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Abstract

Query expansion aims to mitigate the mis-
match between the language used in a query
and in a document. However, query ex-
pansion methods can suffer from introducing
non-relevant information when expanding the
query. To bridge this gap, inspired by recent
advances in applying contextualized models
like BERT to the document retrieval task, this
paper proposes a novel query expansion model
that leverages the strength of the BERT model
to select relevant document chunks for expan-
sion. In evaluation on the standard TREC
Robust04 and GOV2 test collections, the pro-
posed BERT-QE model significantly outper-
forms BERT-Large models.

1 Introduction

In information retrieval, the language used in a
query and in a document differs in terms of ver-
bosity, formality, and even the format (e.g., the use
of keywords in a query versus the use of natural
language in an article from Wikipedia). In order
to reduce this gap, different query expansion meth-
ods have been proposed and have enjoyed success
in improving document rankings. Such methods
commonly take a pseudo relevance feedback (PRF)
approach in which the query is expanded using top-
ranked documents and then the expanded query
is used to rank the search results (Rocchio, 1971;
Lavrenko and Croft, 2001; Amati, 2003; Metzler
and Croft, 2007) .

Due to their reliance on pseudo relevance in-
formation, such expansion methods suffer from
any non-relevant information in the feedback docu-
ments, which could pollute the query after expan-
sion. Thus, selecting and re-weighting the informa-
tion pieces from PRF according to their relevance
before re-ranking are crucial for the effectiveness of

∗ This work has been done before joining Amazon.

the query expansions. Existing works identify ex-
pansion tokens according to the language model on
top of feedback documents, as in RM3 (Lavrenko
and Croft, 2001), extract the topical terms from
feedback documents that diverge most from the
corpus language model (Amati, 2003), or extract
concepts for expansion (Metzler and Croft, 2007).
In the context of neural approaches, the recent neu-
ral PRF architecture (Li et al., 2018) uses feedback
documents directly for expansion. All these meth-
ods, however, are under-equipped to accurately
evaluate the relevance of information pieces used
for expansion. This can be caused by the mixing of
relevant and non-relevant information in the expan-
sion, like the tokens in RM3 (Lavrenko and Croft,
2001) and the documents in NPRF (Li et al., 2018);
or by the facts that the models used for selecting
and re-weighting the expansion information are not
powerful enough, as they are essentially scalars
based on counting.

Inspired by the recent advances of pre-trained
contextualized models like BERT on the ranking
task (Yilmaz et al., 2019; Nogueira et al., 2020),
this work attempts to develop query expansion
models based on BERT with the goal of more
effectively using the relevant information from
PRF. In addition, as indicated in previous stud-
ies (Qiao et al., 2019; Dai and Callan, 2019), the
(pre-)trained BERT-based ranking models have a
strong ability to identify highly relevant chunks
within documents. This actually provides advan-
tages in choosing text chunks for expansion by
providing more flexibility in terms of the granu-
larity for expansions, as compared with using to-
kens (Lavrenko and Croft, 2001), concepts with
one or two words (Metzler and Croft, 2007), or
documents (Li et al., 2018).

Given a query and a list of feedback documents
from an initial ranking (e.g., from BM25), we pro-
pose to re-rank the documents in three sequential
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phases. In phase one, the documents are re-ranked
with a fine-tuned BERT model and the top-ranked
documents are used as PRF documents; in phase
two, these PRF documents are decomposed into
text chunks with fixed length (e.g., 10), and the rel-
evance of individual chunks are evaluated; finally,
to assess the relevance of a given document, the se-
lected chunks and original query are used to score
the document together. To this end, a novel query
expansion model, coined as BERT-QE, based on
the contextualized model is developed.

Contributions of this work are threefold. 1) A
novel query expansion model is proposed to exploit
the strength of contextualized model BERT in iden-
tifying relevant information from feedback docu-
ments; 2) Evaluation on two standard TREC test
collections, namely, Robust04 and GOV2, demon-
strates that the proposed BERT-QE-LLL could ad-
vance the performance of BERT-Large significantly
on both shallow and deep pool, when using BERT-
Large in all three phases; 3) We further trade-off the
efficiency and effectiveness, by replacing BERT-
Large with smaller BERT architectures and demon-
strate that, with a smaller variant of BERT-QE,
e.g., BERT-QE-LMT, one could outperform BERT-
Large significantly on shallow pool with as least
as an extra 3% computational cost; meanwhile, a
larger variant, e.g., BERT-QE-LLS, could signif-
icantly outperform BERT-Large on both shallow
and deep pool with 30% more computations.

2 Method

In this section we describe BERT-QE, which takes a
ranked list of documents as input (e.g., from an un-
supervised ranking model) and outputs a re-ranked
list based on the expanded query.

