computationally 

efficient by virtue of the parallel processing 

pipeline associated with the self-attention 

mechanism. However, empirically, we find that the 

large model size and extensive, pairwise self-

attention cost can significantly slow down the 

computation. For example, standard transformers 

have 6 layers of self-attention in the encoding stage 

alone, leading to a huge set of transformation 

matrix parameters 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 and the cost of 

back-propagation can be huge. On the other hand, 

𝑂(𝑛2) time and space are needed in each layer in 

computing the self-attention among a document of 

𝑛 words. Therefore, standard transformer is time 

consuming in our experimental evaluations and 

typically won’t converge until after tens or even 

100 epochs even on the smallest data set (AG’s 

News). This is why we implemented and compared 

with the “light-weight” version of transformers in 

our experiments (e.g., method (b) in Figure 2). The 

proposed CSPAN model, on the other hand, is 

more compact and approaches a satisfactory result 

in just a few epochs, and the time taken for each 

epoch is also much less than standard transformers. 

Therefore, our approach is computationally very 

efficient, especially for classification of short or 

median-length documents.  

4 Conclusion 

We presented the cascaded semantic and positional 

self-attention to aggregate semantic and positional 

information in document classification. It 

overcomes the limitation of existing positional 

encoding schemes, and shows encouraging 

performance against state-of-the-art methods using 

transformers and CNNs. In the meantime, it has a 

compact model size and is computational efficient. 

Our studies demonstrate the importance of 

properly aggregating semantic and positional 

components, and we will further extend it more 

challenging NLP tasks in our future research.   
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