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Abstract

Label inventories for fine-grained entity typing
have grown in size and complexity. Nonethe-
less, they exhibit a hierarchical structure. Hy-
perbolic spaces offer a mathematically appeal-
ing approach for learning hierarchical repre-
sentations of symbolic data. However, it is not
clear how to integrate hyperbolic components
into downstream tasks. This is the first work
that proposes a fully hyperbolic model for
multi-class multi-label classification, which
performs all operations in hyperbolic space.
We evaluate the proposed model on two chal-
lenging datasets and compare to different base-
lines that operate under Euclidean assump-
tions. Our hyperbolic model infers the latent
hierarchy from the class distribution, captures
implicit hyponymic relations in the inventory,
and shows performance on par with state-of-
the-art methods on fine-grained classification
with remarkable reduction of the parameter
size. A thorough analysis sheds light on the
impact of each component in the final predic-
tion and showcases its ease of integration with
Euclidean layers. 1

1 Introduction

Entity typing classifies textual mentions of enti-
ties, according to their semantic class, within a
set of labels (or classes) organized in an inventory.
The task has progressed from recognizing a few
coarse classes (Sang and De Meulder, 2003), to
extremely large inventories, with hundreds (Gillick
et al., 2014) or thousands of labels (Choi et al.,
2018). Therefore, exploiting inter-label correla-
tions has become critical to improve performance.

Large inventories tend to exhibit a hierarchical
structure, either by an explicit tree-like arrange-
ment of the labels (coarse labels at the top, fine-
grained at the bottom), or implicitly through the

1Code available at:
https://github.com/nlpAThits/hyfi

Figure 1: Tree embedded in hyperbolic space. Items
at the top of the hierarchy are placed near the ori-
gin of the space, and lower items near the boundary.
Moreover, the hyperbolic distance (Eq. 1) between sib-
ling nodes resembles the one through the common an-
cestor, analogous to the distance in the tree. That is
dD(D,E) ≈ dD(D,B) + dD(B,E).

label distribution in the dataset (coarse labels ap-
pear more frequently than fine-grained ones). Prior
work has integrated only explicit hierarchical in-
formation by formulating a hierarchy-aware loss
(Murty et al., 2018; Xu and Barbosa, 2018) or
by representing instances and labels in a joint Eu-
clidean embedding space (Shimaoka et al., 2017;
Abhishek et al., 2017). However, the resulting
space is hard to interpret, and these methods fail to
capture implicit relations in the label inventory. Hy-
perbolic space is naturally equipped for embedding
symbolic data with hierarchical structures (Nickel
and Kiela, 2017). Intuitively, that is because the
amount of space grows exponentially as points
move away from the origin. This mirrors the expo-
nential growth of the number of nodes in trees with
increasing distance from the root (Cho et al., 2019)
(see Figure 1).

In this work, we propose a fully hyperbolic neu-
ral model for fine-grained entity typing. Noticing a
perfect match between hierarchical label invento-
ries in the linguistic task and the benefits of hyper-
bolic spaces, we endow a classification model with

https://github.com/nlpAThits/hyfi
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a suitable geometry to capture this fundamental
property of the data distribution. By virtue of the
hyperbolic representations, the proposed approach
automatically infers the latent hierarchy arising
from the class distribution and achieves a meaning-
ful and interpretable organization of the label space.
This arrangement captures implicit hyponymic rela-
tions (is-a) in the inventory and enables the model
to excel at fine-grained classification. To the best of
our knowledge, this work is the first to apply hyper-
bolic geometry from beginning to end to perform
multi-label classification on real NLP datasets.

