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Abstract

We study the problem of recognizing visual
entities from the textual descriptions of their
classes. Specifically, given birds’ images
with free-text descriptions of their species, we
learn to classify images of previously-unseen
species based on specie descriptions. This
setup has been studied in the vision commu-
nity under the name zero-shot learning from
text, focusing on learning to transfer knowl-
edge about visual aspects of birds from seen
classes to previously-unseen ones. Here, we
suggest focusing on the textual description and
distilling from the description the most rele-
vant information to effectively match visual
features to the parts of the text that discuss
them. Specifically, (1) we propose to lever-
age the similarity between species, reflected in
the similarity between text descriptions of the
species. (2) we derive visual summaries of the
texts, i.e., extractive summaries that focus on
the visual features that tend to be reflected in
images. We propose a simple attention-based
model augmented with the similarity and vi-
sual summaries components. Our empirical re-
sults consistently and significantly outperform
the state-of-the-art on the largest benchmarks
for text-based zero-shot learning, illustrating
the critical importance of texts for zero-shot
image-recognition.

1 Introduction

In computer vision, zero shot-learning (ZSL) for
image classification is the problem of classifying
images given auxiliary information. An image clas-
sification model is trained to classify images from
a pre-defined set of classes. At test time, images
from new classes are given, and the task is to trans-
fer knowledge learned from seen classes during
training to unseen test classes.

Figure 1: An illustration of textual similarity and visu-
ally relevant descriptions in Wikipedia articles: (1) we
aim to leverage the similarity within texts (red) via doc-
ument clustering (bottom box); (2) we aim to extract
similar (red) and dissimilar (black) visual descriptions,
and remove non-visually relevant (blue) one.

A common setup for ZSL assumes that the aux-
iliary information is a set of semantically mean-
ingful properties (called attributes) describing the
class (e.g., black-beak, long-tail) (Wah et al., 2011;
Farhadi et al., 2009). A different ZSL setup uses im-
age captions as auxiliary information (Reed et al.,
2016; Felix et al., 2018). Typically, this auxiliary
information is manually collected by human raters
for each image (test and train alike) and averaged
across images. A more realistic approach relies on
available online text descriptions of classes (e.g.,
Wikipedia) (Elhoseiny et al., 2017). It avoids ex-
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pensive annotation and exposure to test images.
In this work, we classify bird species according

to Wikipedia descriptions. This task raises many
challenges: (1) Differences between the birds are
very small, which makes it a fine-grained classifi-
cation task; (2) This is an expert task, and the text
contains terminology that is unlikely to be familiar
to a layman; and, on top of that (3) The text de-
scriptions of the classes are long, containing few
visually relevant sentences.

As opposed to previous work on text-based ZSL
employing textual descriptions (Zhu et al., 2018;
Elhoseiny et al., 2017) that focused on the visual
modality, here we focus on the text modality, and
address a key question in ZSL: How can we identify
text components that are visual in nature?

To get an intuition about the task setup and our
proposed solution, consider the following situation.
Imagine you have never seen a zebra but have seen
a horse. What if you were given a text describing
a zebra: “Zebras have hooves, mane, tail, pointed
ears, and white and black stripes”. This description
would probably be very close to a description of a
horse having “hooves, mane, tail, pointed ears” and
you would probably be looking for an image that
reminds you of a horse but has “white and black
stripes”. So, even without ever seeing a zebra,
using text-descriptions of the zebra and knowledge
already acquired about horses, one can correctly
classify unknown classes like a zebra.

Our proposed solution has two-phases. First,
based on the intuition that similar objects (or im-
ages thereof) tend to have similar texts, we encode
a similarity feature that enhances text descriptions’
separability. In addition, we leverage the intuition
that the differences between text descriptions of
species would be their most salient visual features,
and extract visually relevant descriptions from the
text.

Our experiments empirically demonstrate both
the efficacy and generalization capacity of our pro-
posed solution. On two large ZSL datasets, in
both the easy and hard scenarios, the similarity
method obtains a ratio improvement of up to 18.3%.
With the addition of extracting visually relevant de-
scriptions, we obtain a ratio improvement of up
to 48.16% over the state-of-the-art. We further
show that our visual-summarization method gener-
alizes from the CUB dataset (Wah et al., 2011) to
the NAB dataset (Van Horn et al., 2015), and we
demonstrate its contribution to additional models

by a ratio improvement of up to 59.62%.
The contributions of this paper are threefold.