2.1 Overview

There are three phases in the proposed BERT-QE.
Namely, phase one: the first-round re-ranking of
the documents using a BERT model; phase two:
chunk selection for query expansion from the top-
ranked documents; and phase three: the final re-
ranking using the selected expansion chunks. The
essential parts of the proposed BERT-QE are the
second and third phases, which are introduced in
detail in Sections 2.2 and 2.3. Without loss of
generality, a fine-tuned BERT model serves as the
backbone of the proposed BERT-QE model and
is used in all three phrases. We describe the fine-
tuning process and phase one before describing

phases two and three in more detail.
Fine-tuning BERT model. Similar to (Yilmaz
et al., 2019), a BERT model (e.g., BERT-large)
is first initialized using a checkpoint that has been
trained on MS MARCO (Bajaj et al., 2018). The
model is subsequently fine-tuned on a target dataset
(e.g., Robust04). This choice is to enable compari-
son with the best-performing BERT model, such as
a fine-tuned BERT-Large (Yilmaz et al., 2019). Be-
fore fine-tuning the BERT model on a target dataset,
we first use the aforementioned model trained on
MS MARCO to identify the top-ranked passages in
this dataset. These selected query-passage pairs are
then used to fine-tune BERT using the loss function
as in Equation (1).

L = −
∑
i∈Ipos

log(pi)−
∑

i∈Ineg

log(1− pi) (1)

Therein, Ipos and Ineg are sets of indexes of the
relevant and non-relevant documents, respectively,
and pi is the probability of the document di being
relevant to the query. This configuration is simi-
lar to Dai and Callan (2019), with the difference
that we use only passages with the highest scores
instead of all passages. In our pilot experiments,
this leads to comparable effectiveness but with a
shorter training time.
Phase one. Using the fine-tuned BERT model, we
re-rank a list of documents from an unsupervised
ranking model for use in the second phase. As
shown in Equation (2), given a query q and a doc-
ument d, rel(q, d) assigns d a relevance score by
modeling the concatenation of the query and the
document using the fine-tuned BERT. The ranked
list is obtained by ranking the documents with
respect to these relevance scores. We refer the
reader to prior works describing BERT and ranking
with BERT for further details (Devlin et al., 2019;
Nogueira and Cho, 2019).

rel(q, d) = BERT(q, d) (2)

2.2 Selecting Chunks for Query Expansion

In the second phase, the top-kd documents from
the first phase are employed as feedback documents
and kc chunks of relevant text are extracted from
them. This phase is illustrated in Figure 1. In
more detail, a sliding window spanning m words
is used to decompose each feedback document into
overlapping chunks where two neighboring chunks
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Figure 1: Chunk selection for query expansion in phase two.

are overlapped by up tom/2 words. The i-th chunk
is denoted as ci. As expected, these chunks are a
mixture of relevant and non-relevant text pieces due
to the lack of supervision signals. Therefore, the
fine-tuned BERT model from Section 2.1 is used
to score each individual chunk ci, as indicated in
Equation (3). The top-kc chunks with the highest
scores are selected. These kc chunks, which are the
output from phase two, serve as a distillation of the
feedback information in the feedback documents
from phase one. We denote the chunks as C =
[c0, c1, · · · , ckc−1].

rel(q, ci) = BERT(q, ci) (3)

2.3 Final Re-ranking using Selected Chunks

In phase three, the chunks selected from phase
two are used in combination with the original query
to compute a final re-ranking. This process is illus-
trated in Figure 2.
Evaluating the relevance of a document using
the selected feedback chunks. For each individ-
ual document d, the kc chunks selected in phase
two are used to assess its relevance separately, and
the kc evaluations are thereafter aggregated to gen-
erate the document’s relevance score. As described
in Equation (4), the fine-tuned BERT model from
Section 2.1 is used to compute rel(ci, d), which are
further aggregated into a relevance score rel(C, d).
Akin to (Li et al., 2018), the relevance of individual
chunks are incorporated as weights by using the
softmax function softmaxci∈C(.) among all chunks
in C on top of the rel(q, ci).

rel(C, d) =
∑
ci∈C

softmaxci∈C(rel(q, ci))·rel(ci, d)

(4)

Combining rel(C, d) with rel(q, d). To generate
the ultimate relevance score rel(q, C, d) for d, akin
to the established PRF models like RM3 (Lavrenko
and Croft, 2001) and NPRF (Li et al., 2018), the
relevance scores based on the feedback and the orig-
inal query are combined as in Equation (5). α is a
hyper-parameter, governing the relative importance
of the two parts.

rel(q, C, d) = (1−α)·rel(q , d)+α·rel(C, d) (5)

We note that the same fine-tuned BERT model
does not necessarily need to be used in each phase.
In our experiments, we consider the impact of us-
ing different BERT variants from Table 1 in each
phase. For example, phases one and three might
use the BERT-Large variant, while phase two uses
the BERT-Small variant with fewer parameters.

