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Abstract

Emotion Recognition in Conversations (ERC)
aims to predict the emotional state of speak-
ers in conversations, which is essentially a text
classification task. Unlike the sentence-level
text classification problem, the available super-
vised data for the ERC task is limited, which
potentially prevents the models from playing
their maximum effect. In this paper, we pro-
pose a novel approach to leverage unsuper-
vised conversation data, which is more accessi-
ble. Specifically, we propose the Conversation
Completion (ConvCom) task, which attempts
to select the correct answer from candidate an-
swers to fill a masked utterance in a conver-
sation. Then, we Pre-train a basic COntext-
Dependent Encoder (PRE-CODE) on the Con-
vCom task. Finally, we fine-tune the PRE-
CODE on the datasets of ERC. Experimen-
tal results demonstrate that pre-training on un-
supervised data achieves significant improve-
ment of performance on the ERC datasets, par-
ticularly on the minority emotion classes.1

1 Introduction

Emotion recognition in conversations (ERC) has
garnered attention recently (Poria et al., 2019), due
to its potential in developing practical chatting ma-
chines (Zhou et al., 2018a). Unlike traditional text
classification that handles context-free sentences,
ERC aims to predict the emotional state of each
utterance in a conversation (Figure 1). The inherent
hierarchical structure of a conversation, i.e., words-
to-utterance and utterances-to-conversation, deter-
mines that the ERC task should be better addressed
by context-dependent models (Poria et al., 2017;
Hazarika et al., 2018b; Jiao et al., 2019, 2020).

Despite the remarkable success, context-
dependent models suffer from the data scarcity

1The source code is available at https://github.
com/wxjiao/Pre-CODE

You sprayed my front twice!

You never turned?

No! I barely even got to three Mississippi.

Mississippi? I said count to five.

[Angry]

[Surprised]

[Angry]

[Neutral]

Figure 1: A conversation example with emotion labels.

issue. In the ERC task, annotators are required
to recognize either obvious or subtle difference
between emotions, and tag the instance with a spe-
cific emotion label, such that supervised data with
human annotations are very costly to collect. In
addition, existing datasets for ERC (Busso et al.,
2008; Hsu and Ku, 2018; Zahiri and Choi, 2018;
Zadeh et al., 2018) contain inadequate conversa-
tions, which prevent the context-dependent models
from playing their maximum effect.

In this paper, we aim to tackle the data scarcity
issue of ERC by exploiting the unsupervised data.
Specifically, we propose the Conversation Com-
pletion (ConvCom) task based on unsupervised
conversation data, which attempts to select the
correct answer from candidate answers to fill a
masked utterance in a conversation. Then, on
the proposed ConvCom task, we Pre-train a basic
COntext-Dependent Encoder (PRE-CODE). The
hierarchical structure of the context-dependent en-
coder makes our work different from those that
focus on universal sentence encoders (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019). Fi-
nally, we fine-tune the PRE-CODE on five datasets
of the ERC task. Experimental results show that
the fine-tuned PRE-CODE achieves significant im-
provement of performance over the baselines, par-
ticularly on minority emotion classes, demonstrat-
ing the effectiveness of our approach.

https://github.com/wxjiao/Pre-CODE
https://github.com/wxjiao/Pre-CODE
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Question
u1: They die at the end ?
u2: Oh, yes.
u3: Juliet poisons herself, then Romeo 
comes in and he dies, too .
u4: [ mask ]
u5: OK.
u6: But after that, their families are 
reconciled, so that's quite nice.
u7: I don't understand why the montagons
and the caplets just won't let them muck 
about together.
-------------------------------------------------------
Candidate Answers
1. So, we should put a spoiler, should we?
2. I struggle to keep a goldfish alive, to be 
honest.
3. What do you want, Gallo?

Conversation

u1: They die at the end ?
u2: Oh, yes.
u3: Juliet poisons herself, then Romeo 
comes in and he dies, too .
u4: So, we should put a spoiler, should we?
u5: OK.
u6: But after that, their families are 
reconciled, so that's quite nice.
u7: I don't understand why the montagons 
and the caplets just won't let them muck 
about together.