First, to the best of our knowledge, we are the first
to showcase the critical importance of the text repre-
sentation in zero-shot image-recognition scenarios,
and we present two concrete text-based processing
methods that vastly improve the results. Second,
we demonstrate the efficacy and generalizability of
our proposed methods by applying them to both the
zero-shot and generalized zero-shot tasks, outper-
forming all previously reported results on the CUB
and NAB Benchmarks. Finally, we show that visual
aspects learned from one dataset can be transferred
effectively to another dataset without the need to
obtain dataset-specific captions. The efficacy of our
proposed solution on these benchmarks illustrates
that purposefully exposing the visual features in
texts is indispensable for tasks that learn to align
the vision-and-language modalities.

2 Background and Related Work

Zero-shot learning (ZSL) aims at overcoming the
need to label massive datasets for new categories,
by learning the connections between images and
prior auxiliary knowledge about their classes. At
test-time, this auxiliary information compensates
for the lack of previously-attained visual informa-
tion about the new categories.

Text-based ZSL is a specific multimodal instanti-
ation of this learning task that uses natural language
descriptions as the auxiliary information. Models
for text-based ZSL are typically composed of three
parts: (1) the text representation; (2) the image rep-
resentation; (3) a compatibility function between
the two. While most previous work focused mainly
on the latter two components, here we focus on the
text.

Most ZSL studies for object recognition are
aimed at processing the image modality. For ex-
ample, Xu et al. (2018); Lei Ba et al. (2015); Qiao
et al. (2016); Akata et al. (2016) rely on visual
features extracted using Convolutional Neural Net-
work (CNN). More recent studies use object detec-
tion to detect the semantic parts of the object and
extract visual features at the part-level (Elhoseiny
et al., 2017; Zhu et al., 2018; Zhang et al., 2016).
This approach makes the image more compatible
with the text, as it enables text-terms such as “crest”
to be linked to the visual representation of parts
like “head”.

The auxiliary information provided to ZSL tasks
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may be of various kinds, ranging from pre-defined
semantic attributes (Lampert et al., 2009; Chang-
pinyo et al., 2020; Atzmon and Chechik, 2018), to
captions (Xian et al., 2018; Sariyildiz and Cinbis,
2019) to Wikipedia article describing the species
(Elhoseiny et al., 2017). Here we assume the lat-
ter scenario. ZSL studies that rely on Wikipedia
articles as auxiliary information improve the visual
representation and the compatibility function, and
use text representations such as Bag-of-Words and
TF-IDF, without further text processing. (Lei Ba
et al., 2015; Elhoseiny et al., 2013, 2016, 2017;
Zhu et al., 2018). Qiao et al. (2016) used a simple
BOW and a L1,2-norm objective to suppress the
noisy signal in the text. However, this basic treat-
ment of the text is problematic, as it misses crucial
information for detecting the correct class.

Recent studies (Lu et al., 2019; Tan and Bansal,
2019) have shown improved performance on mul-
tiple vision-and-language tasks using pre-trained
BERT-based models that jointly learn a represen-
tation for vision and language. However, they are
tuned on relatively short texts and are not optimal
for classifying long textual descriptions.

In this work, we proceed in a different, yet com-
plementary, direction to previous work, aiming to
purposefully model the contribution of the textual
modality to ZSL. We aim to establish the impor-
tance of adequately processing the text into a sound
representation of visually salient features, in order
to increase the vision-and-language compatibility,
which can then be effectively learned in an end-to-
end manner.

3 Strong Baseline Model

The basic architecture, which term ZESTvanilla, is
a simple multiplicative attention mechanism (Lu-
ong et al., 2015) inspired by Romera-Paredes and
Torr (2015). We model the problem using an
attention-based model, where the image is queried
against a set of candidate documents.

