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Abstract

The pre-training of text encoders normally
processes text as a sequence of tokens cor-
responding to small text units, such as word
pieces in English and characters in Chinese. It
omits information carried by larger text gran-
ularity, and thus the encoders cannot easily
adapt to certain combinations of characters.
This leads to a loss of important semantic
information, which is especially problematic
for Chinese because the language does not
have explicit word boundaries. In this paper,
we propose ZEN, a BERT-based Chinese (Z)
text encoder Enhanced by N-gram represen-
tations, where different combinations of char-
acters are considered during training, thus po-
tential word or phrase boundaries are explic-
itly pre-trained and fine-tuned with the charac-
ter encoder (BERT). Therefore ZEN incorpo-
rates the comprehensive information of both
the character sequence and words or phrases
it contains. Experimental results illustrated
the effectiveness of ZEN on a series of Chi-
nese NLP tasks, where state-of-the-art results
is achieved on most tasks with requiring less
resource than other published encoders. It is
also shown that reasonable performance is ob-
tained when ZEN is trained on a small corpus,
which is important for applying pre-training
techniques to scenarios with limited data.1

1 Introduction

Pre-trained text encoders (Peters et al., 2018b; De-
vlin et al., 2018; Radford et al., 2018, 2019; Yang
et al., 2019) have drawn much attention in natural
language processing (NLP), because state-of-the-
art performance can be obtained for many NLP
tasks using such encoders. In general, these en-
coders are implemented by training a deep neural

*Work done during the internship at Sinovation Ventures.
†Corresponding author.
1The code and pre-trained models of ZEN are available at

https://github.com/sinovation/ZEN.

model on large unlabeled corpora. Although the
use of big data brings success to these pre-trained
encoders, it is still unclear whether existing en-
coders have effectively leveraged all useful infor-
mation in the corpus. Normally, the pre-training
procedures are designed to learn on tokens corre-
sponding to small units of texts (e.g., word pieces
for English, characters for Chinese) for efficiency
and simplicity. However, some important infor-
mation carried by larger text units may be lost for
certain languages when we use a standard encoder,
such as BERT. For example, in Chinese, text se-
mantics are greatly affected by recognizing valid
n-grams2. This means a pre-trained encoder can po-
tentially be improved by incorporating such bound-
ary information of important n-grams.

Recently, there are studies adapting BERT for
Chinese with word information, yet they are lim-
ited in maintaining the original BERT structure,
augmented with learning from weakly supervised
word information or requiring external knowledge.
As an example, a representative study in Cui et al.
(2019) proposed to use the whole-word masking
strategy to mitigate the limitation of word infor-
mation. They used an existing segmenter to pro-
duce possible words in the input sentences, and
then trained a standard BERT on the segmented
texts by masking whole words. Sun et al. (2019a)
proposed to perform both entity-level and phrase-
level masking to learn knowledge and information
from the pre-training corpus. However, their ap-
proaches are limited in the following senses. First,
both methods rely on the word masking strategy
so that the encoder can only be trained with exist-
ing word and phrase information. Second, similar
to the original BERT, the masking strategy results
in the mis-match of pretraining and fine-tuning,
i.e., no word/phrase information is retained when

2Herein ‘valid’ regards to that an n-gram is a proper chunk
or phrase that is frequently used in the running text.

https://github.com/sinovation/ZEN
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the encoders are applied to downstream prediction
tasks. Third, incorrect word segmentation or entity
recognition results cause errors propagated to the
pre-training process and thus may negatively af-
fected the generalization capability of the encoder.