Figure 2: A data example in the ConvCom task.

Our contributions of this work are as follows:
(1) We propose the conversation completion task
for the context-dependent encoder to learn from
unsupervised conversation data. (2) We fine-tune
the pre-trained context-dependent encoder on the
datasets of ERC and achieve significant improve-
ment of performance over the baselines.

2 Pre-training Strategy

2.1 Approach

ConvCom Task. We exploit the self-supervision
signal in conversations to construct our pre-training
task. Formally, given a conversation, U =
{u1, u2, · · · , uL}, we mask a target utterance ul
as U\ul = {· · · , ul−1, [mask], ul+1, · · · } to cre-
ate a question, and try to retrieve the correct ut-
terance ul from the whole training corpus. The
choice of filling the mask involves countless possi-
ble utterances, making it infeasible to formulate the
task into a multi-label classification task with soft-
max. We instead simplify the task into a response
selection task (Tong et al., 2017) using negative
sampling (Mikolov et al., 2013), which is a vari-
ant of noise-contrastive estimation (NCE, Gutmann
and Hyvärinen, 2010). To achieve so, we sample
N − 1 noise utterances elsewhere, along with the
target utterance, to form a set of N candidate an-
swers. Then the goal is to select the correct answer,
i.e., ul, from the candidate answers to fill the mask,
conditioned on the context utterances. We term
this task “Conversation Completion”, abbreviated
as ConvCom. Figure 2 shows an example, where
the utterance u4 is masked out from the original
conversation and the candidate answers include u4
and two noise utterances.

Context-Dependent Encoder. The context-
dependent encoder consists of two parts: an
utterance encoder, and a conversation encoder.

Utterance 
Encoder

𝑢"[𝑚𝑎𝑠𝑘]𝑢)𝑢* 𝑢+

Utterance 
Embedding

𝑎,(𝑢.) 𝑎* 𝑎)

0

1
Score

Matching

GRU
GRUConversation 

Encoder

Contextual 
Embedding

Question Conversation Candidate Answers

3𝐮𝟒

𝐮𝒂𝟏 𝐮𝒂𝟐 𝐮𝒂𝟑

Figure 3: The architecture of the context-dependent en-
coder with the pre-training objective.

Each utterance is represented by a sequence of
word vectors X = {x1,x2, · · · ,xT }, initialized
by the 300-dimensional pre-trained GloVe word
vectors2 (Pennington et al., 2014).

For the utterance encoder, we adopt a BiGRU to
read the word vectors of an utterance, and produce
the hidden state

←→
h t = [

−→
h t;
←−
h t] ∈ R2du . We

apply max-pooling and mean-pooling on the hidden
states of all words. The pooling results are summed
up, followed by a fully-connected layer, to obtain
the embedding of the utterance termed ul:

hl = max({
←→
h t}Tt=1) + mean({

←→
h t}Tt=1), (1)

ul = tanh(Wu · hl + bu), l ∈ [1, L], (2)

where T denotes the length of the utterance and L
is the number of utterances in the conversation.

For the conversation encoder, since an utterance
could express different meanings in different con-
texts, we adopt another BiGRU to model the ut-
terance sequence of a conversation to capture the
relationship between utterances. The produced hid-
den states are termed

−→
Hl,
←−
Hl ∈ Rdc .

Pre-training Objective. To train the context-
dependent encoder on the proposed ConvCom task,
we construct a contextual embedding for each
masked utterance by combining its context from the
history

−→
Hl−1 and the future

←−
Hl+1 (see Figure 3):

ûl = tanh(Wc · [
−→
Hl−1;

←−
Hl+1] + bc). (3)

Then, the contextual embedding ûl is matched to
the candidate answers to find the most suitable one
to fill the mask. To compute the matching score,
we adopt dot-product with a sigmoid function as:

s(ûl,uan) = σ(û>l uan), n ∈ [1, N ], (4)
2https://nlp.stanford.edu/projects/

glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Model du/dc R5@1 R5@2 R11@1 R11@2

