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Abstract

Terms contained in Gene Ontology (GO) have
been widely used in biology and bio-medicine.
Most previous research focuses on inferring
new GO terms, while the term names that re-
flect the gene function are still named by the
experts. To fill this gap, we propose a novel
task, namely term name generation for GO,
and build a large-scale benchmark dataset. Fur-
thermore, we present a graph-based generative
model that incorporates the relations between
genes, words and terms for term name genera-
tion, which exhibits great advantages over the
strong baselines.

1 Introduction and Related Work

Gene Ontology (GO) is a widely-used biological
ontology, which contains a large number of terms to
describe the gene function in three aspects, namely
molecular function, biological process and cellular
component (Consortium, 2015, 2016). The terms
are organized hierarchically like a tree, and can
be used to annotate the genes as demonstrated in
Figure 1. GO has been extensively studied in the
research community of bio-medicine and biology
for its great value in many applications, such as pro-
tein function analysis (Cho et al., 2016) and disease
association prediction (Menche et al., 2015).

A major concern in GO is the GO construction,
including term discovery, naming and organiza-
tion (Mazandu et al., 2017; Koopmans et al., 2019).
In early studies, the terms are manually defined and
organized by the experts in particular areas of biol-
ogy, which is very labor-consuming and inefficient
given the large volume of biological literature pub-
lished every year (Tomczak et al., 2018). Moreover,
different experts may use different expressions to
describe the same biological concept, causing an
inconsistency problem in term naming.
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Alias: Insulin like 
growth factor binding 
protein 3
Description: ...altering 
their interaction with 
cell surface receptors...

Alias: Opioid growth
factor receptor
Description: ...a 
receptor for opioid 
growth factor...

Alias: Brca1 associated 
protein 1
Description: ...the 
enzyme may be 
involved in regulation 
of cell cycle...

… …

Term

Gene IGFBP3 OGFR BAP1

GO: 0001558

Regulation of cell growth

Figure 1: A term named “Regulation of cell growth”
and the related genes with aliases and descriptions.

Recently, many researchers turn to develop au-
tomatic methods for GO construction. Dutkowski
et al. (Dutkowski et al., 2013) proposed a Network-
eXtracted Ontology (NeXO), which clustered
genes hierarchically based on their connections in
the molecular networks, and recovered around 40%
of the terms according to the alignment between
NeXO and GO. In order to further improve the
performance, Kramer et al. (Kramer et al., 2014)
identified the gene cliques which were treated as a
term in an integrated biological network. Though
these methods infer new GO terms and their re-
lationships based on the structured networks au-
tomatically (Gligorijević et al., 2014; Li and Yip,
2016; Peng et al., 2015), the new terms are still
named manually by the experts, which is prone
to the problems of inefficiency and inconsistency.
Furthermore, only the structure information in ex-
isting networks is utilized, while the genes’ rich
textual information that potentially describes the
corresponding term has not well been studied.

In order to obtain term names automatically to
boost GO construction, we propose a novel task
that aims to generate term names based on the tex-
tual information of the related genes. An illustra-
tive example of the task is shown in Figure 1. The



Figure 2: Distributions of the dataset.

genes IGFBP3, OGFR and BAP1 are annotated by
the term with the ID as GO:0001558 and name as
“Regulation of cell growth”. Since there are some
word overlaps between the term name and gene text
(alias and description) by our observations, we aim
to generate the term name based on the gene text.
To facilitate the research, we first present a dataset
for term name generation in GO. Then, we propose
a graph-based generative model that incorporates
the potential relations between genes, words and
terms for term name generation. The experimental
results indicate the effectiveness of our proposed
model. The contributions of our work are three-
fold: (1) To the best of our knowledge, it is the first
attempt to explore to generate term names for GO
automatically. (2) We present a large-scale dataset
for term name generation based on various biolog-
ical resources, which will help boost the research
in bio-medicine and biology. (3) We conduct ex-
tensive experiments with in-depth analyses, which
verify the effectiveness of our proposed model.

2 Dataset
We build a large-scale dataset1 for term name gen-
eration, which contains the GO terms about Homo
sapiens (humankind). We collect the term ID, term
name and the corresponding genes’ ID from Gene
Ontology Consortium2. In addition, the gene alias
and descriptions are crawled from GeneCards3,
which contains the information from Universal Pro-
tein Resource (UniProt)4.