In this paper, we propose ZEN, a Chinese (Z)
text encoder Enhanced by representing N-grams,
which provides an alternative way to improve char-
acter based encoders (e.g., BERT) by using larger
text granularity. To train our model, one uses an
n-gram lexicon from any possible sources such
as pre-defined dictionaries and n-gram lists ex-
tracted via unsupervised approaches. Such lexicon
is then mapped to training texts, and is used to
highlight possible combinations of characters that
indicate likely salient contents during the training
process. Our model then integrate the representa-
tions of these n-gram contexts with the character
encoder. Similarly, the fine-tune process on any
task-specific dataset further enhances ZEN with
such n-gram representations. An important fea-
ture of our method is that while the model explic-
itly takes advantage of n-gram information, the
model only outputs character-level encodings that
is consistent with BERT. Therefore downstream
tasks are not affected. ZEN extends the original
BERT structure and explicitly incorporates repre-
sentations of large granular texts into it, which is
different from (and complementary to) previous
methods that relied on weak supervision such as
masking.3 To mitigate the error propagation, in the
n-gram encoder, we use the attention mechanism
to dynamically weigh n-grams so that those truly
useful n-grams are emphasized while noisy ones
are less learned with low weights. In addition, the
n-gram vocabulary is collected from an extra large
corpus, and it can be easily adapted to any source
from different domains to ensure incorporating the
most important n-grams before training ZEN.

Our experiments follow the standard procedure,
i.e., training ZEN on the Chinese Wikipedia dump
and fine-tune it on several Chinese downstream
NLP tasks. Experiment results demonstrate its va-
lidity and effectiveness where state-of-the-art per-
formance is achieved on many tasks using the n-
grams, which are automatically learned from the
training data other than external or prior knowl-
edge. In particular, our method outperforms some
existing encoders trained on much larger corpora.

3Although the character encoder may still use masking
as a learning objective, the encoded n-grams are explicitly

2 ZEN
The overall architecture of ZEN is shown in Figure
1, where the backbone model (character encoder) is
BERT4 (Devlin et al., 2018), enhanced by n-gram
information represented by a multi-layer encoder.
Since the basis of BERT is well explained in pre-
vious studies (Devlin et al., 2018; Yu and Jiang,
2019), in this paper, we focus on the details of
ZEN, by explaining how n-grams are processed
and incorporated into the character encoder.

2.1 N-gram Extraction
A high quality of text representation plays an im-
portant role to obtain good performance for many
NLP tasks (Song et al., 2017; Zhu et al., 2019;
Liu and Lapata, 2019), where a powerful encoder
is required to model more contextual information.
Inspired by the studies (Song et al., 2009; Song
and Xia, 2012; Ouyang et al., 2017; Kim et al.,
2018; Peng et al., 2018; Higashiyama et al., 2019;
Tian et al., 2020c; Li et al., 2020) that leverage
the large granularity contextual information car-
ried by n-grams to enhance text representation for
Chinese, we propose ZEN to enhance character
based text encoders (e.g., BERT) by leveraging n-
grams. In doing so, we extract n-grams prior to
pre-training ZEN through two different steps. The
first step is to prepare an n-gram lexicon (denoted
as L), from which one can use any unsupervised
method to extract n-grams from large corpora for
later processing. The second step of n-gram ex-
traction is performed during pre-training, where
some n-grams in L are selected according to each
training instance c = (c1, c2, ..., ci, ..., ckc) with kc
characters. Once these n-grams are extracted, we
use an n-gram matching matrix (denoted asM),
to record the positions of the extracted n-grams in
each training instance.M is thus an kc×kn matrix,
where each element is represented by

mij =

{
1 ci ∈ nj
0 ci 6∈ nj

(1)

where kn is the number of extracted n-grams from
c, and nj the j-th n-gram. A sample M for an
input text is shown in the bottom part of Figure 1.

2.2 Encoding N-grams
As shown in the right part of Figure 1 (dashed box
marked as ‘B’), ZEN requires a multi-layer encoder

leveraged in our model as a complementary enhancement.
4The two terms, ‘BERT’ and ‘character encoder’ are used

interchangeably in this paper.
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Figure 1: The overall architecture of ZEN, where the area marked by dashed box ‘A’ presents the character encoder
(BERT, in Transformer structure); and the area marked by dashed box ‘B’ is the n-gram encoder. [NSP] and [MLM]
refer to two BERT objectives: next sentence prediction and masked language model, respectively. [MSK] is the
masked token. The incorporation of n-grams into the character encoder is illustrated by the addition operation
presented in blue color. The bottom part presents n-gram extraction and preparation for the given input instance.