3 Experimental Setup

In this section, we describe our experiment con-
figurations. Source code, data partitions for cross-
validation, result files of initial rankings, and the
trained models are available online1.

3.1 Dataset and Metrics
Akin to (Guo et al., 2016; Yilmaz et al., 2019), we
use the standard Robust04 (Voorhees, 2004) and
GOV2 (Clarke et al., 2004) test collections. Ro-
bust04 consists of 528,155 documents and GOV2
consists of 25,205,179 documents. We employ 249
TREC keyword queries for Robust04 and 150 key-
word queries for GOV2. Akin to (Yilmaz et al.,
2019), in this work, all the rankings from BERT-
based models, including the proposed models and

1https://github.com/zh-zheng/BERT-QE

https://github.com/zh-zheng/BERT-QE
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Figure 2: Re-rank documents using selected chunks in phase three.

the baselines, have been interpolated with the ini-
tial ranking scores (DPH+KL in this work) in the
same way wherein the hyper-parameters are tuned
in cross-validation2. We report P@20, NDCG@20
to enable the comparisons on the shallow pool;
and MAP@100, MAP@1000 are reported for deep
pool. In addition, statistical significance for paired
two-tailed t-test is reported, where the superscripts
∗ ∗ ∗, ∗∗ and ∗ denote the significant level at 0.01,
0.05, and 0.1, respectively.

3.2 Initial Ranking

DPH+KL is used as the ranking model to gen-
erate the initial ranking. DPH is an unsuper-
vised retrieval model (Amati et al., 2007) derived
from the divergence-from-randomness framework.
DPH+KL ranks the documents with DPH after ex-
panding the original queries with Rocchio’s query
expansion using Kullback-Leibler divergence (Am-
ati, 2003; Rocchio, 1971), as implemented in the
Terrier toolkit (Macdonald et al., 2012). Its results
are also listed for comparison.

3.3 Models in Comparisons

Unsupervised query expansion models, like
Rocchio’s query expansion (Rocchio, 1971) with
the KL divergence model (Amati, 2003), and
RM3 (Lavrenko and Croft, 2001), are employed
as a group of baseline models, wherein the query
is expanded by selecting terms from top-ranked
documents from the initial ranking.

- BM25+RM3 is also used as a baseline model,
which follows the experimental settings from (Yil-
maz et al., 2019), and the implementation from

2The details of the interpolation for BERT-QE are included
in Appendix.

Anserini (Lin et al., 2016) with default settings is
used.

- QL+RM3 is the query likelihood language
model with RM3 for PRF (Lavrenko and Croft,
2001), for which the Anserini’s (Lin et al., 2016)
implementation with default settings is used.
Neural ranking models. We also include different
neural ranking models for comparisons.

- SNRM (Zamani et al., 2018) is a standalone
neural ranking model by introducing a sparsity
property to learn a latent sparse representation for
each query and document. The best-performing
version of SNRM with PRF is included for com-
parison.

- NPRF (Li et al., 2018) is an end-to-end neural
PRF framework that can be used with existing neu-
ral IR models, such as DRMM (Guo et al., 2016).
The best-performing variant NPRFds-DRMM is
included for comparison.

- CEDR (MacAvaney et al., 2019) incorporates
the classification vector of BERT into existing neu-
ral models. The best-performing variant CEDR-
KNRM is included for comparison.

- Birch (Yilmaz et al., 2019) is a re-ranking
approach by fine-tuning BERT successively on
the MS MARCO and MicroBlog (MB) datasets.
The best-performing version 3S: BERT(MS
MARCO→MB), denoted as Birch(MS→MB) for
brevity, is included for comparison.

- BERT-Large and BERT-Base in the MaxP
configuration are fine-tuned on the training sets
with cross-validation as described in Section 2.1.

3.4 Variants of BERT

Different variants of BERT models with different
configurations are employed. We list the key hyper-
parameters of each variant in Table 1, namely, the
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Size Configuration
Tiny (T) L = 2, H = 128, A = 2
Small (S) L = 4, H = 256, A = 4
Medium (M) L = 8, H = 512, A = 8
Base (B) L = 12, H = 768, A = 12
Large (L) L = 24, H = 1024, A = 16

Table 1: Configurations of different BERT variants.

number of hidden layers, the hidden embedding
size, and the number of attention heads, which are
denoted as L, H and A, respectively3. The details
of these models can be found in (Turc et al., 2019).
We indicate the configurations used for individual
phases with the model’s suffix. For example, BERT-
QE-LLS indicates that a fine-tuned BERT-Large is
used in phases one and two, and in phase three a
fine-tuned BERT-Small is used.