Formally, let xS1 , . . . , x
S
M be image feature vec-

tors from a training-set, where xSi ∈ Rm. The set
of M training images corresponds to a set of L seen
classes. Each class has a single “class description”
which is a document written by experts in free lan-
guage (e.g. Wikipedia). We denote dS1 , . . . , d

S
L as a

set of L document feature vectors, where dSi ∈ Rm̂.
Likewise, let xU1 , . . . , x

U
N be the image feature vec-

tors from a test set, where xUi ∈ Rm. The set of test
images corresponds to a set of K unseen classes.

Likewise, each class has a single “class descrip-
tion”. We denote dU1 , . . . , d

U
K as a sets of docu-

ment feature vectors, where xUi ∈ Rm̂. Finally,
W ∈ Rm×m̂ is our learned matrix. At inference,
the label assignment of an image xUi is defined as:

ŷ = argmax
k

(
xUi
)T

WdUk , k ∈ {1 . . .K} (1)

For an image representation xSi and a text repre-
sentation dSj , an indicator function I(xSi , d

S
j ) out-

puts 1 if image xSi corresponds to the class de-
scribed by dSj and 0 otherwise. The matrix W is
then learned by minimizing the categorical cross-
entropy loss:

L∑
j=1

I(xSi , d
S
j )× log(softmax(xSi

T
WdSj )) (2)

Image Encoding The image encoder’s goal
is to transform the image into a vector repre-
sentation of the most salient visual features for
the classification. We adopt the image encoder
for text-based ZSL of Zhang et al. (2016); Zhu
et al. (2018); Elhoseiny et al. (2017). It is
based on a Fast R-CNN with (Girshick, 2015)
a VGG16 backbone for object detection to
detect seven semantic parts in the CUB dataset:
“head”,“back”,“belly”,“breast”,“leg”,“wing”,“tail”.
Each visual part’s encoded features are then con-
catenated into a feature vector that functions as the
image representation for the text-based ZSL.

Text Processing Our basic encoder processes the
text into a feature vector. Similar to previous stud-
ies, we employ a TF-IDF representation (Salton
and Buckley, 1988). We preprocess the text to to-
kenize words, remove stop words, and stem the
remaining words. Then, we extract a feature vector
using TF-IDF. This processing procedure is similar
to the text processing presented by Zhu et al. (2018).
The dimensionalities of TF-IDF features for CUB
and NAB are 7,551 and 13,217, respectively.

4 The Proposed Approach

Our solution’s key idea is to replace the general
class’s text representation with a text representa-
tion focusing on the most salient features for the
visual recognition task. To do so, we employ two
different (complementary) methods: (i) induce a
similarity measure used for clustering; and (ii) ex-
tract visually relevant text descriptions. Both meth-
ods are incorporated in our proposed end-to-end
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Figure 2: Our ZESTsimilarity+VRS model with the similarity component and Visually Relevant Summaries
(VRS).

Figure 3: The Nearest Neighbor Similarity (NNS)
model links images and texts through in-modality sim-
ilarities

vision-and-language classification architecture, pre-
sented in Figure 2. In what follows we describe
the similarity component 4.1, and the extraction of
visually relevant summaries 4.2.

4.1 The Importance of being Similar

Our proposed method leverages the similarities be-
tween images and texts. That is, when the images
look similar, the texts describing their classes are
also similar, and vice versa. Here, we propose to
reconstruct this similarity link.

To this end, we propose two models: (1) a strong
baseline based on two nearest neighbors, which
create a link between images and texts; (2) adding
a similarity component to our model ZESTvanilla.
For both models we use the Image Encoder (section
3) to process the images x, and the Text Processing
(section 3) to process documents D.

4.1.1 Nearest Neighbor Similarity (NNS)
Figure 3 presents our Nearest Neighbor Similarity
(NNS) method, which aims to reconstruct the par-
allel similarity links between the vision and text
latent spaces.

The algorithm is as follows. Given an image xU

from an unseen class in the zero-shot phase, we
first look for the nearest neighbor image in the set
of training images, using cosine similarity. The
closest image from the training set xSk corresponds
to a document from training dS

k̂
. We then look for

the nearest neighbor text in from test set dUy and
predict the corresponding class label y.

4.1.2 ZESTsimilarity

A different way to incorporate textual similarity
into the classification is to embed it into our model
ZESTvanilla, to benefit from it in the learning pro-
cedure. To this aim, we want to add on top of our
text feature vector a representation of the text’s
similarity to its neighbors.