Recent work has proposed hyperbolic neural
components, such as word embeddings (Tifrea
et al., 2019), recurrent neural networks (Ganea
et al., 2018) and attention layers (Gulcehre et al.,
2019). However, researchers have incorporated
these isolated components into neural models,
whereas the rest of the layers and algorithms op-
erate under Euclidean assumptions. This impedes
models from fully exploiting the properties of hy-
perbolic geometry. Furthermore, there are different
analytic models of hyperbolic space, and not all
previous work operates in the same one, which
hinders their combination, and hampers their adop-
tion for downstream tasks (e.g. Tifrea et al. (2019)
learn embeddings in the Poincaré model, Gulcehre
et al. (2019) aggregate points in the Klein model,
or Nickel and Kiela (2018) perform optimization in
the Lorentz model). We address these issues. Our
model encodes textual inputs, applies a novel atten-
tion mechanism, and performs multi-class multi-
label classification, executing all operations in the
Poincaré model of hyperbolic space (§4).

We evaluate the model on two datasets, namely
Ultra-Fine (Choi et al., 2018) and OntoNotes
(Gillick et al., 2014), and compare to Euclidean
baselines as well as to state-of-the-art methods for
the task (Xiong et al., 2019; Onoe and Durrett,
2019). The hyperbolic system has competitive per-
formance when compared to an ELMo model (Pe-
ters et al., 2018) and a BERT model (Devlin et al.,
2019) on very fine-grained types, with remarkable
reduction of the parameter size (§6). Instead of
relying on large pre-trained models, we impose a
suitable inductive bias by choosing an adequate
metric space to embed the data, which does not
introduce extra burden on the parameter footprint.

By means of the exponential and logarithmic
maps (explained in §2) we are able to mix hyper-
bolic and Euclidean components into one model,
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Figure 2: Visualization of Möbius operations. Left:
Möbius addition (noncommutative). Right: Matrix-
vector multiplication and pointwise non-linearity.

aiming to exploit their strengths at different levels
of the representation. We perform a thorough abla-
tion that allows us to understand the impact of each
hyperbolic component in the final performance of
the system (§6.1.1 and §6.1.2), and showcases its
ease of integration with Euclidean layers.

2 Hyperbolic Neural Networks

In this section we briefly recall the necessary back-
ground on hyperbolic neural components. The ter-
minology and formulas used throughout this work
follow the formalism of Möbius gyrovector spaces
(Ungar, 2008a,b), and the definitions of hyperbolic
neural components of Ganea et al. (2018). For
more information about Riemannian geometry and
Möbius operations see Appendix A and B. In the
following, 〈·, ·〉 and ‖ · ‖ are the inner product and
norm inherited from the Euclidean space.

Hyperbolic space: It is a non-Euclidean space
with constant negative curvature. We adopt the
Poincaré ball model of hyperbolic space (Cannon
et al., 1997). In the general n-dimensional case,
it becomes Dn = {x ∈ Rn | ‖x‖ < 1}2. The
Poincaré model is a Riemannian manifold equipped
with the Riemannian metric gDx = λ2xg

E , where
λx := 2

1−‖x‖2 is called the conformal factor and

gE = In is the Euclidean metric tensor. The dis-
tance between two points x, y ∈ Dn is given by:

dD(x, y) = cosh−1

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
(1)

Möbius addition: It is the hyperbolic analogous
to vector addition in Euclidean space. Given two

2Ganea et al. (2018) define the ball as Dn = {x ∈ Rn |
c‖x‖2 < 1} with a parameter c in relation to the radius of
the Poincaré ball r = 1/

√
c. In this work we assume c = 1

therefore we omit such parameter.
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Figure 3: Overview of the proposed model. The mention encoder extracts word and char-level entity represen-
tations. The context encoder is based on a bidirectional-GRU with attention. The outputs of both encoders are
concatenated and passed to a classifier based on a multinomial logistic regression.

points x, y ∈ Dn, it is defined as:

x⊕ y =
(1 + 2〈x, y〉+ ‖y‖2)x+ (1− ‖x‖2)y

1 + 2〈x, y〉+ ‖x‖2‖y‖2 (2)

Möbius matrix-vector multiplication: Given a
linear map M : Rn → Rm, which we identify
with its matrix representation, and a point x ∈
Dn,Mx 6= 0, it is defined as:

M ⊗ x = tanh

(
‖Mx‖
‖x‖ tanh−1(‖x‖)

)
Mx

‖Mx‖ (3)

Pointwise non-linearity: If we model it as ϕ :
Rn → Rn, then its Möbius version ϕ⊗ can be
applied using the same formulation of the matrix-
vector multiplication. A visualization of the afore-
mentioned operations can be seen in Figure 2.