3.5 Implementation of BERT-QE

Individual documents are decomposed into over-
lapped passages with 100 words using a sliding
window, wherein the stride is 50. For the proposed
BERT-QE, in phase two, kd = 10 top-ranked docu-
ments from the search results of phase one are used,
from which kc = 10 chunks are selected for expan-
sion, and chunk length m = 10 is used. In phase
one and phase three, the BERT model is used to
re-rank the top-1000 documents. In Section 5, we
also examine the use of different kc and m, namely,
kc = [5, 10, 20] and m = [5, 10, 20], investigating
the impacts of different configurations.

3.6 Training

To feed individual query-document pairs into the
model, the query q and the document4 d for train-
ing are concatenated and the maximum sequence
length is set to 384. We train BERT using cross-
entropy loss for 2 epochs with a batch size of 32
on a TPU v3. The Adam optimizer (Kingma and
Ba, 2015) is used with the learning rate sched-
ule from (Nogueira and Cho, 2019) with an initial
learning rate of 1e-6. We conduct a standard five-
fold cross-validation. Namely, queries are split into
five equal-sized partitions. The query partition on
Robust04 follows the settings from (Dai and Callan,
2019). On GOV2, queries are partitioned by the

3Note that the BERT-Small corresponds to BERT-
Mini in https://github.com/google-research/
bert, for the sake of convenient descriptions.

4As described in Section 2.1, we actually use the most
relevant passage.

order of TREC query id in a round-robin manner.
In each fold, three partitions are used for training,
one is for validation, and the remaining one is for
testing. In each fold, we tune the hyper-parameters
on the validation set and report the performance on
test set based on the configurations with the highest
NDCG@20 on the validation set5. The ultimate
performance is the average among all folds.

3.7 Computation of FLOPs

Akin to literature (Liu et al., 2020), we report
FLOPs (floating point operations) which measures
the computational complexity of models. Similar
to (Khattab and Zaharia, 2020), we report FLOPs
that includes all computations in the three phases
of BERT-QE.

4 Results

In this section, we report results for the proposed
BERT-QE model and compare them to the baseline
models. First, in Section 4.1, we use BERT-Large
models for all three phases of BERT-QE. In Sec-
tion 4.2, we evaluate the impact of using smaller
BERT models (Table 1) for the second and third
phases in order to improve the efficiency of the
proposed model.

4.1 Results for BERT-QE-LLL

In this section, we examine the performance of the
proposed BERT-QE by comparing it with a range
of unsupervised ranking models, neural IR models,
and re-ranking models based on BERT-Base and
BERT-Large. We aim at advancing the state-of-
the-art ranking performance of BERT-Large, and
start with using BERT-Large for all three phases
in BERT-QE. We denote this variant as BERT-QE-
LLL, where the suffix LLL indicates the use of the
same fine-tuned BERT-Large in all three phases6.

The effectiveness of BERT-QE-LLL. To put
our results in context, we first compare BERT-
QE-LLL with the reported effectiveness for dif-
ferent neural IR models from literature. Due to
the fact that results for GOV2 have not been re-
ported in these works, only the comparisons on Ro-
bust04 are included in Table 2. In comparison with
the state-of-the-art results of a fine-tuned BERT-
Large, namely, Birch(MS→MB) (Yilmaz et al.,

5Results on validation sets can be found in Appendix.
6Empirically, the BERT trained on MS MARCO is directly

used in phase two, which performs on par with using the
fine-tuned BERT according to pilot experiments.

https://github.com/google-research/bert
https://github.com/google-research/bert
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Model P@20 NDCG@20 MAP@1K
SNRM with PRF 0.3948 0.4391 0.2971
NPRF 0.4064 0.4576 0.2904
CEDR 0.4667 0.5381 -
Birch(MS→MB) 0.4669 0.5325 0.3691
BERT-Large 0.4769∗ 0.5397 0.3743
BERT-QE-LLL 0.4888∗∗∗ 0.5533∗∗∗ 0.3865∗∗∗

Table 2: Compare the effectiveness of BERT-QE-LLL with neural IR models and neural PRF model on Robust04
when using title queries. Statistical significance relative to Birch(MS→MB) (Yilmaz et al., 2019) at p-value <
0.01, 0.05, and 0.1 are denoted as ∗ ∗ ∗, ∗∗, and ∗, respectively.

2019), it can be seen that the fine-tuned BERT-
Large in this work achieves comparable results. In
addition, BERT-QE-LLL significantly outperforms
Birch(MS→MB) at the 0.01 level. The significance
tests relative to other models are omitted because
their result rankings are not available.