The Basic Encoder captures similarities and dif-
ferences at the word-level. However, to find simi-
larities at the document level we add to this vector
our similarity component, which applies unsu-
pervised clustering to all class descriptions in the
training and test texts. We use two different cluster-
ing methods that capture different aspects of text
similarities. The cluster indexes are then embedded
as a BOW (hence cluster embedding).

We hypothesize that the similarity component
will work well on the “easy” scenario - where
closely related birds are seen during training, and
their text can cluster together to indicate these sim-
ilarities.
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4.2 The Importance of Being Seen

Here we extract visually relevant features from the
text, making the texts that enter the classification
more compatible with the salient visual information
typically reflected in images.

While the similarity method takes advantage of
the similarity between objects seen in training and
objects seen at test time, here we want to address
the harder scenario, where similar objects are ob-
served together during test time only (e.g. zebras
and mules), and they may be very different from
those observed during training.

To differentiate between classes in the test set we
need to emphasize the parts that are different, both
in the image and the text — and these are typically
their most salient visual features.

4.2.1 Visually Relevant Summaries (VRS)

Our method for enhancing the textual description
is based on visually relevant extractive summaries.
Extractive summarization is the task of extracting a
small number of sentences that summarize a given
document. In this work, we define visually rele-
vant extractive summarization (VRS) as the task
of extracting only sentences that represent visually
relevant language. The term visually relevant lan-
guage (VRL) was coined by Winn et al. (2016) to
indicate sentences which are visually descriptive
with respect to the object (i.e., bird species).

A naı̈ve approach for VRS would be to extract
sentences with parts that we know are visually
salient in our domain (e.g., the 7 parts employed
by the vision recognition representation). How-
ever, this naı̈ve approach has several drawbacks.
First, bird parts can be described using many dif-
ferent terms and paraphrases; additionally, a bird
can be described by its property values (e.g., black),
without any mention of the attribute (e.g., beak). In-
stead, we propose to use the similarity of sentences
in the documents and compare them to naturally oc-
curring sentences (‘in the wild’) containing VRL.

Note that we cannot rely on descriptions of par-
ticular species due to the zero-shot setup. We must
do with descriptions of objects in the general do-
main of objects we are interested in classifying.

4.2.2 ZESTsimilarity+VRS

One way to obtain naturally-occurring descriptions
of birds is from captions that describe bird im-
ages. Critically, these captions need not be from
our dataset, they can describe any bird image.

We propose to use a set of L bird captions to
create an unsupervised classifier. The classifier
will receive a set of sentences (assembled as a doc-
ument), and for each sentence, the classifier will
predict whether the sentence is relevant, that is,
whether it contains descriptions that can be seen in
a bird image.

For each document, we propose to calculate the
pairwise similarity between captions and sentences
in the Wikipedia description, and based on this
similarity, assign a VRS-score to each sentence.

We calculate the VRS-score of a sentence sj
to a caption by computing the cosine similarity
of the embeddings of both the captions (c0:L) and
sentences (s0:M ) in the document. For a fixed-size
sentence embeddings, we use a pre-trained siamese-
and-triplet network (Reimers and Gurevych, 2019;
Schroff et al., 2015) on top of a pre-trained BERT
network (Devlin et al., 2019).

The VRS-score of sentence sj with respect to all
available captions c1:L is thus defined to be:

score(sj) =
1

L

L∑
i=1

ci · sj
‖sj‖‖ci‖

(3)

We then take the highest k scoring sentences
from s0:K to be the visually relevant extractive
summary of the document. We can then concate-
nate the similarity embedding to the VRS summary
of the text, and perform the multiplicative attention
on this revised encoding of the documents and the
same image encoding as before.

A bird’s eye overview of our overall architecture
is presented in Figure 2. The text that enters the
similarity (clustering) component is the original
Wikipedia document, not the document’s VRS sum-
mary. Documents contain many non-visual descrip-
tions that are unobserved in the images. However,
these non-visual descriptions might still be essen-
tial to capture the similarity between documents.
For example, similar-looking birds are likely to be
in the same habitat. Thus, the VRL sentence ex-
traction and the similarity enhancement operate in
parallel on the original document.