By combining these operations we obtain a one-
layer feed-forward neural network (FFNN) in hy-
perbolic space, described as y = ϕ⊗(M ⊗ x⊕ b)
with M ∈ Rm×n and b ∈ Dm as trainable parame-
ters. Note that the parameter b lies in the hyperbolic
space, thus its updates during training need to be
corrected for this geometry.
Exponential and logarithmic maps: For each
point x ∈ Dn, let TxDn denote the associated tan-
gent space, which is always a subset of Euclidean
space (Liu et al., 2019). We make use of the expo-
nential map expx : TxDn → Dn and the logarith-
mic map logx : Dn → TxDn to map points in the
hyperbolic space to the Euclidean space, and vice-
versa. At the origin of the space, they are given for
v ∈ T0Dn\{0} and y ∈ Dn\{0}:

exp0(v) = tanh (‖v‖) v

‖v‖

log0(y) = arctanh(‖y‖) y

‖y‖

(4)

To map a point y ∈ Dn onto the Euclidean
space we apply log0(y). Conversely, to map a

point v ∈ Rn onto the hyperbolic space, we as-
sume Rn = T0Dn and apply exp0(v). This allows
to mix hyperbolic and Euclidean neural layers as
shown in §6.1.2.

3 Fine-grained Entity Typing

Given a context sentence s containing an entity
mention m, the goal of entity typing is to predict
the correct type labels tm that describe m from a
type inventory T . The ground-truth type set tm may
contain multiple types, making the task a multi-
class multi-label classification problem.

For fine-grained entity typing the type inven-
tory T tends to contain hundreds to thousands of
labels. Encoding hierarchical information from
large type inventories has been proven critical to
improve performance (López et al., 2019). Thus
we hypothesize that our proposed hyperbolic model
will benefit from this representation.

4 Hyperbolic Classification Model

In this section we propose a general hyperbolic neu-
ral model for classification with sequential data as
input. The building blocks are defined in a generic
manner such that they can be applied to different
tasks, or integrated with regular Euclidean layers.
Our proposed architecture resembles recent neu-
ral models applied to entity typing (Choi et al.,
2018). For the encoders we employ the neural
networks introduced in Ganea et al. (2018), we
propose a novel attention mechanism operating en-
tirely in the Poincaré model, and we extend the
hyperbolic classifier to multi-class multi-label se-
tups. An overview of the model can be seen in
Figure 3.
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4.1 Mention Encoder

To represent the mention, we combine word and
char-level features, similar to Lee et al. (2017).
Given a sequence of k tokens in a mention span, we
represent them using pre-trained word embeddings
wi ∈ Dn which we assume to lie in hyperbolic
space. We apply a hyperbolic FFNN, described as:

mi = tanh⊗(WM ⊗ wi ⊕ bM ) (5)

with mi ∈ DdM , and where WM ∈ RdM×n, bM ∈
DdM are parameters of the model. We combine the
resulting m1, ...,mk into a single mention repre-
sentation m ∈ DdM by computing a weighted sum
of the token representations in hyperbolic space
with the attention mechanism explained in §4.4.

Moreover, we extract features from the sequence
of characters in the mention span with a recurrent
neural network (RNN) (Lample et al., 2016). We
represent each character with a char-embedding
ci ∈ DdC that we train in the Poincaré ball. An
RNN operating in hyperbolic space is defined by:

ht+1 = ϕ⊗(WC ⊗ ht ⊕ UC ⊗ ct ⊕ bC) (6)

where WC , UC ∈ RdC×dC , bC , ht ∈ DdC , and ϕ
is a pointwise non-linearity function. Finally, we
obtain a single representation c ∈ DdC by taking
the midpoint of the states hi using Equation 9.