As summarized in Table 3, we further compare
BERT-QE-LLL with BERT-Base and BERT-Large
on both Robust04 and GOV2. We also include
several unsupervised baselines for reference. As
can be seen, BERT-Large significantly outperforms
all non-BERT baselines by a big margin, regard-
less of whether query expansion is used. Thus,
only significance tests relative to BERT-Large are
shown. From Table 3, on Robust04, in comparison
with BERT-Large, BERT-QE-LLL could signifi-
cantly improve the search results on both shallow
and deep pool at 0.01 significant level, achieving
a 2.5% improvement in terms of NDCG@20 and
a 3.3% improvement for MAP@1K. On GOV2,
we have similar observations that BERT-QE-LLL
could significantly improve BERT-Large on all re-
ported metrics.

The efficiency of BERT-QE. Beyond the effec-
tiveness, we are also interested in the efficiency of
BERT-QE-LLL, for which the FLOPs is reported.
The FLOPs per query for BERT-Large is 232.6T,
meanwhile BERT-QE-LLL is 2603T. This means
BERT-QE-LLL requires 11.19x more computa-
tions than BERT-Large. This is mostly due to the
use of BERT-Large models for all three phases as
described in Section 2. Note that, one may be able
to reduce the time consumption during inference by
parallelizing the individual phases of BERT-QE. In
the following, the efficiency of a model is reported
in terms of its relative comparison to BERT-Large,
namely, in the form of the times of BERT-Large’s
computational cost.

4.2 Employing Smaller BERT Variants in
BERT-QE

According to Section 4.1, although with compet-
itive effectiveness, BERT-QE-LLL is very expen-
sive for computation due to the use of BERT-Large
in all three phases. In this section, we further ex-
plore whether it is possible to replace the BERT-
Large components with smaller BERT variants
from Table 1 in the second and third phases, in
order to further improve the efficiency of the pro-
posed BERT-QE model. Given that our goal is to
improve on BERT-Large, in this work, we always
start with BERT-Large for the first-round ranking.

Smaller BERT variants for chunk selector.
As described in Section 2.2, in the second phase,
a BERT model is used to select text chunks of a
fixed length (i.e., m = 10) by evaluating individ-
ual text chunks from the top-kd documents and
selecting the most relevant chunks using a BERT
model. Intuitively, compared with ranking a docu-
ment, evaluating the relevance of a short piece of
text is a relatively simple task. Thus, we examine
the use of smaller BERT variants as summarized in
the second section (namely, BERT-QE-LXL, where
X is T, S, M, or B) in Table 4. As shown, compared
with using BERT-Large in phase two, on Robust04,
all four BERT-QE variants can outperform BERT-
Large significantly at the 0.01 level. Furthermore,
BERT-QE-LML can even achieve slightly higher
results than BERT-QE-LLL. On GOV2, on the
other hand, the uses of BERT-Tiny, BERT-Small,
and BERT-Medium could still outperform BERT-
Large significantly at the 0.05 or 0.1 level, but
with decreasing metrics in most cases. Overall, for
phase two, BERT-Large is a good choice but the
smaller BERT variants are also viable. The uses
of BERT-Tiny, BERT-Small, and BERT-Medium
in phase two can outperform BERT-Large signifi-
cantly with lower FLOPs.

Smaller BERT variants for final re-ranker.
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Model
Robust04 GOV2

P@20 NDCG@20 MAP@100 MAP@1K P@20 NDCG@20 MAP@100 MAP@1K
DPH 0.3616 0.4220 0.2150 0.2512 0.5295 0.4760 0.1731 0.3012
BM25+RM3 0.3821 0.4407 0.2451 0.2903 0.5634 0.4851 0.2022 0.3350
QL+RM3 0.3723 0.4269 0.2314 0.2747 0.5359 0.4568 0.1837 0.3143
DPH+KL 0.3924 0.4397 0.2528 0.3046 0.5896 0.5122 0.2182 0.3605
BERT-Base 0.4653 0.5278 0.3153 0.3652 0.6591 0.5851 0.2535 0.3971
BERT-Large 0.4769 0.5397 0.3238 0.3743 0.6638 0.5932 0.2612 0.4082

BERT-QE-LLL 0.4888∗∗∗ 0.5533∗∗∗ 0.3363∗∗∗ 0.3865∗∗∗ 0.6748∗∗∗ 0.6037∗∗∗ 0.2681∗∗∗ 0.4143∗∗∗

Table 3: Effectiveness of BERT-QE-LLL. Statistical significance relative to BERT-Large at p-value < 0.01,
0.05, and 0.1 are denoted as ∗ ∗ ∗, ∗∗, and ∗, respectively.