to represent all n-grams, whose information are
thus encoded in different levels matching the cor-
respondent layers in BERT. We adopt Transformer
(Vaswani et al., 2017) as the encoder, which is a
multi-layer encoder that can model the interactions
among all n-grams through their representations in
each layer. This modeling power is of high impor-
tance for ZEN because for certain context, salient
n-grams are more useful than random others, and
such salient n-grams are expected to be empha-
sized in pre-training. This effect can be achieved
by multi-head self-attention (MhA) mechanism in
Transformer (Clark et al., 2019). In detail, the
transformer for n-grams is the same as its original
version for sequence modeling, except that it does
not encode n-gram positions because all n-grams

are treated equally without a sequential order. Each
n-gram extracted for the input is represented by
an embedding from the n-gram embedding matrix.
Therefore, for all extract n-grams, we obtain the
j-th n-gram embedding ej as the input and denote
it in layer l of the n-gram encoder by µ(l)j , and for-
mulate the encoding process across layers by MhA

µ
(l+1)
j =MhA(Q = µ

(l)
j ,K = V = U (l)) (2)

where µ(l)j is used as the query (Q) vector to cal-
culate the attentions over all other input n-grams
from the same layer, and U (l) refers to the matrix
that stacks all n-gram representations in the layer l
that servers as the key (K) and value (V ) in MhA.
This encoding process is repeated layer-by-layer
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TASK CWS POS NER DC SA SPM NLI

DATASET MSR CTB5 MSRA NEWS CSC LCQMC XNLI
S# C# S# C# S# C# D# C# D# C# SP# C# SP# C#

TRAIN 87K 4M 18K 720K 45K 2M 50K 41M 10K 927K 239K 5M 393K 23M
DEV - - 350 10K - - 5K 4M 1K 115K 9K 209K 3K 136K
TEST 4K 173K 348 13K 3K 153K 10K 9M 1K 114K 13K 233K 3K 273K

Table 1: The statistics of task datasets used in our experiments. S#, C#, D# and SP# refer to numbers of sentences,
characters, documents and sentence pairs, respectively.

along with the character encoder.

2.3 Representing N-grams in Pre-training
With the n-gram encoder, ZEN combine the rep-
resentations of each character and its associated
n-grams to train the backbone model, as shown in
the left upper part of Figure 1 (dashed box marked
as ‘A’). In detail, let υ(l)i and µ(l)i,k represent embed-
dings for the i-th character and the k-th n-gram
associated to this character at layer l, the enhanced
representation for this character is computed by

υ
(l)∗
i = υ

(l)
i +

∑
k

µ
(l)
i,k (3)

where υ(l)∗i is the resulting embedding sent to the
next layer. Herein + and

∑
refer to the element-

wise addition operation. Therefore, υ(l)∗i = υ
(l)
i

when no n-gram covers this character. For the en-
tire layer l, this enhancement can be formulated by

V(l)∗ = V(l) +M×U (l) (4)

where V(l) is the embedding matrix for all charac-
ters, and its combination with U (l) can be directly
done throughM. This process is repeated for each
layer in the backbone BERT excecept for the last
one. The final output of all character embeddings
from the last layer is sent to optimize BERT ob-
jectives, i.e., mask recovery and next sentence pre-
diction. Note that, since there is masking in BERT
training, when a character is masked, n-grams that
cover this character are not considered.

3 Experiment Settings

3.1 Tasks and Datasets

For pre-training, following previous studies (De-
vlin et al., 2018; Cui et al., 2019), we use Chinese
Wikipedia dump5 as the base corpus to learn dif-
ferent encoders including ZEN. To clean the base
corpus, we remove useless symbols and translate
all traditional characters into simplified ones, and

5https://dumps.wikimedia.org/zhwiki/

lowercase all English letters. The resulted corpus
contains 474M tokens and 23K unique characters.
For fine-tuning, we choose seven NLP tasks and
their corresponding benchmark datasets in our ex-
periments, many of them have been used in previ-
ous studies (Cui et al., 2019; Sun et al., 2019a,b).
These tasks and datasets are described as follows.