5 Experiments

5.1 Experiment setting
Datasets: We evaluate our method 1 on the Cal-
tech UCSD Birds-2011 dataset (CUB) Wah et al.
(2011) and the North America’s birds dataset

1Our code can be found at https://github.com/tzuf/ZEST.

https://github.com/tzuf/ZEST
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(NAB) (Van Horn et al., 2015), using class de-
scriptions obtained from Wikipedia and the Al-
laboutBirds website 2, collected by Elhoseiny et al.
(2017). Both are fine-grained datasets of birds but
from different species. The CUB dataset contains
11,788 images of 200 bird species, and the NAB
is a larger dataset of birds with 48,562 images of
404 classes3. The texts of both CUB and NAB are
long, containing non-visual information. CUB has
an average of 869 tokens and 42 sentences in class
documents. NAB has an average of 1277 tokens
and 58 sentences in class documents.

Two split Settings We use the two splits pre-
sented by Elhoseiny et al. (2017): (1) Super
Category-Shared (SCS), also referred to as the
‘easy’ split; and (2) Super-Category-Exclusive
(SCE), also referred to as the ‘hard’ split. In the
SCS, for each class in the test set, at least one class
in the training set belongs to the same category
(categories are organized taxonomically). For ex-
ample, in Figure 1, the Rufous Hummingbird and
the Ruby-throated Hummingbird are both from the
Hummingbird category. In the SCE, all classes in
a category are in the same set. Namely, if a class is
in the test set, then other classes from the same cat-
egory are also in the test set, and will never be seen
during training. Intuitively, classes from the same
category have high similarity in both images and
texts, so while in SCS similar images have been
seen during training, in the SCE a class from an
entirely new category is seen for the first time.

Training Details: The parameters of our model
include cluster parameters. We use two clustering
methods: (1) Density-based spatial clustering of
applications with noise (DBSCAN) (Ester et al.,
1996); (2) Hierarchical DBSCAN (McInnes et al.,
2017). The DBSCAN algorithm takes two parame-
ters: (1) “minimal cluster” - the number of samples
in a neighborhood for a point to be considered as a
core point; (2) “max distance” the maximum dis-
tance between two samples for one to be considered
as in the neighborhood of the other. The “minimal
cluster” is chosen to be two as two birds are the min-
imal similarity we want (similar to the NNS model).
The “max distance” parameter we optimize on val-
idation sets (10% of data) according to the two
splits. In addition, the similarity model includes

2https://dl.allaboutbirds.org
3Elhoseiny et al. (2017) merged the original 1,011 classes

according to the subtle division of classes.

a threshold for performing the similarity compo-
nent, also optimized over the validation set. The
VRS algorithm includes a sentence score threshold
for the number of sentences to be extracted. This
threshold was chosen on the validation set.

The weights W were initialized with normalized
initialization (Glorot and Bengio, 2010). The cross-
entropy loss function was optimized with Adam
optimizer (Kingma and Ba, 2015).

Human Summarization: To evaluate our pro-
posed VRS extraction method, we designed an
oracle experiment using ground-truth visually rel-
evant summarization. To this end, two indepen-
dent human experts manually annotated the CUB
dataset by reading each sentence in the document
and marking the sentence as yes\no VRL. We set
guidelines to resolve disagreements (e.g. hatch-
lings descriptions were marked as not VRL). On
average, only 11.9% of the sentences were found
to include VRL.

Image Captions: To create visual summaries we
use image captions of birds from the CUB train set,
provided by Reed et al. (2016). Each image in
the CUB dataset has been annotated with ten fine-
grained captions. These captions describe only the
birds’ visual appearance while avoiding mention-
ing the names of the bird species. E.g., “This bird
has a long beak, a creamy breast, and body, with
brown wings”. In this work, we use the first five
captions of each image.

To showcase this approach’s generality, we use
these captions in both in-domain (CUB) and out-
of-domain (NAB) scenarios. In all cases, we avoid
using captions of unseen (test) bird classes. In
NAB, we effectively use captions from CUB to ex-
tract VRS for entirely-different species presented in
NAB. Note that only models that include the VRS
component (+VRS) employ these image captions.
We report the accuracy achieved per the number of
captions used in the VRS, to indicate the number
of captions that are realistically needed.