4.2 Context Encoder

To encode the context we apply a hyperbolic ver-
sion of gated recurrent units (GRU) (Cho et al.,
2014) proposed in Ganea et al. (2018)3. Given a
sequence of l tokens, we represent them with a
pre-trained word embedding wi ∈ Dn, and apply a
forward and backward GRU, producing contextual-
ized representations

−→
hi ,
←−
hi ∈ DdS for each token.

We concatenate the resulting states into a single em-
bedding si = concat(

−→
hi ,
←−
hi) (see concat in §4.3),

where si ∈ D2dS . Ultimately, we combine s1, ..., sl
into a single context representation s ∈ D2dS with
the distance-based attention mechanism.

4.3 Concatenation

If we model the concatenation of two vectors in the
Poincaré ball as appending one to the other, this
does not guarantee that the result remains inside
the ball. Thus, we apply a generalized version of

3For a complete description of this network see Ap-
pendix C or Ganea et al. (2018) §3.3

the concatenation operation. For x ∈ Dk, y ∈ Dl,
then concat : Dk × Dl → Dn is defined as:

concat(x, y) =M1 ⊗ x⊕M2 ⊗ y ⊕ b (7)

where M1 ∈ Rn×k,M2 ∈ Rn×l, b ∈ Dn are pa-
rameters of the model. In Euclidean architectures,
the concatenation of vectors is usually followed by
a linear layer, which takes the form of Equation 7
when written explicitly.

4.4 Distance-based Attention

Previous approaches to hyperbolic attention (Gul-
cehre et al., 2019; Chami et al., 2019) require
mappings of points to different spaces, which hin-
ders their adoption into neural models. We pro-
pose a novel attention mechanism in the Poincaré
model of hyperbolic space. We cast attention as a
weighted sum of vectors in this geometry, without
requiring any extra mapping of the inputs. In this
manner, we make consistent use of the same ana-
lytical model of hyperbolic space across all compo-
nents, which eases their integration.

To obtain the attention weights, we exploit the
hyperbolic distance between points (Gulcehre et al.,
2019). Given a sequence of states xi ∈ Dn, we
combine them with a trainable position embedding
pi ∈ Dn such that ri = xi ⊕ pi. We use addition
as the standard method to enrich the states with
positional information (Vaswani et al., 2017; De-
vlin et al., 2019). We apply two different linear
transformations on ri to obtain vectors qi and ki,
both lying in the Poincaré ball. We compute the
distance between these two points and finally ob-
tain the weight by applying a softmax over the
sequence in the following manner:

qi =WQ ⊗ ri ⊕ bQ, ki =WK ⊗ ri ⊕ bK

α(qi, ki) = softmax(−βdD(qi, ki))
(8)

where WQ,WK ∈ Rn×n, bQ, bK ∈ Dn and β ∈
R are parameters of the model. Attention weights
will be higher for elements with qi and ki vectors
placed close to each other.

The positional embeddings are trained along
with the model as a hyperbolic parameter. For
the context encoder, they reflect relative distances
between the i-th word and the entity mention. For
the mention encoder, they represent the absolute
position of the word inside the mention span.

To aggregate the points as a weighted summa-
tion in hyperbolic space we propose to apply the
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Möbius midpoint, which obeys many of the prop-
erties that we expect from a weighted average in
Euclidean space (Ungar (2010), Theorem 4.6):

m =
1

2
⊗

∑n
i=1 αiγ(xi)

2xi∑n
i=1 αi

(
γ(xi)2 − 1

2

) (9)

where xi are the states in the sequence, αi the
weights corresponding to each state, and γ(xi) the
Lorentz factors. By applying the Möbius midpoint
we develop an attention mechanism that operates
entirely in the Poincaré model of hyperbolic space.
Detailed formulas and experimental observations
can be found in Appendix D.