• Chinese word segmentation (CWS): MSR
dataset from SIGHAN2005 Chinese word seg-
mentation Bakeoff (Emerson, 2005).
• Part-of-speech (POS) tagging: CTB5 (Xue

et al., 2005) dataset with standard splits.
• Named entity recognition (NER): MSRA

dataset from international Chinese language pro-
cessing Bakeoff 20066.
• Document classification (DC): THUCNews

(News) dataset (Sun et al., 2016) from Sina news
with 10 evenly distributed classes.
• Sentiment analysis (SA): The ChnSentiCorp7

(CSC) dataset with 12,000 documents from three
domains, i.e., book, computer and hotel.
• Sentence pair matching (SPM): The LCQMC

(a large-scale Chinese question matching corpus)
proposed by Liu et al. (2018), where each in-
stance is a pair of two sentences with a label
indicating whether their intent is matched.
• Natural language inference (NLI): The Chi-

nese part of the XNLI (Conneau et al., 2018).

The statistics of these datasets with respect to their
splits are reported in Table 1. For CWS, POS, we
fine-tune and test according to their standard split
of training and test sets. For the other tasks, we
follow the settings of Cui et al. (2019) to process
those datasets in our experiments.

3.2 Implementation
N-grams to build the lexicon L are extracted8 from
the same training corpus, i.e., Chinese Wikipedia

6http://sighan.cs.uchicago.edu/bakeoff2006/
7https://github.com/pengming617/bert classification
8The extraction can be conducted by various methods.
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CWS POS NER DC SA SPM NLI
TEST DEV TEST TEST DEV TEST DEV TEST DEV TEST DEV TEST

BERT (R) 97.20 95.72 95.43 93.12 96.90 96.71 94.00 94.10 87.22 85.13 75.67 75.01
BERT (P) 97.95 96.30 96.10 94.78 97.60 97.50 94.53 94.67 88.50 86.59 77.40 77.52
BERT-WWM - - - 95.10 97.60 97.60 94.50 95.00 89.20 86.80 78.40 78.00
ERNIE 1.0 - - - 95.10 97.30 97.30 95.20 95.40 89.70 87.40 79.90 78.40
ERNIE 2.0 (B) - - - - - - 95.70 95.50 90.90 87.90 81.20 79.70
NEZHA (B) - - - - - - 94.74 95.17 89.98 87.41 81.37 79.32
NEZHA-WWM (B) - - - - - - 94.75 95.84 89.85 87.10 81.25 79.11
ERNIE 2.0 (L) - - - - - - 96.10 95.80 90.90 87.90 82.60 81.00
NEZHA (L) - - - - - - 95.92 95.83 90.18 87.20 81.53 80.44
NEZHA-wwm (L) - - - - - - 95.75 96.00 90.87 87.94 82.21 81.17
ZEN (R) 97.89 96.12 95.82 93.24 97.20 96.87 94.87 94.42 88.10 85.27 77.11 77.03
ZEN (P) 98.35

∗
97.43

∗
96.64

∗
95.25

∗
97.66 97.64

∗
95.66

∗
96.08

∗
90.20

∗
87.95

∗
80.48

∗
79.20

∗

Table 2: The overall performance of ZEN and the comparison against existing models on seven NLP tasks, where
R denotes that pre-training starts from random initialization and P is that model parameters are initialized from
Google’s released Chinese BERT base model. B and L refer to each backbone model uses BERT base or large
model, respectively. Since ZEN uses BERT base model, encoders using BERT large model and their performance
are listed as references in italic fonts. The bold numbers are the best results from all base models in each column.
For the performance of ZEN (P), the asterisk denotes a significant difference (p− value <0.05) over BERT (P).

dump, and prepared by sorting them (except for un-
igrams) according to their frequencies. We try the
cut-off threshold between 5 and 40 where all those
n-grams with frequency lower than the threshold
are filtered out. The resulted sizes of L using differ-
ent thresholds range from 179K to 64K n-grams.9

All n-gram embeddings are randomly initialized.
For the backbone BERT in ZEN, we use the

same structure as that in previous work (Devlin
et al., 2018; Sun et al., 2019a; Cui et al., 2019),
i.e., 12 layers with 12 self-attention heads, 768 di-
mensions for hidden states and 512 for max input
length, etc. The pre-training tasks also employ the
same masking strategy and next sentence predic-
tion as in Devlin et al. (2018), so that ZEN can be
compared with BERT on a fair basis. We use the
same parameter setting for the n-gram encoder as
in BERT, except that we only use 6 layers and set
128 as the max length of n-grams10. The result-
ing ZEN requires only 20% additional inference
time (averaged by testing on the seven tasks) over
the original BERT base model. We adopt mixed
precision training (Micikevicius et al., 2017) by
the Apex library11 to speed up the training process.
Each ZEN model is trained simultaneously on 4
NVIDIA Tesla V100 GPUs with 16GB memory.