SMALL 150 70.8 88.0 56.2 72.7
MID 300 73.8 89.7 60.4 76.4
LARGE 450 77.2 91.3 64.2 79.1

Table 1: Test results of CODE on the ConvCom task in
three capacities.

where σ(x) = 1
(1+exp(−x)) ∈ (0, 1) is the sigmoid

function, and uan is the embedding of the nth can-
didate answer. The goal is to maximize the score of
the target utterance and minimize the score of the
noise utterances. Thus the loss function becomes:

F = −
∑
l

[
log σ(û>l ua1) +

N∑
n=2

log σ(−û>l uan)

]
, (5)

where a1 corresponds to the target utterance, and
the summation goes over each utterance of all the
conversations in the training set.

2.2 Experiment

Dataset. Our unsupervised conversation data
comes from an open-source database OpenSub-
title3 (Lison and Tiedemann, 2016), which con-
tains a large amount of subtitles of movies and
TV shows. Specifically, we retrieve the English
subtitles throughout the year of 2016, and collect
25,466 html files. After pre-processing, we obtain
58,360, 3,186, 3,297 conversations for the training,
validation, and test sets, respectively.

Evaluation. To evaluate the pre-trained model,
we adopt the evaluation metric:

RN ′@k =

∑k
i=1 yi∑N ′

i=1 yi
, (6)

which is the recall of the true positives among
k best-matched answers from N ′ available candi-
dates for the given contextual embedding ûk (Zhou
et al., 2018b). The variate yi represents the binary
label for each candidate, i.e., 1 for the target one
and 0 for the noise ones. Here, we report R5@1,
R5@2, R11@1, and R11@2.

Results. For simplicity, we term the context-
dependent encoder as CODE. We train CODE on
the created dataset in three different capacities,
namely, SMALL, MID, and LARGE, correspond-
ing to different hidden sizes of the BiGRUs. See
Appendix A.2 for the training details.

3http://opus.nlpl.eu/
OpenSubtitles-v2018.php
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Figure 4: The architecture for the ERC task. Both the
utterance encoder and conversation encoder are trans-
ferred from the PRE-CODE.

Table 1 lists the results on the test set. For the
SMALL CODE, it is able to select the correct an-
swer for 70.8% instances with 5 candidate answers
and 56.2% with 11 candidates. The accuracy is
considerably higher than random guesses, i.e., 1/5
and 1/11, respectively. By increasing the model
capacity to MID and LARGE, we further improve
the recalls by several points successively. These
results demonstrate that CODE is indeed able to
capture the structure of conversations and perform
well in the proposed ConvCom task.

3 Fine-tuning Strategy

3.1 Experimental Setup

ERC Architecture. To transfer the pre-trained
CODE models, termed PRE-CODE, to the ERC
task, we only need to add a fully-connected (FC)
layer followed by a softmax function to form the
new architecture. Figure 4 shows the resulting
architecture, in which we also concatenate the
context-independent utterance embeddings to the
contextual ones before fed to the FC.

We adopt a weighted categorical cross-entropy
loss function to optimize the model parameters:

L = − 1∑N
i=1 Li

N∑
i=1

Li∑
j=1

ω(cj)

|C|∑
c=1

oc
j log2(ô

c
j), (7)

where |C| is the number of emotion classes, oj
is the one-hot vector of the true label, and ôj is
the softmax output. The weight ω(c) is inversely
proportional to the ratio of class c in the training
set with a power rate of 0.5.

http://opus.nlpl.eu/OpenSubtitles-v2018.php
http://opus.nlpl.eu/OpenSubtitles-v2018.php
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Model IEMOCAP EmoryNLP MOSEI∗

F1 WA F1 WA F1 WA

bcLSTM1 – 73.6 – – – –
CMN2 – 74.1 – – – –
SCNN3 – – 26.9 37.9 – –
HiGRU-sf4 – 82.1 – – – –
bcLSTM 76.6 77.1 25.5 33.5 29.1 56.3
bcGRU 77.6 78.2 26.1 33.1 28.7 56.4
CODE-MID 78.6 79.6 26.7 34.7 29.7 56.6
PRE-CODE 81.5 82.9 29.1 36.1 31.7 57.1

1Poria et al. (2017); 2Hazarika et al. (2018b);
3Zahiri and Choi (2018); 4Jiao et al. (2019).