Model FLOPs
Robust04 GOV2

P@20 NDCG@20 MAP@100 MAP@1K P@20 NDCG@20 MAP@100 MAP@1K
BERT-Base 0.28x 0.4653 0.5278 0.3153 0.3652 0.6591 0.5851 0.2535 0.3971
BERT-Large 1.00x 0.4769 0.5397 0.3238 0.3743 0.6638 0.5932 0.2612 0.4082
BERT-QE-LLL 11.19x 0.4888∗∗∗ 0.5533∗∗∗ 0.3363∗∗∗ 0.3865∗∗∗ 0.6748∗∗∗ 0.6037∗∗∗ 0.2681∗∗∗ 0.4143∗∗∗

BERT-QE-LTL 11.00x 0.4855∗∗∗ 0.5500∗∗∗ 0.3318∗∗∗ 0.3821∗∗∗ 0.6691∗∗ 0.5986∗ 0.2663∗∗∗ 0.4138∗∗∗

BERT-QE-LSL 11.00x 0.4861∗∗∗ 0.5504∗∗∗ 0.3325∗∗∗ 0.3828∗∗∗ 0.6732∗∗∗ 0.6011∗∗ 0.2685∗∗∗ 0.4142∗∗∗

BERT-QE-LML 11.01x 0.4932∗∗∗ 0.5592∗∗∗ 0.3368∗∗∗ 0.3870∗∗∗ 0.6715∗∗ 0.6013∗ 0.2675∗ 0.4136∗

BERT-QE-LBL 11.05x 0.4839∗∗ 0.5503∗∗∗ 0.3339∗∗∗ 0.3843∗∗∗ 0.6725∗∗ 0.6004 0.2639 0.4103

BERT-QE-LMT 1.03x 0.4839∗∗∗ 0.5483∗∗∗ 0.3276∗ 0.3765 0.6698∗∗ 0.5994∗∗ 0.2642 0.4098
BERT-QE-LMS 1.12x 0.4910∗∗∗ 0.5563∗∗∗ 0.3315∗∗∗ 0.3810∗∗ 0.6658 0.5945 0.2654∗∗∗ 0.4115∗∗∗

BERT-QE-LMM 1.85x 0.4888∗∗∗ 0.5569∗∗∗ 0.3335∗∗∗ 0.3829∗∗∗ 0.6732∗∗∗ 0.6002∗ 0.2668∗∗∗ 0.4131∗∗∗

BERT-QE-LMB 3.83x 0.4906∗∗∗ 0.5580∗∗∗ 0.3367∗∗∗ 0.3858∗∗∗ 0.6728∗∗∗ 0.6011∗∗ 0.2649 0.4128∗∗

BERT-QE-LLT 1.20x 0.4841∗∗∗ 0.5466∗∗ 0.3287∗∗ 0.3771 0.6695∗∗ 0.6009∗∗ 0.2650∗∗ 0.4110∗

BERT-QE-LLS 1.30x 0.4869∗∗∗ 0.5501∗∗ 0.3304∗∗ 0.3798∗ 0.6688∗ 0.5998∗∗ 0.2657∗∗∗ 0.4115∗∗∗

BERT-QE-LLM 2.03x 0.4811 0.5470 0.3320∗∗ 0.3815∗∗ 0.6728∗∗∗ 0.6013∗∗∗ 0.2651∗∗ 0.4107
BERT-QE-LLB 4.01x 0.4865∗∗∗ 0.5507∗∗∗ 0.3337∗∗∗ 0.3834∗∗∗ 0.6678 0.5984 0.2665∗∗ 0.4127∗∗

Table 4: Employ different BERT variants for phase two and three in BERT-QE, wherein BERT-Tiny (T), BERT-
Small (S), BERT-Medium (M), and BERT-Base (B) are used. Statistical significance relative to BERT-Large at
p-value < 0.01, 0.05, and 0.1 are denoted as ∗ ∗ ∗, ∗∗, and ∗, respectively.

According to Section 2.3, phase three is the most
expensive phase, because a BERT model must com-
pare each document to multiple expansion chunks.
Thus, we further explore the possibility of replacing
BERT-Large with smaller BERT variants for phase
three. Based on the results in the previous section,
we consider both BERT-Large and BERT-Medium
as the chunk selector, due to the superior effec-
tiveness of BERT-QE-LML. The results are sum-
marized in the third and fourth sections (namely,
BERT-QE-LMX and BERT-QE-LLX, where X is
T, S, M, or B) of Table 4. On Robust04, the use of
smaller BERT variants always leads to decreasing
effectiveness. However, when using BERT-Small
and BERT-Base for the final re-ranking, the cor-
responding BERT-QE variants always outperform
BERT-Large significantly at the 0.1 level. BERT-
QE-LMM, BERT-QE-LMB, and BERT-QE-LLB
can even consistently outperform BERT-Large on
all four metrics at the 0.01 level. On GOV2, on the
other hand, the use of BERT-QE-LMT and BERT-
QE-LLM significantly outperforms BERT-Large

on shallow metrics, while BERT-QE-LMS and
BERT-QE-LLB outperform BERT-Large on deep
metrics. In addition, BERT-QE-LMM/LLT/LLS
consistently outperform BERT-Large on all metrics
at 0.1 level. Overall, considering shallow metrics
on both datasets, BERT-QE-LMT can outperform
BERT-Large consistently and significantly at the
0.05 level while requiring only 3% more FLOPs.
On both shallow and deep metrics, BERT-QE-LLS
significantly outperforms BERT-Large with 30%
more FLOPs.

