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Abstract

Pre-trained language models such as BERT
have achieved the state-of-the-art performance
on natural language inference (NLI). How-
ever, it has been shown that such models can
be tricked by variations of surface patterns
such as syntax. We investigate the use of
dependency trees to enhance the generaliza-
tion of BERT in the NLI task, leveraging on
a graph convolutional network to represent a
syntax-based matching graph with heteroge-
neous matching patterns. Experimental results
show that, our syntax-based method largely
enhance generalization of BERT on a test set
where the sentence pair has high lexical over-
lap but diverse syntactic structures, and do not
degrade performance on the standard test set.
In other words, the proposed method makes
BERT more robust on syntactic changes.

1 Introduction

The task of natural language inference (NLI) tar-
gets at determining whether one sentence entails
another (Condoravdi et al., 2003). Recently, large-
scale pre-trained contextualized embeddings such
as BERT (Devlin et al., 2018) and XLNet (Yang
et al., 2019) have given the state-of-the-art accuracy
for this task. It has been shown that pre-trained
models help to better capture heuristic patterns
in a set of training data and therefore enhance in-
domain performance (Wang et al., 2018). However,
there are still limitations on the generalization of
such models to examples under a different distribu-
tion. In particular, it has been shown that seemingly
simple types of examples in a carefully designed
evaluation set (i.e. HANS) can lead to significant
degeneration and large variability in performance
∗Equal Contribution. Work is done when working at West-

lake University.
†Corresponding author.

(McCoy et al., 2019b,a). Table 1 shows a set of test
cases from HANS, where premise and hypothesis
have high lexical overlap but different syntactic
structures. The BERT model gives incorrect results
on most cases. This issue can negatively affect NLI
applications such as dialogue (Dziri et al., 2019;
Welleck et al., 2019).

It has been shown that syntactic structures are
useful for cross-domain generalization of NLP
models (Wang et al., 2017; Strubell and McCallum,
2018). Intuitively, a more robust NLI model can be
obtained by making use of structural information.
We empirically investigate the effectiveness of syn-
tactic features for enhancing the generalization of
BERT-based matching models. In particular, given
a pair of sentences, the dependency syntax of each
sentence is obtained using a neural parser (Qi et al.,
2018). The parse trees are then extended using four
types of edge patterns, including a soft co-attention
matching pattern that links the sentence pair into
an integrated graph. A graph convolutional net-
work (GCN) (Kipf and Welling, 2016) is used to
represent the whole matching graph structure.

Experiments show that the performance of the
proposed model is much better than BERT and
other syntax-based baselines on the category in
HANS where the premise and non-entailment hy-
pothesis have high lexical overlap but different syn-
tactic structures, when both models are trained on
MNLI dataset. It proves that incorporating syntax
by the proposed method enhances generalization
of the BERT model on syntactic changes‡.

2 Related Work

There has been much work based on deep neural
networks for the NLI task. One straight-forward
solution is to independently encode the premise

‡Our code will be available at: https://github.
com/heqi2015/CA_GCN

https://github.com/heqi2015/CA_GCN
https://github.com/heqi2015/CA_GCN
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Premise Hypothesis Gold BERT-CLS BERT+CAGCN
The student saw the managers. The managers saw the student. N E N
The judge in front of the manager
saw the doctors. The doctors saw the judge. N E N

The bankers admired the lawyer
that the students supported. The lawyer admired the students. N E N

The secretary and the managers
saw the actor. The secretary saw the managers. N E N

The manager was introduced
by the professor.

The manager introduced the
professor. N E E

Table 1: Examples drawn from the “non-entailed lexical overlap” category in HANS (McCoy et al., 2019b) for the NLI task.
In each example, the words in hypothesis are drawn from the premise but do not form a subsentence of premise, and thus the
syntactic structures in hypothesis and premise are quite different. Both the BERT-CLS baseline and our GCN-based BERT model
with co-attention links (BERT+CAGCN) are finetuned on MNLI dataset (Williams et al., 2018), and the neutral or contradiction
labels are translated into non-entailment when evaluation (McCoy et al., 2019b). Note that E stands for entailment, and N stands
for non-entailment.

and the hypothesis into embedding vectors, which
are fed to a multi-layer neural network for classi-
fication (Bowman et al., 2015). It has been shown
that alignment between local words in the premise
and hypothesis benefits the aggregation of informa-
tion (Chen et al., 2016; Parikh et al., 2016), and
encoding the sentence pair simultaneously can cap-
ture more interaction and thus further improve the
performance (Devlin et al., 2018). We thus adopt
this model as our baseline.

Syntax has been proven beneficial for semantic
tasks such as NLI (Bowman et al., 2016; Pang et al.,
2019; Lei et al., 2019). Tree-based SPINN meth-
ods encode sentences by combining constituency
phrases (Bowman et al., 2016). Recently, Pang et
al. (2019) proposed to enhance the token represen-
tation by using contextual vector representations
from a pretrained parser. The GCN method has also
been used to represent syntax for sentence match-
ing (Lei et al., 2019), where the syntax of each
sentence is encoded separately. In this paper, we
use a GCN to encode a whole matching graph with
syntactic information, showing that integrating syn-
tax by our method benefits the generalization of
BERT-based method.