Table 2: Test results on IEMOCAP, EmoryNLP, and
MOSEI∗. The implemented bcLSTM performs much
better than the original one, possibly because that the
original bcLSTM is not trained end-to-end.

Model Friends EmotionPush
F1 WA F1 WA

CNN-DCNN1 – 67.0 – 75.7
SA-BiLSTM2 – 79.8 – 87.7
HiGRU3 – 74.4 – 73.8
bcLSTM 63.1 79.9 60.3 84.8
bcGRU 62.4 77.6 60.5 84.6
CODE-MID 62.4 78.0 60.3 84.2
PRE-CODE 65.9 81.3 62.6 84.7

1Khosla (2018); 2Luo et al. (2018);
3Jiao et al. (2019).

Table 3: Test results on Friends and EmotionPush.

Compared Methods. We mainly compare our
PRE-CODE with bcLSTM (Poria et al., 2017),
CMN (Hazarika et al., 2018b), SA-BiLSTM (Luo
et al., 2018), CNN-DCNN (Khosla, 2018),
SCNN (Zahiri and Choi, 2018), HiGRU (Jiao et al.,
2019), and the following: (1) bcLSTM‡: bcLSTM
re-implemented by us following Jiao et al. (2019);
(2) bcGRU: A variant of bcLSTM‡ implemented
with BiGRUs; (3) CODE without pre-training. Un-
less otherwise stated, CODE and PRE-CODE are
both in the capacity of MID.

ERC Datasets. We conduct experiments on five
ERC datasets for the ERC task, namely, IEMO-
CAP (Busso et al., 2008), Friends (Hsu et al., 2018),
EmotionPush (Hsu et al., 2018), EmoryNLP (Za-
hiri and Choi, 2018), and MOSEI (Zadeh et al.,
2018). For MOSEI, we pre-process it to adapt to
the ERC task and name the pre-processed dataset
as MOSEI∗ here. See Appendix A.3 for details of
the ERC datasets.

Evaluation. To evaluate the performance of
our models, we report the macro-averaged F1-
score (Zahiri and Choi, 2018) and the weighted
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Figure 5: F1-score of emotion classes on IEMOCAP
and EmoryNLP.

accuracy (WA) (Hsu and Ku, 2018) of all emotion
classes. The F1-score of each emotion class is also
presented for discussion.

Results. We train the implemented baselines and
fine-tune the PRE-CODE on the five datasets. Each
result is the average of 5 repeated experiments. See
Appendix A.3 for training details.

We report the main results in Table 2 and Ta-
ble 3. As seen, our PRE-CODE outperforms the
compared methods on all datasets in terms of F1-
score by at least 2.0% absolute improvement. We
also conduct significance tests by using two-tailed
paired t-tests over the F-1 scores of PRE-CODE
and CODE-MID. P-values are obtained as 0.0107,
0.0038, 0.0011, 0.0003, and 0.0068 for IEMOCAP,
EmoryNLP, MOSEI∗, Friends, and EmotionPush,
respectively. Therefore, the result for IEMOCAP
is statistically significant with a significance level
of 0.05 whereas the other four datasets obtain a
significance level of 0.01. It demonstrates the ef-
fectiveness of transferring the knowledge from un-
supervised conversation data to the ERC task.

To inspect which aspects pre-training helps the
most, we present the F1-score of each emotion
class on IEMOCAP and EmoryNLP in Figure 5.
As seen, our PRE-CODE particularly improves
the performance on minority emotion classes, e.g.,
anger and sadness in IEMOCAP, and peaceful and
sad in EmoryNLP. These results demonstrate that
pre-training can ameliorate the issue of imbalanced
performance on minority classes while maintaining
good performance on majority classes.