5 Analysis

5.1 First-round Re-ranker Ablation Analyses

Intuitively, there are two functions of the first-
round ranker: providing the rel(q, d) score in Equa-
tion (5) used in the final re-ranking, and providing
the top-kd documents from which the candidate
chunks are selected, which are used to compute
rel(C, d) in Equation (4). In this section, we inves-
tigate the impact of the first-round re-ranker from
these two perspectives. In particular, we conduct
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Model P@20 NDCG@20 MAP@1K
BERT-Large 0.4769 0.5397 0.3743

BERT-QE-LLL 0.4888∗∗∗ 0.5533∗∗∗ 0.3865∗∗∗

Remove rel(q, d) 0.4769 0.5372 0.3767
Chunks from DPH+KL 0.4759 0.5391 0.3766

Table 5: Ablation analyzes for the first-round re-ranker in BERT-QE-LLL, by removing the rel(q, d) from Equa-
tion (5) and by replacing the chunks with the ones selected from top-ranked documents of DPH+KL when comput-
ing rel(q, C) in Equation (4). Statistical significance relative to BERT-Large at p-value < 0.01, 0.05, and 0.1
are denoted as ∗ ∗ ∗, ∗∗, and ∗, respectively.

Figure 3: Performance of BERT-QE with different con-
figurations of kc and m. The ◦, 4, 2 correspond to
results in terms of P@20, NDCG@20, and MAP@1K,
respectively.

two ablation analyses: (1) we remove the rel(q, d)
from BERT-Large in Equation (5), but we con-
tinue to use the top documents from BERT-Large
to select the top-kc chunks; and (2) we keep the
rel(q, d) from BERT-Large in Equation (5), but
we select the top-kc chunks from documents re-
turned by the unsupervised DPH+KL model. The
results are summarized in Table 5. For the first
ablation, when rel(q, d) from BERT-Large is not
used, BERT-QE cannot outperform BERT-Large.
Similarly, in the second ablation, selecting chunks
from the documents returned by DPH+KL also pre-
vents BERT-QE from outperforming BERT-Large.
These results highlight the importance of both func-
tions of the first-round re-ranker. That is, we need a
powerful model for the first-round re-ranker to pro-
vide ranking score rel(q, d) and the high-quality
feedback documents for the chunk selector.

5.2 Hyper-parameter study
There are two hyper-parameters in the proposed
BERT-QE, namely kc and m. kc is the number of
chunks used in the final-round re-ranking as de-
scribed in Equation (4). Meanwhile, the chunk size
m balances between contextual information and
noise. Results for different hyper-parameter set-

tings on Robust04 are shown in Figure 3. For kc,
it can be seen that kc = 10, 20 achieve similar per-
formance, while kc = 5 reduces the results. As the
computational cost of phase three is proportional
to kc and the performance gaps between kc = 10
and kc = 20 are actually quite small, kc = 10
is a reasonable and robust configuration. Among
different settings of m, m = 10 achieves the best
performance and therefore is used in the proposed
model.