Our dataset contains 18,092 samples in total.
Each sample contains a term ID, term name and
the related genes with alias and descriptions as
demonstrated in Figure 1. The statistics and dis-
tributions about the dataset are shown in Table 1
and Figure 2. We observe that about 51.3% of the
words are shared between term names and related
genes, indicating the potential to utilize the textual

1http://fudan-disc.com/data/fudan_
term_name_generation.zip

2http://geneontology.org/
3https://www.genecards.org/
4https://www.uniprot.org/

information of genes for term name generation. It
is also interesting to find that some patterns like
“regulation of ” appear in the term name frequently,
which provide valuable clues for enhancing the
performance of generation.

# of terms 18,092
# of genes 17,233
Avg. length of term name 4.74
Avg. length of gene alias 4.83
Avg. length of gene description 66.1
Shared words between term and gene 51.3%

Table 1: Statistics of the dataset.

3 Graph-based Generative Model
The classical generative models such as
Seq2Seq (Sutskever et al., 2014), HRNNLM (Lin
et al., 2015) and Transformer (Vaswani et al., 2017)
only incorporate the sequential information of
the source text for sentence generation, while the
potential structure within the text is neglected. To
alleviate this problem, we build a heterogeneous
graph with the words, genes and terms as nodes,
and adopt a graph-based generative model for term
name generation. The overall architecture of our
graph-based generative model is shown in Figure 3,
which consists of two components: the GCN based
encoder and the graph attention based decoder.

3.1 GCN based Encoder

The GCN-based encoder aims to encode the rela-
tions between genes, words and terms for boost-
ing term name generation. We first construct a
heterogeneous graph based on the dataset, and
then apply the Graph Convolutional Network
(GCN) (Vashishth et al., 2019) for representation
learning.

Graph Construction. We build a heteroge-
neous graph where the nodes are the words, genes
and terms, and the edges reflect the relations be-
tween them. The words come from the gene text.
Regarding to the edges, there are two types: word-
gene and gene-term. The value for the word-gene
edge is the normalized count of the word in the

http://fudan-disc.com/data/fudan_term_name_generation.zip
http://fudan-disc.com/data/fudan_term_name_generation.zip
http://geneontology.org/
https://www.genecards.org/
https://www.uniprot.org/


Figure 3: The overall architecture of our Graph-based Generative Model. Prob(“beta”, g) and Prob(“beta”, c)
denote the probabilities based on the generation-mode and copy-mode respectively.

gene text, while the value for the gene-term edge is
1 if the gene can be annotated by the term.

Representation Learning. The initial represen-
tation for the word node is the word embeddings.
For the gene node, the gene alias and description
encoded by a GRU model is used as the initial rep-
resentation. Regarding to the term node, the pool-
ing over all the representations of the related gene
nodes is used as the initial representation. Then, we
update the node representation via a GCN model
due to its effectiveness in modeling the structure
information (Kipf and Welling, 2016), which is
formulated as follows:

X ′ = ÂReLU
(
ÂXW (0)

)
W (1) (1)

where Â = A + I , A is the adjacency matrix of
the graph, and I is the identity matrix. X is the
initial representation for the nodes, denoted as X =
(t, g1...gm, w1, ..., wn), where gi, wi, t denote the
initial representation for the ith gene, word and
term respectively. W (0) and W (1) represent the
weight matrix in the first and second layer of GCN.

3.2 Graph Attention based Decoder
Motivated by the effectiveness of the attention
mechanism for generation (Bahdanau et al., 2014),
we adopt a graph attention based decoder to gen-
erate the term name. The attentive word node rep-
resentation by GCN is utilized and formulated as:

at =
n∑
j=1

αjw
′
j

αj = softmax(vT tanh(Wa[ht−1;w
′
j ]))

(2)

where ht−1 is the previous hidden state, w′j is the
word node representation by GCN, v is a parameter
vector, and Wa is a parameter matrix.

Given the word overlaps between the gene text
and term name, we utilize the copy mechanism in

CopyNet (Gu et al., 2016) for decoding, making
it possible to generate the word from either the
vocabulary of the training set or the current gene
text. The initial hidden state h0 is the term node
representation (i.e., t′) obtained by GCN, and the
hidden state is updated as:

ht = f([ht−1;wt−1; at;w
′
SR]) (3)

where f is the RNN function, wt−1 is the word
embedding of the previous generated word, w′SR is
a selective read (SR) vector in CopyNet. When the
previous generated word appears in the gene text,
the next word will also probably come from it, and
thus w′SR is the previous word node representation;
otherwise it is a zero vector.