3.2 Discussion

Model Capacity. We investigate how the model
performance is affected by the number of param-
eters, as seen in Table 4. We find that: (1)
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Model Capacity IEMOCAP Friends

CODE
SMALL 76.5 62.5
MID 78.6 62.4
LARGE 77.6 62.1

PRE-CODE
SMALL 81.2 65.2
MID 81.5 65.9
LARGE 80.3 64.8

Table 4: Ablation study on model capacity.

Layers IEMOCAP Friends

PRE-CODE + Re-W 81.6 64.5
PRE-CODE 81.5 65.9
CODE + Pre-U 80.1 64.8
CODE 78.6 62.4

Table 5: Ablation study on pre-trained layers.

PRE-CODE consistently outperforms CODE in
all cases, suggesting that pre-training is an effec-
tive method to boost the model performance of
ERC regardless of the model capacity. (2) PRE-
CODE shows better performance in the capaci-
ties of SMALL and MID, we speculate that the
datasets for ERC are so scarce that they are inca-
pable of transferring the pre-trained parameters of
the LARGE PRE-CODE to optimal ones for ERC.

Layer Effect. We study how different pre-
trained layers affect the model performance, as
seen in Table 5. CODE+Pre-U denotes that only
the parameters of utterance encoder are initialized
by PRE-CODE. From CODE to CODE+Pre-U and
then to PRE-CODE, we conclude that pre-training
results in better utterance embeddings and helps
the model to capture the utterance-level context
more effectively. In addition, PRE-CODE+Re-W
represents that we re-train PRE-CODE for 10 more
epochs to adjust the originally fixed word embed-
dings. The results suggest that pre-training word
embeddings does not improve the model perfor-
mance necessarily but may corrupt the learned ut-
terance and conversation encoders.

Qualitative Study. In Table 6, we provide two
examples for a comparison between CODE and
PRE-CODE. The first example is from Friends
with consecutive utterances from Joey. It shows
that CODE tends to recognize the utterances with
exclamation marks “!” as Angry, while those with
periods “.” as Neutral. The problem also appears
on PRE-CODE for short utterances, e.g., “Push!”,
which contains little and misleading information.
This issue might be alleviated by adding other

Speaker Utterance Truth CODE PRE-CODE

Example 1
Joey Come on, Lydia, you can

do it.
Neu Neu Neu

Joey Push! Joy Ang Ang
Joey Push ’em out, push ’em

out, harder, harder.
Joy Neu Neu

Joey Push ’em out, push ’em
out, way out!

Joy Ang Joy

Joey Let’s get that ball and re-
ally move, hey, hey, ho,
ho.

Joy Neu Joy

Joey Let’s. . . I was just. . .
yeah, right.

Joy Neu Neu

Joey Push! Joy Ang Ang
Joey Push! Joy Ang Ang

Example 2
Sp1 It’s so hard not to cry Sad Ang Sad
Sp2 What happened Neu Neu Neu
Sp1 I lost another 3 set game Sad Neu Sad
Sp2 It’s ok person 145 Neu Neu Neu
Sp1 Why does it hurt so much Sad Neu Sad
Sp2 Everybody loses Neu Neu Neu

Table 6: Qualitative comparison between CODE and
PRE-CODE by two examples.

features like audio and video. Still, PRE-CODE
performs better than CODE on longer utterances.
The other example is from EmotionPush, which
are messages with few punctuations. The CODE
model predicts almost all utterances as Neutral,
which may be because most of the training utter-
ances are Neutral. However, PRE-CODE can iden-
tify the minor classes, e.g., Sad, demonstrating that
pre-training can alleviate the class imbalance issue.