4.5 Classification in the Poincaré Ball

The input of the classifier is the concatenation of
mention and context features. To perform multi-
class classification in the Poincaré ball, we adapt
the generalized multinomial logistic regression
(MLR) from Ganea et al. (2018). Given K classes
and k ∈ {1, ...,K}, pk ∈ Dm, ak ∈ TpkDm\{0},
the formula for the hyperbolic MLR is:

p(y = k|x) ∝

f

(
λpk‖ak‖ sinh−1

(
2〈−pk ⊕ x, ak〉

(1− ‖ − pk ⊕ x‖2)‖ak‖

)) (10)

Where x ∈ Dm, and pk and ak are trainable
parameters. It is based on formulating logits as
distances to margin hyperplanes. The hyperplanes
in hyperbolic space are defined by the union of all
geodesics passing through pk and orthogonal to ak.

Although this formulation was made for one-
label classification, the underlying notion also
holds for multi-label setups. In that case, we need
to be able to select several classes by consider-
ing the distances (logits) to all hyperplanes. To
achieve that we employ the sigmoid function as f ,
instead of a softmax, and predict the given class if
p(y = k|x) > 0.5. More details in Appendix E.

Figure 4 shows examples of the hyperbolic def-
inition of multiple hyperplanes, which follow the
curvature of the space.

4.6 Optimization

With the proposed classification model, we aim to
minimize variants of the binary cross-entropy loss
function as the training objective.

The model has trainable parameters in both Eu-
clidean and hyperbolic space. We apply the Geoopt
implementation of Riemannian Adam (Kochurov
et al., 2020) as a Riemannian adaptive optimization

method (Bécigneul and Ganea, 2019) to carry out
a gradient-based update of the parameters in their
respective geometry.

5 Experiments

We evaluate the proposed hyperbolic model on two
different datasets for fine-grained entity typing, and
compare to Euclidean baselines as well as state-of-
the-art models.

5.1 Data

For analysis and evaluation of the model, we focus
on the Ultra-Fine entity typing dataset (Choi et al.,
2018). It contains 10,331 target types defined as
free-form noun phrases and divided in three lev-
els of granularity: coarse, fine and ultra-fine. Be-
sides this segregation, the dataset does not provide
any further explicit information about the relations
among the types. The data consist of 6,000 crowd-
sourced examples and 6M training samples in the
open-source version, automatically extracted with
distant supervision. Our evaluation is done on the
original crowdsourced dev/test splits.

To gain a better understanding of the proposed
model, we also experiment on the OntoNotes
dataset (Gillick et al., 2014) as it is a standard
benchmark for entity typing.

5.2 Setup

The MLR classifier operates in a hyperbolic space
of m dimensions with m = dM + dC + 2dS . By
setting different values, we experiment with three
models: BASE (m = 100), LARGE (m = 250) and
XLARGE (m = 500).

As word embeddings we employ Poincaré GloVe
embeddings (Tifrea et al., 2019), which are pre-
trained in the Poincaré model. Hence, the input
to the encoders is already in hyperbolic space and
all operations can be performed in this geometry.
These embeddings are not updated during training.
Low values of dropout are used since the model was
very sensitive to this parameter given the behaviour
of the hyperbolic distance.

On the Ultra-Fine dataset, for each epoch, we
train over the entire training set, and we run ex-
tra iterations over the crowdsourced split before
evaluating. In this way, the model benefits from
the large amount of noisy, automatically-generated
data, and is fine-tuned with high-quality crowd-
sourced samples. As previous work (Xiong et al.,
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Total Coarse Fine Ultra-Fine

Model P R F1 P R F1 P R F1 P R F1 # Params
DENOISED 50.7 33.1 40.1 66.9 80.7 73.2 41.7 46.2 43.8 45.6 17.4 25.2 31.0M
BERT 51.6 32.8 40.1 67.4 80.6 73.4 41.6 54.7 47.3 46.3 15.6 23.4 110.0M
LABELGCN 49.3 28.1 35.8 66.2 68.8 67.5 43.9 40.7 42.2 42.4 14.2 21.3 5.1M
MULTITASK 48.0 23.0 31.0 60.0 61.0 61.0 40.0 38.0 39.0 42.0 8.0 14.0 6.1M
HY BASE 48.5 29.1 36.3 64.4 72.2 68.1 39.4 38.5 38.9 39.3 14.5 21.2 1.8M
HY LARGE 42.3 33.5 37.4 63.6 72.1 67.6 36.3 48.3 41.4 33.3 19.7 24.7 4.6M
HY XLARGE 43.4 34.2 38.2 61.4 73.9 67.1 35.7 46.6 40.4 36.5 19.9 25.7 9.5M