The probability of generating a target word yt is
calculated as a mixture of the probabilities by the
generation-mode and copy-mode as follows:

p (yt|ht) =
1

Z
eψg(yt) +

1

Z

∑
eψc(xj) (4)

where ψg (yt) and ψc (xj) are score functions for
the generate-mode and copy-mode respectively,
which can be defined as demonstrated in (Gu et al.,
2016). Z =

∑
v∈V e

ψg(v)+
∑

x∈S e
ψc(x), where V

denotes the word vocabulary in the training set, and
S denotes the source word set in the gene text. It is
notable that there are a lot of fixed patterns in the
term names as mentioned in section 2. Therefore,
we extract top ranked bigrams and trigrams, and
treat them as new words for ease of generation.

4 Experiment
4.1 Experimental Setup
Implementation Details. The dataset is divided
into the training, validation and test sets with a
proportion of 8:1:1. We adopt the widely used
evaluation metrics like BLEU1-3 (Papineni et al.,



Model Rouge-1 Rouge-2 Rouge-L BLEU-1 BLEU-2 BLEU-3

TF-IDF 9.6 * * 9.6 * *
LexRank 9.7 * * 9.7 * *
Seq2Seq 18.8 10.0 16.0 11.7 7.4 2.5
HRNNLM 19.0 10.1 16.3 11.7 7.4 2.8
Transformer 17.7 8.7 16.7 15.0 9.1 3.9
full model 21.6 10.3 22.1 17.8 10.6 4.0
Ablation study

No copy 22.5 10.3 20.6 17.5 10.2 3.8
No pattern 21.3 9.7 22.0 16.5 9.2 3.3
No copy and pattern 21.0 10.1 18.6 15.6 9.2 3.1

Table 2: Overall performance of different models. The best result is marked in bold. Only the Rouge-1 and
BLEU-1 scores for the extractive models are shown since they usually extract the unigrams independently.

2002) and Rouge1,2,L (Lin, 2004) for the genera-
tion task. The word embeddings are initialized
from N (0, 1) with a dimension of 300 and up-
dated during training. The dimension of the hidden
units for GRU (Chung et al., 2014) and GCN is
300. We initialize the parameters according to a
uniform distribution with the Xavier scheme (Ku-
mar, 2017), and the dropout rate is set to 0.5. The
Adam (Kingma and Ba, 2014) method with a learn-
ing rate of 1e-3 is used for training.
Baseline Methods. To evaluate the effective-
ness of our proposed model, we apply the ad-
vanced baselines in two categories for compari-
son: (1) TF-IDF; (2) LexRank (Erkan and Radev,
2004); (3) Seq2Seq (Sutskever et al., 2014);
(4) HRNNLM (Lin et al., 2015); (5) Trans-
former (Vaswani et al., 2017). The former two
are extractive models which extract words from the
gene text as the term name, and the latter three are
generative models which generate words from the
vocabulary space as the term name.

4.2 Experimental Results
The experimental results are shown in Table 2. It is
observed that the generative models perform better
than the extractive models by incorporating the lan-
guage probability into generation, which makes the
generated term name more coherent. Whereas, the
extractive models usually extract keywords inde-
pendently, which are hard to form a complete and
brief term name. It is also notable that our graph-
based generative model achieves the best perfor-
mance in all cases by incorporating the relations
between the genes, words and terms into generation.
While other generative models bring unnecessary
sequential information of multiple genes, which
may have a side effect on term name generation.

From the ablation study, we find that when we
treat the frequent patterns as new words during gen-
eration and then restore them, the performance can

be further boosted. In addition, the copy mecha-
nism can help improve the generation performance
especially in the metric of BLEU scores, which
proves the effectiveness of using the shared words
between genes and terms for term name generation.

4.3 Visualization of Attention
To have an insight of why our proposed graph-
based generative model is more effective, we ran-
domly sample a generated term name that is the
same as the ground truth, and draw an attention
heatmap for the words in the term name and the
corresponding gene aliases in Figure 4. The atten-
tion result for the gene descriptions is not presented
here due to the limited space. We observe that the
word Tweety that represents a gene group5 in gene
aliases is highly related to the words as Transporter
and Activity in the term name, which indicates the
potential of modeling the relations between words,
genes and terms for enhancing the performance of
term name generation.

Figure 4: Attentive weight visualization. The verti-
cal and horizontal axises denote the words in the term
name and gene aliases respectively.

5 Conclusions and Future Work
In this paper, we propose a novel task of automatic
term name generation based on the gene text for
GO. We construct a large-scale dataset and provide
the insights of this task. Experimental results show
that our proposed graph-based generative model
is superior to other strong baselines by modeling

5https://flybase.org/reports/
FBgg0000560.html

https://flybase.org/reports/FBgg0000560.html
https://flybase.org/reports/FBgg0000560.html


the relations between genes, words and terms. In
the future, we will explore how to utilize more
knowledge to guide term name generation.
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