Our task-specific fine-tuning uses similar hyper-
parameters reported in Cui et al. (2019), with
slightly different settings on max input sequence

9Our main experiments are conducted on cut-off=15, re-
sulting in 104K n-grams in the lexicon.

10That is, we extract up to 128 n-grams per instance.
11https://github.com/NVIDIA/apex

length and batch size for better utilization of com-
putational resources. Specifically, we set max
length to 256 for CWS and POS, and 96 for their
batch size. For NER, SPM and NLI, we set both
the max length and batch size to 128. For the other
two tasks, DC and SA, we set the max length and
batch size to 512 and 32, respectively.

4 Experimental Results

4.1 Overall Performance

The first experiment is to compare ZEN and BERT
with respect to their performance on the aforemen-
tioned NLP tasks. In this experiment, ZEN and
BERT use two settings, i.e., training from (R): ran-
domly initialized parameters and (P): pre-trained
model, which is the Google released Chinese BERT
base model. The results are reported in Table 2,
with the performance on both development12 and
test set for each task presented in the table. Overall,
in both R and P settings, ZEN outperforms BERT
in all seven tasks, which clearly indicates the advan-
tage of introducing n-grams into the encoding of
character sequences.13 This observation is similar
to that from Dos Santos and Gatti (2014); Lample
et al. (2016); Bojanowski et al. (2017); Liu et al.
(2019a). In detail, when compare R and P settings,

12Most of the previous studies show their performance on
the development set of the aforementioned tasks and we follow
them to do so in order to provide a reference and comparison.

13There are other studies that demonstrate the effectiveness
of ZEN on CWS (Tian et al., 2020c), POS tagging (Tian et al.,
2020a), constituency parsing (Tian et al., 2020b), and NER
(Nie et al., 2020a,b), in which their models equipped with
ZEN encoder consistently outperform the ones with BERT.
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CWS POS NER DC SA SPM NLI
TEST DEV TEST TEST DEV TEST DEV TEST DEV TEST DEV TEST

BERT (R) 95.14 93.64 93.23 87.11 96.02 95.77 93.41 92.33 85.62 85.53 72.12 71.44
ZEN (R) 96.05 93.79 93.37 88.39 96.11 96.05 93.92 93.51 86.12 85.78 72.66 72.31

Table 3: The performance of BERT and ZEN on seven NLP tasks when they are trained on a small corpus.

the performance gap between ZEN (P) and BERT
(P) is larger than that in their R setting, which illus-
trates that learning an encoder with reliable initial-
ization is more important and integrating n-gram
information contributes a better enhancement on
well-learned encoders. For two types of tasks, it is
noticed that token-level tasks, i.e., CWS, POS and
NER, demonstrate a bigger improvement of ZEN
over BERT than that of sentence-level tasks. where
the potential boundary information presented by
n-grams are essential to provide a better guidance
to label each character. Particularly for CWS and
NER, these boundary information are directly re-
lated to the outputs. Similarly, sequence-level tasks
show a roughly same trend on the improvement
of ZEN over BERT, which also shows the capa-
bility of combining both character and n-gram in-
formation in a text encoder. The reason behind
this improvement is that in token-level tasks, high-
frequent n-grams14 in many cases are valid chunks
in a sentence that carry key semantic information.

We also compare ZEN (P) with existing pre-
trained encoders on the same NLP tasks, with their
results listed in the middle part of Table 2.15 Such
encoders include BERT-wwm (Cui et al., 2019),
ERNIE 1.0 (Sun et al., 2019a), ERNIE 2.0 (B & L)
(Sun et al., 2019b), NEZHA (B & L) (Wei et al.,
2019) where B and L denote the base and large
BERT backbone model, respectively. Note that al-
though there are other pre-trained encoders with
exploiting entity knowledge or multi-model sig-
nals, they are not compared in this paper because
external information are required in their work (e.g.
KnowBERT (Peters et al., 2019)). In fact, even
though without using such external information,
ZEN still achieves the state-of-the-art performance
on many of the tasks experimented.