Table 1: Macro-averaged P, R and F1 on the Ultra-Fine dev set for different baselines and models. We only
reproduced LABELGCN. Values for other baselines are taken from the original publications.

2019; Onoe and Durrett, 2019), we optimize the
multi-task objective proposed by Choi et al. (2018).

For evaluation we report Macro-averaged and
Micro-averaged F1 metrics computed from the pre-
cision/recall scores over the same three granulari-
ties established by Choi et al. (2018). For all mod-
els we optimize Total Macro-averaged F1 on the
validation set, and evaluate on the test set. Follow-
ing Ganea et al. (2018), we report the average of
three runs given the highly non-convex spectrum of
hyperbolic neural networks. Hyperparameters are
detailed in Appendix F along with other practical
aspects to ensure numerical stability.

5.3 Baselines

Euclidean baseline: We replace all operations of
the hyperbolic model by their Euclidean counter-
part. To map the Poincaré GloVe embeddings to the
Euclidean space we apply log0. We do not apply
any kind of normalization or correction over the
weights to circumscribe them into the unit ball. On
the contrary, we grant them freedom over the entire
Euclidean space to establish a fair comparison.
Multi-task: Model proposed by Choi et al. (2018),
along with the Ultra-Fine dataset.
LabelGCN: Model introduced by Xiong et al.
(2019). A label-relational inductive bias is imposed
by means of a graph propagation layer that encodes
label co-occurrence statistics.
BERT: We compare to the setup of Onoe and Dur-
rett (2019) in which BERT (Devlin et al., 2019) is
adapted for this task and fine-tuned on the crowd-
sourced train split.
Denoised: An ELMo-based model (Peters et al.,
2018) proposed by Onoe and Durrett (2019) trained
on raw and denoised distantly-labeled data.

6 Results and Discussion

Following previous work (Choi et al., 2018; Onoe
and Durrett, 2019), we report results on the devel-

opment set in Table 1. All hyperbolic models out-
perform MULTITASK and LABELGCN baselines
on Total Macro F1. DENOISED and BERT sys-
tems, based on large pre-trained models, show the
best Total performance. Nonetheless, HY XLARGE

has a competitive performance, and surpasses both
systems on ultra-fine F1. In the hyperbolic model,
fine-grained types are placed near the boundary of
the ball, where the amount of space grows expo-
nentially. Furthermore, the underlying structure of
the type inventory is hierarchical, thus the hyper-
bolic definition of the hyperplanes is well-suited to
improve the classification in this case (see compar-
ison with Euclidean classifiers on Figure 4). These
properties combined enable the hyperbolic model
to excel at classifying hierarchical labels, with out-
standing improvements on very fine-grained types.

The reduction of the parameter size is also re-
markable: 70% and 91% versus DENOISED and
BERT respectively. This emphasizes the impor-
tance of choosing a suitable metric space that fits
the data distribution (hierarchical in this case) as
a powerful and efficient inductive bias. Through
adequate tools and formulations, we are able to
exploit this bias without introducing an overload

(a) Euclidean Space. (b) Hyperbolic Space.

Figure 4: Classification hyperplanes for the types
person (red), artist (blue) and musician
(green). The hyperbolic formulation of the hyperplanes
is better suited for hierarchical inventories.