Baselines: Our approach is compared asainst
ten leading algorithms (see Table 1): MCZSL
(Akata et al., 2016), WAC-Linear (Elhoseiny et al.,
2013), Wac-Kernel (Elhoseiny et al., 2016), ES-
ZSL (Romera-Paredes and Torr, 2015), SJE (Akata
et al., 2015), Syncfast (Changpinyo et al., 2016),
SyncOV O (Changpinyo et al., 2016), ZSLNS (Qiao
et al., 2016), and GAZSL (Zhu et al., 2018).

https://dl.allaboutbirds.org
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methods CUB NAB
SCS SCE SCS SCE

MCZSL Akata et al. (2016) 34.7 - - -
WAC-Linear Elhoseiny et al. (2013) 27.0 5.0 - -
WAC-Kernel Elhoseiny et al. (2016) 33.5 7.7 11.4 6.0
ESZSL Romera-Paredes and Torr (2015) 28.5 7.4 24.3 6.3
SJE Akata et al. (2015) 29.9 - - -
ZSLNS Qiao et al. (2016) 29.1 7.3 24.5 6.8
SynCfast Changpinyo et al. (2016) 28.0 8.6 18.4 3.8
SynCOV O Changpinyo et al. (2016) 12.5 5.9 - -
ZSLPP Elhoseiny et al. (2017) 37.2 9.7 30.3 8.1
GAZSL Zhu et al. (2018) 43.7 10.3 35.6 8.6
Nearest Neighbor Similarity (NNS) 40.402 5.551 37.002 5.517
ZESTvanilla 39.16 11.77 27.61 10.18
ZESTsimilarity 47.48 11.77 38.2 10.18
ZESTsimilarity+VRS 48.57 15.26 38.51 10.23

Table 1: Top-1 accuracy (%) on CUB and NAB datasets
with two split settings. We report the mean over
three random initializations. The standard-deviation
for ZESTsimilarity for the CUB is 0.337 and 0.368; for
NAB 0.625 and 0.174 (for the SCS and SCE splits ac-
cordingly).

methods CUB NAB
SCS SCE SCS SCE

GAZSL 43.74 10.3 35.6 8.6
GAZSL+parts summarization 19.54 9.557 23.32 7.2
GAZSL+parts summarization+similarity 38.25 9.557 33.05 7.2
GAZSL+our VRS 43.72 16.44 37.28 9.237
GAZSL+HUMAN 35.98 21.81 - -
GAZSL+HUMAN+similarity 47.32 21.81 - -
ZESTvanilla 39.16 11.77 27.61 10.18
ZESTvanilla+our VRS 42.58 15.26 32.24 10.23
ZESTsimilarity 47.48 11.77 38.2 10.18
ZESTsimilarity+parts summarization 42.27 10.93 37.02 8.055
ZESTsimilarity+our VRS 48.57 15.26 38.51 10.23
ZESTsimilarity+HUMAN 48.99 17.2 - -

Table 2: Visually Relevant Summarization (VRS) with
GAZSL, ZESTvanilla, and ZESTsimilarity .

Generalized Zero-Shot Learning: The conven-
tional zero-shot learning task considers only un-
seen classes during the zero-shot phase. However,
in a realistic scenario, seen objects might also ap-
pear (Chao et al., 2016). In Generalized Zero-Shot
Learning (GZSL), test data might also come from
seen classes, and the labeling space is the union
of both types of seen and unseen classes. GZSL
is thus considered a more challenging problem set-
ting than ZSL due to the model’s bias towards the
seen classes. We follow the metric present by Chao
et al. (2016) to evaluate our models on the GZSL
task. We evaluate the accuracy of a Seen-Unseen
accuracy Curve (SUC) and use Area Under SUC
to measure the general capability of ZSL methods.