In general, the results clearly indicate the ef-
fectiveness of ZEN. In detail, for the comparison
between ZEN and BERT-wwm, it shows that, when
starting from pre-trained BERT, ZEN outperforms
BERT-wwm on all tasks that BERT-wwm has re-

14Such as fixed expressions and common phrases, which
may have less varied meanings than other ordinary combina-
tions of characters and random character sequences.

15We only report the results from their conducted tasks.

sults reported. This observation suggests that ex-
plicitly representing n-grams and integrating them
into BERT has its advantage over using masking
strategy, and using n-grams rather than word may
have better tolerance on error propagation since
word segmentation is unreliable in many cases. The
comparison between ZEN and ERNIE encoders
also illustrates the superiority of enhancing BERT
with n-grams. For example, ZEN shows a con-
sistent improvement over ERNIE 1.0 even though
significantly larger non-public datasets were uti-
lized in their pre-training. Compared to ERNIE
2.0, which used many more pre-training tasks and
significantly more non-public training data, ZEN is
still competitive on SA, SPM and NLI tasks. Par-
ticularly, ZEN outperforms ERNIE 2.0 (B) on SA
(TEST) and SPM (TEST), which indicates that n-
gram enhanced character-based encoders of ZEN
can achieve performance comparable to approaches
using significantly more resources. Since the two
approaches are complementary to each other, one
might be able to combine them to achieve higher
performance. Moreover, ZEN and ERNIE 2.0
(L) have comparable performance on some certain
tasks (e.g., SA and SPM), which further confirms
the power of ZEN even though the model of ERNIE
2.0 (L) is significantly larger. Similar results are
also observed for ZEN and NEZHA, where ZEN
illustrates its effectiveness again when compared
to a model that learning with larger model and
more data, as well as more tricks applied in pre-
training. However, for NLI, ZEN’s performance is
not as good as ERNIE 2.0 and NEZHA (B & L),
which further indicates that their model are good
at inference task owing to their larger models and
large-scale corpora with more prior knowledge.16

More importantly, to show the improvement of
ZEN is statistically significant over BERT, we con-
duct the Student’s t-test of ZEN (P) and BERT (P).

16To examine whether ZEN is able to be scaled up by in-
creasing model parameters, we conduct experiments with
ZEN-large (corresponding to BERT-large) as well. Our initial
results confirm that it improves the performance of all seven
downstream tasks when the model parameters are increased
on both character and n-gram encoder. Detailed results are not
presented in this paper owing to space limitation.
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Figure 2: CWS performance against training epochs of
BERT and ZEN with different parameter initialization.

Figure 3: SA performance against training epochs of
BERT and ZEN with different parameter initialization.

The p-values are computed by running the same
model ten times on each task, and the results are
shown in Table 2 with asterisks. Note that we
measure 95% confidence interval for the difference
between two models on all seven tasks. For all
experiments except for the dev set of DC, the p-
value is smaller than 0.05, which shows that ZEN
consistently outperform BERT, not by chances, so
that confirms the validity and effectiveness of our
model design with n-gram encoding.

4.2 Pre-training with Small Corpus

Pre-trained models usually require a large corpus
to perform its training. However, in many applica-
tions in specialized domains, a large corpus may
not be available. For such applications with lim-
ited training data, ZEN, with n-gram enhancement,
is expected to encode text much more effectively.
Therefore, to further illustrate the advantage of
ZEN, we conduct an experiment that uses a small
corpus to pre-train BERT and ZEN. In detail, we
prepare a corpus with 1/10 size of the entire Chi-
nese Wikipedia by randomly selecting sentences
from it. Then all encoders are pre-trained on it with
random initialization and tested on the same NLP
tasks in the previous experiment. The results are re-

Figure 4: CWS and SA performance of ZEN against
frequency threshold of constructing n-gram lexicons.