466

person artist musician
Types dD Types dD Types dD

artist 0.26 musician 0.25 singer 0.24
author 0.28 actor 0.26 actor 0.25
actor 0.30 person 0.26 artist 0.25
speaker 0.30 author 0.26 composer 0.27
leader 0.30 singer 0.28 band 0.27

Table 2: Closest pk points in the Poincaré Ball to
different Ultra-Fine entity types. The model is able
to capture hierarchical relations such as singer is-a
musician is-a artist is-a person.

on the parameter cost.
Correspondence of results between HY BASE

and LABELGCN suggest that both models capture
similar information. LABELGCN requires label
co-occurrence statistics represented as a weighted
graph, from where a hierarchy can be easily de-
rived (Krioukov et al., 2010). The similarity of
results indicates that the hyperbolic model is able
to implicitly encode the latent hierarchical informa-
tion in the label co-occurrences without additional
inputs or the burden of the graph layer.

To shed light on this aspect, we inspect the points
pk learned by HY BASE to define the hyperplanes
of Equation 10. Table 2 shows the types corre-
sponding to the closest points to the label person
and its subtypes, measured by hyperbolic distance.
The types are highly correlated given that they of-
ten co-occur in similar contexts. Moreover, the
model captures hyponymic relations (is-a) present
in the label co-occurrences. An analogous be-
haviour is observed for other types (see tables in
Appendix G). The inductive bias given by the hy-
perbolic geometry allows the model to capture the
hierarchy, deriving a meaningful and interpretable
representation of the label space: coarse labels near
the origin, fine-grained labels near the boundary,
and hyponymic relations are preserved. It is also
noteworthy that the model learns these relations
automatically without requiring the explicit data
encoded in the graph.

6.1 Comparison of the Spaces

A comparison of the metric spaces for different
models on the test set is shown in Table 3. It can
be seen that the hyperbolic model outperforms its
Euclidean variants in all settings. It is notable that
this trend holds even in high-dimensional spaces
(500 dimensions for XLARGE). Since the label
inventory exhibits a clearly hierarchical structure, it
perfectly suits the hyperbolic classification method.

Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

BASE
HY 69.6 67.3 42.0 39.7 21.2 19.1
EU 68.5 66.1 39.8 36.5 17.8 16.1

LARGE
HY 67.9 65.4 38.4 36.3 24.3 22.3
EU 67.1 63.8 36.7 34.7 22.0 19.7

XLARGE
HY 69.1 66.2 39.7 37.2 26.1 24.0
EU 67.9 65.4 37.8 35.3 22.2 20.0

Table 3: Results on Ultra-Fine test set for macro and
micro F1 across metric spaces and dimensions.

The hyperbolic model brings considerable gains
as the granularity becomes finer: 5.1% and 16.2%
relative improvement in fine and ultra-fine Macro
F1 respectively for the BASE model over its Eu-
clidean counterpart. We also observe that as the
size of the model increases, the Euclidean base-
line becomes more competitive for ultra-fine. This
is due to the Euclidean model gaining enough ca-
pacity to accommodate the separation hyperplanes
with higher dimensions, thus reducing the gap.

It is noticeable that the BASE model outperforms
the larger ones on coarse and fine granularities.
That is due to the larger models overfitting given
the low dropout applied. Moreover, Euclidean and
hyperbolic models exhibit a similar performance on
the coarse granularity when compared to each other.
A possible explanation is that the separation planes
for these labels are located closer to the origin of
the space. In this region, the spaces behave alike in
terms of the distance calculation, and this similarity
is reflected in the results as well.

6.1.1 Word Embeddings Ablation
The input for both the Euclidean and hyperbolic
models are Poincaré GloVe embeddings, which are
originally trained in hyperbolic space (Tifrea et al.,
2019). This might favor the hyperbolic model, de-
spite the application of the log0 map in the Eu-
clidean case. Thus, we replace the hyperbolic em-
beddings by the regular GloVe embeddings (Pen-
nington et al., 2014), and use exp0 on the hyper-
bolic model to project them into the ball.