3 Method

The overall architecture of the proposed method is
shown in the top of Figure 1. At the bottom layer,
contextualized representations of the two sentences
are obtained by using BiLSTM, ELMo or BERT.
The representation is then fed into GCN to initialize
the representations in the first layer.

3.1 GCN

The graph structure of each layer in GCN is de-
picted in the bottom of Figure 1. Each node in the
graph represents one word in the sentence pair. We

define four types of directed edges in the graph, as
described in Equation 1, where E denotes the set
of syntactic dependency arcs inside sentences, and
S (wi) indicates which sentence the word wi be-
longs to. The first two edge types are introduced to
allow information flow along and against syntactic
arcs. Thirdly, the self-loop edge is added for better
preserving information of each word across mes-
sage passing iterations (Kipf and Welling, 2016).

E (i, j) =


dependency, if (wi,wj) ∈ E
reversion, if (wj ,wi) ∈ E
self-loop, if i == j

co-attention, if S (wi)! = S (wj)

(1)

The last type of relation aims to enforce align-
ment of words between sentences, where the sim-
ilarity between each word wi in sentence A and
each word wj in sentence B at the kth layer is cal-
culated by the co-attention operation as C(k)

i,j =

σ(h
(k)T
i W

(k)
co h

(k)
j ), where σ denotes the sigmoid

function, h the feature vector, and Wco the affinity
weight. The feature of node i is updated at the kth
layer by h(k+1)

i = f
(∑

j∈N(i) g
(k)
i,j (W

(k)
E(i,j)h

(k)
j +

b
(k)
E(i,j)

)
, where f(·) is ReLU activation function,

N(·) is the neighbor set, and g(k)i,j is a gate function
that is described below.

Note that we only take unlabelled dependen-
cies into account to avoid over-parameterization
(Marcheggiani and Titov, 2017), as shown in Equa-
tion 1. By bringing in sparse and unlabeled de-
pendency relations, the embedding of each word
is influenced by its immediately semantically or
syntactically related words, which leads to a poten-
tially more robust word representation. We apply a
gate g(k)i,j to each edge to calculate the importance
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of information exchange (Marcheggiani and Titov,
2017).

g
(k)
i,j =

{
C

(k)
i,j , if E (i, j) is co-attention;

σ(h
(k)T
i v

(k)
E(i,j) + d

(k)
E(i,j)), otherwise.

(2)

In addition, highway units are adopted in each
layer to preserve information in multiple stacked
GCN layers (Srivastava et al., 2015).

3.2 Co-Attention Layer

We denote the word representations of sentence A
and sentence B in the GCN output as HA and HB ,
respectively. An affinity matrix is calculated by
C = tanh(HT

AWcHB), which is used to calculate
the co-attention maps between the sentence pair
(Lu et al., 2016):

GA = tanh(WAHA + CT (WBHB)), (3)

aA = softmax(wT
AGA), (4)

GB = tanh(WBHB + C(WAHA)), (5)

aB = softmax(wT
BGB) (6)

where WA,WB, wA, wB are weight parameters,
and each element in aA and aB is the attention
probability of words in sentence A and B, respec-
tively. Finally, the vector representations of the
sentences are calculated by

hA =
∑
wi∈A

aiAH
i
A, hB =

∑
wj∈B

ajBH
j
B, (7)

where ai denotes the ith element in a, and H i the
ith column in H .

3.3 Output Classifier

With vector representations of the sentence pair, we
obtain an overall representation by concatenating
them with their element-wise difference and multi-
plication as [hA, hB, hA− hB, hA� hB], which is
fed to a linear layer with softmax activation to ob-
tain the final classification output. The final model
is trained using a cross-entropy loss.

4 Experiments

Models for Comparison. We consider three
variants of the proposed model based on BERT,
linking words between the premise and the hy-
pothesis at the GCN layer in different ways:
co-attention links as described in Section 3
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Figure 1: The proposed syntax-based architecture.

(BERT+CAGCN), simply linking the same lem-
marized words (BERT+SWGCN), and no links
(BERT+SGCN) as in Lei et al. (2019). We
also tried combining the outputs of BERT and
GCN, which results in little performance improve-
ment. The baseline models include “BERT-CLS”,
which adds classifier to the vector representation of
[CLS] token in BERT model (Devlin et al., 2018),
“BERT-Attn”, which feeds word output of BERT
sequentially to co-attention layer and classifier,
“BERT+LF”, which adds syntactic features to the
input of the classifier layer (Pang et al., 2019), and
“SPINN” which encodes sentences with a parse tree
(Bowman et al., 2016).