Figure 5: CWS and SA performance of ZEN against
maximum n-gram numbers for training each instance.

ported in Table 3. In general, same trend is shown
in this experiment when compared with that in the
previous one, where ZEN constantly outperform
BERT in all task. This observation confirms that
representing n-grams provides stable enhancement
when our model is trained on corpora with differ-
ent sizes. In detail, these results also reveals that
n-gram information helps more on some tasks, e.g.,
CWS, NER, NLI, over the others. The reason is not
surprising since that boundary information carried
by n-grams can play a pivotal role in these tasks.
Overall, this experiment simulates the situation of
pre-training a text encoder with limited data, which
could be a decisive barrier of doing so in the cold-
start scenario, and thus demonstrates that ZEN has
its potential to perform well in this situation.

5 Analysis
We analyze ZEN with several factors affecting its
performance. Details are illustrated in this section.

5.1 Effects of Pre-training Epochs

The number of pretraining epochs is another fac-
tor affecting the performance of pre-trained en-
coders. In this analysis, we use CWS and SA as
two probing tasks to test the performance of differ-
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Figure 6: The heatmap of n-grams encoded by ZEN
across different layers for example sentence 1.

ent encoders (BERT and ZEN) against the number
of pretraining epochs. The pretrained models at
certain epochs are fine-tuned on these tasks, and
the results are illustrated in Figure 2 and 3. We
have the following observations. First, for both
P and R models, ZEN shows better curves than
those of BERT in both tasks, which indicates that
ZEN achieves higher performance at comparable
pretraining stages. Second, for R settings, ZEN
shows a noticeable faster convergence than BERT,
especially during the first few epochs of pretrain-
ing. This demonstrates that n-gram information
improves the encoder’s performance when pretrain-
ing starts from random initialization.

5.2 Effects of N-gram Extraction Threshold

To explore how n-gram extraction cutoff threshold
affects the performance of ZEN, we test it with
different thresholds for n-gram lexicon extraction.
Similar to the previous experiment, we also use
CWS and SA as the probe tasks in this analysis.

The first analysis on threshold-performance re-
lations is demonstrated in Figure 4, where we set
the threshold ranging from 0 to 40 and use the max
number of 128 n-grams in pre-training. In doing so,
we observe that the best performed ZEN on both
tasks is obtained when the threshold is set to 15,
where increasing it under 15 causes improved per-
formance of ZEN and vice versa when it gets over
15. This observation confirms that either too many
(lower threshold) or too few (higher threshold) n-
grams in the lexicon are less helpful in enhancing
ZEN’s performance, since there exists a balance
between introducing enough knowledge and noise.

In the second analysis, when an optimal thresh-
old is given (i.e., 15), we investigate the perfor-
mance of ZEN with different maximum number
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Figure 7: The heatmap of n-grams encoded by ZEN
across different layers for example sentence 2.

of n-grams in pre-training for each input sequence.
We test such number ranging from 0 (no n-grams
encoded in ZEN) to 128, with the results shown
in Figure 5 (X-axis is in log view with base 2). It
shows that the number 32 (25) gives a good tradeoff
between performance and computation, although
there is a small gain by using more n-grams. This
analysis illustrates that ZEN only requires a small
numbers of n-grams to achieve good performance.

5.3 Visualization of N-gram Representations

Case studies are conducted on some certain in-
stances to further illustrate the effectiveness of n-
gram representations in pre-training ZEN. Figure
6 and 7 visualize the weights of extracted n-grams
from two input instances when they are encoded
by ZEN across different layers. In general, ‘valid’
n-grams are more favored than others, e.g.,提高
(improve), 波士顿 (Boston) have higher weights
than 会提高 (will improve) and 士顿 (Ston), es-
pecially those ones that have cross ambiguities in
the context, e.g.,高速 (high speed) should not be
considered in the first instance so that速度 (speed)
has a higher weight than it. This observation illus-
trates that ZEN is able to not only distinguish those
phrasal n-grams to others but also select appropri-
ate ones according to the context. Interestingly,
for different layers, long (and valid) n-grams, e.g.,
提高速度 (speed up) and 波士顿咨询 (Boston
consulting group), tend to receive more intensive
weights at higher layers, which implicitly indicates
that such n-grams contain more semantic rather
than morphological information. We note that in-
formation encoded in BERT follows a similar layer-
wise order as what is suggested in Jawahar et al.
(2019). The observations from this case study not
only illustrates the details of how n-grams enhance
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the pre-train model, but also suggest that ZEN pro-
vides a potential solution to some text analyzing
tasks, e.g., chunking and keyphrase extraction.