5.2 Results

Table 1 presents the top-1 accuracy for each of the
models. The table is divided into four sections,
which are (from top to bottom): (1) previous work;
(2) our baselines ;(3) our models with previous
setup (for comparison to previous work); (4) Our

methods CUB NAB
SCS SCS

ZESTvanilla 39.16 27.61
ZESTvanilla+bird category 43.71 36.73
Zestsimilarity only 1 cluster 46.55 35.94
Zestsimilarity full (2 cluster) 47.48 38.2

Table 3: Zest model with different similarity methods

methods CUB NAB
SCS SCE SCS SCE

ESZSL 0.185 0.045 0.092 0.029
ZSLNS 0.147 0.044 0.093 0.023
WACkernal 0.225 0.054 0.007 0.023
WAClinear 0.239 0.049 0.235 -
SynCfast 0.131 0.040 0.027 0.008
SynCOvO 0.017 0.010 0.001 -
ZSLPP 0.304 0.061 0.126 0.035
GAZSL 0.354 0.087 0.204 0.058
ZESTsimilarity 0.443 0.1 0.267 0.067
ZESTsimilarity+VRS 0.437 0.147 0.26 0.084
ZESTsimilarity+HUMAN 0.445 0.163 - -

Table 4: Generalized Zero-Shot Learning: AUC of
Seen-Unseen Curve.

model with additional data - captions.

NNS Model: According to Table 1, the NNS
model achieves competitive results on the SCS -
40.402% and 37.002% on CUB and NAB corre-
spondingly. The high scores on the SCS, where
similar birds have been seen during training, is
expected — as this method relies on similarities
within texts and images. In contrast, the NNS suf-
fers from low accuracy on the SCE, where different
categories of birds have been seen during training.
As the NNS model relies on text and image simi-
larities, it is intuitively appealing that low accuracy
on the SCE stems from the fact that birds from
different categories are less likely to look alike.

ZESTvanilla In contrast to the very sophisticated
approaches of Zhu et al. (2018), the vanilla cross-
entropy based approach outperforms all previous
methods on the SCE-split on both CUB (+14.27%
ratio of improvement) and NAB (+18.37% ratio of
improvement). As the SCE-split is a more challeng-
ing split, this sheds light on the strength as well as
limitations of this simple framework.

ZESTsimilarity We then combined strengths of
ZESTvanilla and NNS models over the two differ-
ent scenarios: “hard” and “easy”, respectively.

The ZESTsimilarity model adds the cluster index
embedding to the TF-IDF representation, only if a
significant percentage of the documents from the



576

Sentence HUMAN VRS Model

1
After nesting, north american birds move in flocks further north along the coasts,
returning to warmer waters for winter.

7 7

2
Red foxes and coyotes readily predate colonies that they can access, the later
being the only known species to hunt adult pelicans (which are too large for
most bird predators to subdue).

7 7

3
when foraging, they dive bill-first like a kingfisher often submerging completely
below the surface momentarily as they snap up prey.

7 7

4 It is one of only three pelican species found in the western hemisphere. 7 3

5 Due to their small size, they are vulnerable to insect-eating birds and animals. 7 3

6 Hummingbirds show a slight preference for red, tubular flowers as a nectar source. 7 3

7 The head is white but often gets a yellowish wash in adult birds. 3 3

Table 5: Qualitative analysis, showing seven sentences from three randomly selected summaries. The table shows
HUMAN and VRS model markings of the sentence as yes( 3)\no(7) VRL.

test-set are clustered with documents from the train
set. The threshold picked over the validation set is
a 15%. Thus, in the case of the SCE-split, no or few
similarities are found, and the ZESTsimilarity pre-
forms at the same level as the ZESTvanilla model.
The threshold parameter was optimized on the vali-
dation set.

The two clustering algorithms we applied find
real similarities, achieving high accuracy when
tested on predicting the correct label according to
the ground-truth taxonomical category. The HDB-
SCAN, and DBSCAN achieved 88% and 84.5%
accuracy on the CUB, and 93.07% and 95.05% on
the NAB, accordingly.

Interestingly though, different clustering find dif-
ferent sources of similarities, that are essentially
additive. In Table 3 we can see a comparison be-
tween different similarity enhancing methods. The
ZESTvanilla+bird category method is a BOW of
the bird category added to the original text embed-
ding and then passed as before to a ZESTvanilla

model. The use of two clusters that capture differ-
ent similarities performs better than embedding the
bird category in the text representation, by a ratio
improvement of up to 8.63%. This suggests that
our ZESTsimilarity method captures similarities
that are beyond the bird category.