4 Conclusion

In this work, we propose a novel approach to lever-
age unsupervised conversation data to benefit the
ERC task. The proposed conversation completion
task is effective for the pre-training of the context-
dependent model, which is further fine-tuned to
boost the performance of ERC significantly. Fu-
ture directions include exploring advanced models
(e.g., TRANSFORMER) for pre-training, conduct-
ing domain matching for the unsupervised data, as
well as multi-task learning to alleviate the possible
catastrophic forgetting issue in transfer learning.
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A Appendix

A.1 Related Work
Pre-training on unsupervised data has been an
active area of research for decades. Mikolov
et al. (2013) and Pennington et al. (2014) lead the
heat on learning dense word embeddings over raw
text for downstream tasks. Melamud et al. (2016)
propose to learn word embeddings in the context
with the use of LSTM, which is able to eliminate
word-sense ambiguity. More recently, ELMo (Pe-
ters et al., 2018) extracts context-sensitive fea-
tures through a language model and integrates the
features into task-specific architectures, achieving
state-of-the-art results on several major NLP tasks.
Unlike these feature-based approaches, another
trend is to pre-train some architecture through a lan-
guage model objective, and then fine-tune the archi-
tecture for supervised downstream tasks (Howard
and Ruder, 2018; Radford et al., 2018; Devlin et al.,
2019). With trainable parameters, this kind of ap-
proaches are more flexible, attaining better perfor-
mance than their feature-based counterparts.

However, the idea of pre-training a context-
dependent encoder using unsupervised conversa-
tion data for the ERC task has never been explored.
On one hand, existing works on ERC focus on
modeling the speakers, context, and emotion evo-
lution (Poria et al., 2017; Hazarika et al., 2018a,b;
Jiao et al., 2019, 2020). No prior work has tried to
solve the issue of data scarcity. On the other hand,
existing works on transfer learning focus on pre-
training universal sentence encoders, e.g., ELMo,
GPT, and BERT. But our PRE-CODE, beyond sen-
tence level, is dedicated for sentence sequences
from conversations or speeches. As a result, the
pre-training task needs to be customized, for which
we propose the ConvCom task. Partially inspired
by Word2vec (Mikolov et al., 2013) and response
selection task (Tong et al., 2017), our ConvCom
task differs in that it should model the order of con-
text meanwhile both historical and future context
are provided. In contrast, Word2vec neglects the
order of context words, and response selection task
usually provides only historical context.

A.2 Pre-training Strategy
Dataset Creation. Our unlabeled conversation
data comes from an open-source database named
OpenSubtitle4 (Lison and Tiedemann, 2016),

4http://opus.nlpl.eu/
OpenSubtitles-v2018.php

Set #Conversation Avg. #Utterance Avg. #Word

Train 58360 41.3 10.1
Val 3186 41.0 10.1
Test 3297 40.8 10.1

Table 7: Statistics of the created datasets for the Con-
vCom task.

which contains a large amount of subtitles of
movies and TV shows. Specifically, We retrieve
the English subtitles throughout the year of 2016,
including 25466 .html files. We extract the text
subtitles from all the .html files and pre-process
them as below:

• For each episode, we remove the first and the
last ten utterances in case they are instructions
but conversations, especially in TV shows;

• We split the conversations in each episode
randomly into shorter ones with five to one
hundred utterances, following a uniform dis-
tribution;

• A short conversation is removed if over half
of its utterances contain less than eight words
each. This is done to force the conversation to
capture more information;

• All the short conversations are randomly split
into a training set, a validation set, and a test
set, following the ratio of 90:5:5.

Table 7 lists the statistics of resulting sets, where
#Conversation denotes the number of conversations
in a set, Avg. #Utternace is the average number of
utterances in a conversation, and Avg. #Word is the
average number of tokens in an utterance. Totally,
there are over 2 million of utterances in over 60k
conversations, which is at least 100 times more
than those datasets for ERC (see Table 8).

Noise Utterances. We randomly sample ten
noise utterances for each utterance in the training
set, validation set, and test set. In each set, a con-
versation shares the ten noise utterances sampled
from elsewhere within the set. During training,
we can either use the pre-selected noise utterances
or sample an arbitrary number of noise utterances
dynamically. We use the validation set to choose
model parameters, and evaluate the model perfor-
mance on the test set.

http://opus.nlpl.eu/OpenSubtitles-v2018.php
http://opus.nlpl.eu/OpenSubtitles-v2018.php
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Model
#Conversation #Utterance

Train Val Test Train Val Test

IEMOCAP 96 24 31 3,569 721 1,208
Friends 720 80 200 10,561 1,178 2,764
EmotionPush 720 80 200 10,733 1,202 2,807
EmoryNLP 713 99 85 9,934 1,344 1,328
MOSEI∗ 2,250 300 676 16,331 1,871 4,662

Table 8: Statistics of the datasets for ERC.