6 Related Work

Representation learning of text attracts much atten-
tion in recent years, with the rise of deep learning
in NLP (Collobert et al., 2011; Mikolov et al., 2013;
Pennington et al., 2014). There are considerable
interests in representing text with contextualized in-
formation (Ling et al., 2015; Melamud et al., 2016;
Bojanowski et al., 2017; Song et al., 2018; Peters
et al., 2018a). Following this paradigm, pre-trained
models have been proposed and are proven useful
in many NLP tasks (Devlin et al., 2018; Radford
et al., 2018, 2019; Yang et al., 2019; Liu et al.,
2019c). In detail, such models can be categorized
into two types: autoregressive and autoencoding en-
coders. The former models behave like normal lan-
guage models that predict the probability distribu-
tions of text units following observed texts. These
models, such as GPT (Radford et al., 2018) and
GPT2 (Radford et al., 2019), are trained to encode
a uni-directional context. Differently, the autoen-
coding models, such as BERT (Devlin et al., 2018)
and XLNet (Yang et al., 2019), leverage bidirec-
tional context, and encode texts by reconstructing
the masked tokens in each text instance according
to their context from both sides.

Particularly for Chinese, many enhanced pre-
train models are proposed that can utilize word-
level information in one way or another because
words carry important linguistic information. For
example, ERNIE 1.0 (Sun et al., 2019a) adopted
a multi-level masking strategy performed on dif-
ferent level of texts; its improved version, ERNIE
2.0 (Sun et al., 2019b) used continual pre-training
strategy which is benefited from multi-task learn-
ing with more parameters in the model. Recently,
BERT-wwm (Cui et al., 2019) enhanced Chinese
BERT with a simple masking of whole-words. In
addition, there are other recent studies that en-
hanced BERT for Chinese language processing,
such as optimizing training via special optimiza-
tion techniques (Wei et al., 2019) or from prior
knowledge (Liu et al., 2019b). All the studies re-
vealed that processing on larger granularity of text
is helpful in Chinese, which is consistent with pre-
vious findings in many Chinese NLP tasks (Wu
et al., 2015; Chang et al., 2018; Higashiyama et al.,
2019). Compared to the aforementioned studies,

ZEN thus provides an alternative solution that ex-
plicitly encodes n-grams into character-based en-
coding, rather than through weak supervision, i.e.,
masking, to incorporate word/phrase information.

7 Conclusion and Future Work

In this paper, we proposed ZEN, a pre-trained Chi-
nese text encoder enhanced by n-gram representa-
tions, where different combinations of characters
are extracted, encoded and integrated in training
a backbone model, i.e., BERT. In ZEN, given a
sequence of Chinese characters, n-grams are ex-
tracted and their information are effectively incor-
porated into the character encoder. Different from
previous work, ZEN provides an alternative way of
learning larger granular text for pre-trained mod-
els, where the structure of BERT is extended by
another Transformer-style encoder to represent the
extracted n-grams for each input text instance.

Experiments on several NLP tasks demonstrated
the validity and effectiveness of ZEN, where state-
of-the-art results were obtained from them while
ZEN is built upon the BERT base model and re-
quires less training data and no knowledge from
external sources compared to other existing Chi-
nese text encoders. Experiments of ZEN on small
corpus also showed its efficiency and capability
of being able to learn with limited data. Further
analyses revealed the factors affecting ZEN’s per-
formance, where the quality of the n-gram lexicon
and the number of n-grams used for each input are
more important than the training epoch.

Note that ZEN employs a different method to in-
corporate word (n-gram) information, which could
be complementary to some other previous ap-
proaches. Therefore, it is potentially beneficial
to combine it with other character-encoding ap-
proaches. For future work, we plan to enlarge ZEN
as well as apply it to other languages that lack
white-space tokenization and compare different n-
gram extraction methods, e.g., obtaining n-grams
by Byte Pair Encoding (Sennrich et al., 2015) or
WordPiece tokenization (Wu et al., 2016).
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