6 Related Work

BERT for IR. Inspired by the success of contextu-
alized models like BERT on NLP tasks, Nogueira
and Cho (2019) examine the performance of BERT
on the passage re-ranking tasks using MS MARCO
and TREC-CAR datasets, and demonstrate superior
performances compared with the existing shallow
ranking models like Co-PACRR (Hui et al., 2018)
and KNRM (Xiong et al., 2017). Thereafter, the
application of contextualized BERT model in rank-
ing tasks have attracted many attentions. Dai and
Callan (2019) split a document into fixed length
passages and use a BERT ranker to predict the rel-
evance of each passage independently. The score
of the first passage, the best passage, or the sum of
all passage scores is used as the document score.
MacAvaney et al. (2019) incorporate BERT’s clas-
sification vector into existing neural models, includ-
ing DRMM (Guo et al., 2016), PACRR (Hui et al.,
2017), and KNRM (Xiong et al., 2017), demon-
strating promising performance boosts. Yilmaz
et al. (2019) transfer models across different do-
mains and aggregate sentence-level evidences to
rank documents. Nogueira et al. (2019a) propose
a multi-stage ranking architecture with BERT that
can trade off quality against latency. Wu et al.
(2020) propose the context-aware Passage-level
Cumulative Gain to aggregate passage relevance
representations scores, which is incorporated into
a BERT-based model for document ranking. In ad-
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dition to these efforts, this work further proposes
to exploit the contextualized BERT model to ex-
pand the original queries in the proposed BERT-QE
framework, boosting the ranking performance by
using the pseudo feedback information effectively.
Query expansion has long been applied to make
use of the pseudo relevance feedback informa-
tion (Hui et al., 2011) to tackle the vocabulary
mismatch problem. Keyword query expansion
methods, such as Rocchio’s algorithm (Rocchio,
1971) and the KL query expansion model (Amati,
2003), have been shown to be effective when ap-
plied to text retrieval tasks. Moreover, Metzler and
Croft (2007) propose to expand beyond unigram
keywords by using a Markov random field model.
Some query expansion methods use word embed-
dings to find the relevant terms to the query (Diaz
et al., 2016; Zamani and Croft, 2016). Cao et al.
(2008) perform query expansion by using classifi-
cation models to select expansion terms. NPRF (Li
et al., 2018) incorporates existing neural ranking
models like DRMM (Guo et al., 2016) into an end-
to-end neural PRF framework. Rather than expand-
ing the query, Nogueira et al. (2019b) propose
a document expansion method named Doc2query,
which uses a neural machine translation method
to generate queries that each document might an-
swer. Doc2query is further improved by docTTTT-
Tquery (Nogueira and Lin, 2019) which replaces
the seq2seq transformer with T5 (Raffel et al.,
2019). MacAvaney et al. (2020b) construct query
and passage representations and perform passage
expansion based on term importance. Despite the
promising results of the above document expansion
methods for passage retrieval, they are so far only
applied to short text retrieval tasks to avoid exces-
sive memory consumption. In comparison with
these established expansion models, the proposed
BERT-QE aims at better selecting and incorporat-
ing the information pieces from feedback, by tak-
ing advantages of the BERT model in identifying
relevant information.

7 Conclusion

This work proposes a novel expansion model,
coined as BERT-QE, to better select relevant in-
formation for query expansion. Evaluation on the
Robust04 and GOV2 test collections confirms that
BERT-QE significantly outperforms BERT-Large
with relatively small extra computational cost (up
to 30%). In future work, we plan to further im-

prove the efficiency of BERT-QE, by combining
the proposed BERT-QE with the pre-computation
techniques proposed recently (Khattab and Zaharia,
2020; MacAvaney et al., 2020a), wherein most of
the computations could be performed offline.
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A Appendices

A.1 Interpolation Parameters in BERT-QE

Robust04
Fold P@20 NDCG@20 MAP@100 MAP@1K α β

1 0.4730 0.5606 0.3247 0.3765 0.4 0.9
2 0.4900 0.5666 0.3909 0.4362 0.4 0.8
3 0.4740 0.5328 0.2941 0.3471 0.4 0.9
4 0.4684 0.5213 0.2940 0.3440 0.6 0.9
5 0.5400 0.5868 0.3709 0.4233 0.3 0.9

GOV2
1 0.6233 0.5728 0.2257 0.3621 0.4 0.9
2 0.7397 0.6675 0.3046 0.4334 0.7 0.9
3 0.7167 0.6177 0.2558 0.4456 0.1 0.7
4 0.6850 0.6027 0.2718 0.4140 0.4 0.8
5 0.6300 0.5731 0.2860 0.4240 0.4 0.8

Table 6: Results on validation sets, as well as the cho-
sen interpolation parameters α and β based on valida-
tion sets for BERT-QE-LLL.

There are two hyper-parameters in BERT-QE,
namely α and β, both of which are interpola-
tion coefficients. α is introduced in Equation (5).
In addition, akin to (Yilmaz et al., 2019), there
is an interpolation with the initial ranking, i.e.,
DPH+KL, which has been applied to all models,
including BERT-QE and baselines, where β is the
hyper-parameter. As shown in the following equa-
tion, M(q, d) denotes the scores from a re-ranking
model, e.g., BERT-QE model. I(q, d) denotes the
scores from the initial ranking, namely, DPH+KL.
α and β are both tuned on the validation set through
grid search on (0,1) with stride 0.1. The models
with best nDCG@20 on validation sets are cho-
sen. Different configurations of α and β and the
corresponding results are summarized in Table 6.

final score = β · log(M(q, d))+ (1−β) · I(q, d)

Size # of parameters
Tiny (T) 4M
Small (S) 11M
Medium (M) 41M
Base (B) 109M
Large (L) 335M

Table 7: Number of parameters in BERT variants.

A.2 Number of parameters in BERT variants
We list the number of parameters in different BERT
variants used in BERT-QE in Table 7.