Datasets and Settings. We train all the models
on MNLI training data (Williams et al., 2018),
and evaluate them on MNLI and HANS∗ (Mc-
Coy et al., 2019b). Evaluation examples in MNLI
are divided into two categories: in-domain match
(MNLI-m) and cross-domain mismatch (MNLI-
mm). The evaluation set HANS is designed to

∗The labels neutral or contradiction are translated into
non-entailment for evaluation on HANS.
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Model S/O Pre Rc Conj Pass Avg.
BERT-CLS 24.2 51.0 37.4 53.8 0.5 33.4
BERT-Attn 40.9 53.3 44.6 56.4 0.3 39.1
BERT+LF 29.8 70.6 48.1 68.2 8.1 45.0
SPINN 28.7 19.3 25.0 12.6 1.9 17.5
BERT+CAGCN 81.8 81.6 71.9 73.7 11.1 64.0
BERT+SWGCN 45.6 66.2 53.8 78.6 0.2 48.9
BERT+SGCN 58.5 66.3 49.0 69.6 2.7 49.2

Table 2: Results on the five subcategories of non-entailed
lexical overlap examples in HANS.

The senators were recommended by the managers .
. .

.
.

.
.

.

The senators recommended the managers .
. . .

.
.

Figure 2: An example from passive subcategory in HANS
with syntactic dependency edges.

HANS
Correct: Entailment Correct: Non-entailment

Model MNLI-m MNLI-mm Lexical Subseq. Const. Lexical Subseq. Const. Avg.
BERT-CLS 84.3 84.7 97.5 99.8 99.8 33.4 4.3 12.9 57.9
BERT-Attn 84.6 84.4 95.3 99.5 99.3 39.1 6.0 16.4 59.3
BERT+LF 84.7 84.9 95.2 99.3 98.7 45.0 7.3 11.2 59.5
SPINN 68.0 67.2 93.8 96.3 93.1 17.5 13.1 9.6 53.9
BERT+CAGCN 85.0 84.9 94.9 99.5 98.9 64.0 8.8 14.6 63.5
BERT+SWGCN 84.9 84.9 93.7 98.9 98.6 48.9 9.8 23.9 62.3
BERT+SGCN 84.5 84.8 94.6 98.9 99.0 49.2 8.3 13.0 60.5

Table 3: Model accuracies on MNLI and HANS

diagnose whether an NLI model has learned spe-
cific invalid heuristics in the training data, in order
to evaluate its generalization ability.

The number of GCN layers is set at 3. The BERT
components in BERT-related models are initialized
with the same pre-trained weights. The BERT-
related baselines are optimised using the Adam
optimizer (Loshchilov and Hutter, 2017). For the
proposed models, we adopt two different Adam
optimizers for BERT and the other components in
the model, respectively (Liu and Lapata, 2019).

4.1 Results

Intuitively, the effectiveness of syntax can be obvi-
ous when the sentence pair has high lexical over-
lap but are syntactically different, which leads to
semantic diversity. In HANS, this category of ex-
amples is named as non-entailment lexical overlap,
where the words in hypothesis are derived from
premise and do not form a contiguous subsequence
of the premise. The performance comparison on
this category is shown in Table 2. It can be ob-
served that our models outperform the baselines
including BERT by a wide margin. This result
proves that incorporating syntax by using GCN is
indeed beneficial for the generalization of BERT,
especially identifying different syntactic structures
in the sentence pair. By comparing the results of
GCN-based methods, it can be seen that linking
words between the sentence pair by co-attention
can lead to a better performance. Some examples
in this category are shown in Table 1.

The overall results on MNLI and HANS are
shown in Table 3. It can be seen that incorporating
syntax by GCN improves the averaged precision on
the six categories of HANS, and slightly improves
the performance on the in-domain dataset MNLI.

4.2 Analysis

Despite the success in the first four subcategories in
Table 2, the proposed GCN-based methods do not
bring as much improvement compared to the base-
lines on the Passive subcategory, and neither on the
Non-entailment-subsequence and Non-entailment-
constituent categories in HANS, as shown in Table
3. One common characteristic in these categories
is that the syntactic structures and the relative posi-
tions of words between the premise and the hypoth-
esis remain basically unchanged. One example
of Passive subcategory is shown in Figure 2. It
can be the reason that both BERT baselines and
syntax-based methods perform badly on this type
of examples.

Similarly to HANS, the in-domain dataset MNLI
also contains examples in which the sentence pair
have high lexical overlap. However, most examples
of this kind in MNLI have supporting labels rather
than contradicting (McCoy et al., 2019b). Further-
more, more than a half of the contradicting cases
contain negation in the premise but not the hypoth-
esis, e.g. “I don’t care.” vs. “I care.”. Note that
this bias of MNLI is also one main motivation of
HANS. Thus, a model may account for the above
trait of MNLI by both learning and evaluation on



4977

it, and the syntactic feature might be learned as
a secondary factor compared to content and nega-
tion words. This can be the main reason why the
proposed syntactic model only improves the perfor-
mance slightly on MNLI.

5 Conclusion

We have investigated the effectiveness of introduc-
ing syntax into the NLI task, by adopting GCN to
enhance the text representation in existing models
such as BERT. Results on HANS show that our
method can improve the generalization of BERT,
especially on examples where the sentence pair
have high lexical overlap but different syntactic
structures. It demonstrates that adding inductive
biases such as dependency tree by GCN can make
sentence encoding more robust.
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