Training Details. We choose Adam (Kingma
and Ba, 2015) as the optimizer with an initial learn-
ing rate of 2× 10−4, which is decayed with a rate
of 0.75 once the validation recall R11@1 stops in-
creasing. We use a dropout rate of 0.5 for the
utterance encoder and the conversation encoder,
respectively. Gradient clipping with a norm of 5
is also applied to avoid gradient explosion. Each
conversation in the training set is regarded as a
batch, where each utterance plays the role of target
utterance by turns. We randomly sample 10 noise
utterances for each conversation during training
and validate the model every epoch. The CODE is
pre-trained for at most 20 epochs, and early stop-
ping with a patience of 3 is adopted to choose the
optimal parameters. Note that, we fix the word em-
bedding layer during pre-training to focus on the
utterance encoder and the conversation encoder.

A.3 Fine-tuning Strategy

ERC Datasets. Our PRE-CODE and the im-
plemented baselines are fine-tuned on five ERC
datasets, namely, IEMOCAP5 (Busso et al., 2008),
Friends6 (Hsu et al., 2018), EmotionPush7 (Hsu
et al., 2018), EmoryNLP8 (Zahiri and Choi, 2018),
and MOSEI9 (Zadeh et al., 2018). For MOSEI, we
pre-process it to adapt to the ERC task and name
the pre-processed dataset as MOSEI∗ here. Specif-
ically, we utilize the raw transcripts of MOSEI,
where over 14k utterances are not annotated, and
others are labeled with one or more emotion labels.
For the unlabeled utterances, we just remove them
from the dataset. For the utterance with more than

5https://sail.usc.edu/iemocap/
6http://doraemon.iis.sinica.edu.tw/

emotionlines
7http://doraemon.iis.sinica.edu.tw/

emotionlines
8https://github.com/emorynlp/

emotion-detection/
9http://immortal.multicomp.cs.cmu.edu/

raw_datasets/

one emotion label, we determine its primary emo-
tion by the majority vote or the highest emotion
intensity sum if there are more than one majority
votes. For the utterances that obtain zero vote for
all emotion classes, we annotate them as other.

For the first three datasets, we follow previous
work (Poria et al., 2017; Hsu et al., 2018) to con-
sider only four emotion classes, i.e., anger, joy,
sadness, and neutral. We consider all the emo-
tion classes for EmoryNLP as in (Zahiri and Choi,
2018) and six emotion classes (without neutral) for
MOSEI∗. All the datasets contain the training set,
validation set, and test set, except for IEMOCAP.
So, we follow (Poria et al., 2017) to use the first
four sessions of transcripts as the training set, and
the last one as the test set. The validation set is
extracted from the randomly-shuffled training set
with the ratio of 80:20. We present the statistic
details of datasets in Table 8.

Training Details. We still choose Adam as the
optimizer and tune the learning rate for the imple-
mented baselines. Generally, the learning rate of
2 × 10−4 works well for all the datasets except
MOSEI∗, on which we find 5 × 10−5 works bet-
ter. For the fine-tuning of PRE-CODE, we use
the learning rate of the baselines or its half and re-
port the better results here. We monitor the macro-
averaged F1-score of validation set and decay the
learning rate once the F1-score stops increasing.
The decay rate and patience of early stopping are
0.75 and 6 for all the datasets except IEMOCAP.
Since IEMOCAP has much fewer conversations,
we change the decay rate and patience of early
stopping to 0.95 and 10, respectively.

https://sail.usc.edu/iemocap/
http://doraemon.iis.sinica.edu.tw/emotionlines
http://doraemon.iis.sinica.edu.tw/emotionlines
http://doraemon.iis.sinica.edu.tw/emotionlines
http://doraemon.iis.sinica.edu.tw/emotionlines
https://github.com/emorynlp/emotion-detection/
https://github.com/emorynlp/emotion-detection/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/
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