Finally, in Table 4 we present the results of
ZESTsimilarity in the GZSL setup. On both
datasets and splits, the ZESTsimilarity achieves
state-of-the-art results with up to 30.88% ratio im-
provement.

ZESTvanilla+VRS and ZESTsimilarity+VRS
use the captions from training images in the CUB
in order to generate visually relevant extractive
summaries of the original Wikipedia documents.

We test the summarized representation on the
ZESTvanilla model, the ZESTsimilarity, and the
GAZSL (Zhu et al., 2018) model. In Table 2 we
show the experimental results. We compare the
models before and after the use of the Visually Rel-
evant Extractive Summarization component. We
see an improvement in accuracy in both models on
both datasets and on both splits.

In contrast to the ZESTsimilarity, the GAZSL
does not have a component that embeds similar-
ities. The VRS reduces similarity by removing
non-VRL that might be similar between documents.
The HUMAN summary is an especially lean sum-
mary with only 11.9% sentences extracted. Thus,
the similarity between texts of similar objects di-
minishes. The GAZSL+HUMAN in the SCS-split
performs poorly due to the diminished similarity.
In contrast, The GAZSL+HUMAN+our VRS adds
the similarity that was lost and the performance
improves.

To assess the quality of the VRS summariza-
tion performance, we treat HUMAN summariza-
tion as the ground truth. The VRS method succeeds
in removing 49.4% of the sentences in the CUB
dataset with 96.23% recall and 22.59% precision.
For comparison, removing 49.4% of the sentences
randomly produces a recall of 50.6% and a preci-
sion of 11.9%.

Table 5 shows a qualitative analysis of our VRS
results. In sentences 1-3, the VRS model correctly
marked the sentences as non-VRL: sentence 1 is
a typical case of non-visually-relevant language
describing birds migration; in sentence 2 the VRS
model correctly marks the sentence as non-VRL de-
spite the mention of color (red) — since the color
does not refer to the object to be classified (the
bird); in sentence 3 the VRS model correctly marks
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Figure 4: Accuracy per number of captions used to fo-
cus summarization, measured on the hard SCE split of
CUB. Showing that as little as 5 captions in total are
sufficient to focus the summarization process.

the sentence as non-VRL despite the mention of a
body part (bill) — since that description it is not vi-
sually relevant in that particular context. Sentences
4-6 show examples of false-positive predictions of
the VRS model. E.g., in sentence 5 the VRS model
incorrectly predicted VRL, which we attribute to
the mention: “their small size”. In sentence 6 the
VRS model incorrectly marks the sentence as VRL,
a mistake we attribute to the mention of the flower’s
“red” color.

We then compare both ZESTsimilarity and the
GAZSL to the use of HUMAN summarization in
the CUB dataset and see additional improvement
in both models on the two splits. The gap between
the performance on the VRS and the Human sum-
marization indicates that improvement in the sum-
marization of documents will improve the models’
performance, and is, therefore, a promising path
for text-based zero-shot learning research.

Finally, we experiment to assess the number of
captions that are realistically needed for the VRS
method. The results, presented in Table 4, show
that only a few (∼ 5) sentences (captions) from
arbitrary birds are needed to achieve the maximum
accuracy with this method. Testing the VRS with
five arbitrary captions from CUB dataset on the
NAB dataset with SCS-split, we achieved a 39.28%
accuracy.

For comparison, Reed et al. (2016) showed that
their model needed at least 512 captions per class
to achieve the maximum accuracy - i.e., had it used
all the captions available.

6 Conclusion

This work aims to establish a better way to repre-
sent the language modality in text-based ZSL for
image classification. Our approach only relies on
semantic information about visual features, and not
on the visual features themselves. Specifically, our
two orthogonal text-processing methods, employ-

ing textual similarity and visually-relevant sum-
maries, lead to significant improvements across
models, splits, and datasets, and illustrate that ade-
quate text-processing is essential in text-based ZSL
tasks. We conjecture that text-processing methods
will be essential in a range of vision and language-
based tasks, and hope this work will assist future
research in better representing the language modal-
ity in various multi-modal tasks.
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