Table 4 shows that the tendency of the BASE hy-
perbolic model outperforming the Euclidean one

BASE Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

HY GLOVE 68.7 66.6 41.5 38.8 22.1 20.1
EU GLOVE 67.8 65.3 39.7 36.0 20.7 18.6

Table 4: Test results on Ultra-Fine. Poincaré GloVe em-
beddings are replaced by regular GloVe embeddings.
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Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi
HY BASE 69.6 67.3 42.0 39.7 21.2 19.1
EU Encoder 68.8 66.3 41.7 38.9 22.0 20.1
EU Attention 68.9 66.4 40.8 38.0 20.1 18.4
EU Concat 68.6 66.1 40.6 37.5 21.8 19.8
EU MLR 69.2 67.1 40.8 38.0 17.3 15.8

Table 5: Results on Ultra-Fine test set. Ablation of
the hyperbolic model, replacing one component by its
Euclidean counterpart at a time.

holds, and that the improvement does not come
from the embeddings. Also, in this way we show-
case how the hyperbolic model can be easily inte-
grated with regular word embeddings.

6.1.2 Component Ablation

With the aim of analyzing the contribution of the
different hyperbolic components, we perform an
ablation study on the BASE model. We divide the
system in encoder, attention (both in the mention
and context encoders), concatenation, and MLR,
and replace them, one at a time, by their Euclidean
counterparts. Note that when Euclidean and hy-
perbolic components are mixed, we convert the
internal representations from one manifold to the
other with the exp0 and log0 maps.

As we see in Table 5, MLR is the component
that contributes the most to the ultra-fine classifica-
tion. The hierarchical structure of the type inven-
tory combined with the hyperbolic definition of the
hyperplanes are the reason of this (see Figure 4).

Hyperbolic attention and concatenation are rele-
vant for coarse and fine-grained classification (here
is where the biggest drop appears when they are
removed), but do not play a major role in the ultra-
fine granularity.

Finally, the encoders do not benefit from the
hyperbolic representation. As the reason for this
we consider that the model is not able to capture
tree-like relations among the input tokens such that
they can be exploited for the task.

This ablation suggests that the main benefits of
hyperbolic layers arise when they are incorporated
at deeper levels of representation in the model, and
not over low-level features or raw text.

Computing time: Möbius operations are more ex-
pensive than their Euclidean counterparts. Due to
this, in our experiments we found the hyperbolic
encoder to be twice slower, and the MLR 1.5 times
slower than their Euclidean versions.

Coarse Fine Ultra
Model Ma Mi Ma Mi Ma Mi

BASE
HY 82.0 80.2 41.8 41.4 23.9 25.0
EU 81.8 80.3 37.7 36.1 17.5 15.8

LARGE
HY 83.1 81.3 42.0 41.4 24.0 25.2
EU 82.4 80.9 38.2 36.7 18.9 18.1

Table 6: Macro and micro F1 on OntoNotes test set for
different granularities.

6.2 OntoNotes Dataset

To further understand the capabilities of the pro-
posed model we also perform an evaluation on the
OntoNotes dataset (Gillick et al., 2014). In this
case, we apply the standard binary cross-entropy
loss, since fine-grained labels are scarce in this
dataset. Following previous work (Xiong et al.,
2019), we train over the dataset augmented by Choi
et al. (2018). Results for the three granularities for
BASE and LARGE models are presented in Table 6.
The hyperbolic models outperform the Euclidean
baselines in both cases, and the difference is no-
ticeable for fine and ultra-fine (42.0 vs 38.2 and
24.0 vs 18.9 on Macro F1 for the LARGE model),
in accordance with the results on Ultra-Fine.

We report a comparison with neural systems in
Table 7. The hyperbolic model, without requir-
ing the explicit hierarchy provided in this dataset,
achieves a competitive performance. Nonetheless,
the advantages of the hyperbolic model are miti-
gated by the low multiplicity of fine-grained labels,
and the lower hierarchy.

7 Related Work

Type inventories for the task of fine-grained entity
typing (Ling and Weld, 2012; Yosef et al., 2012)
have grown in size and complexity (Del Corro et al.,
2015; Choi et al., 2018). Researchers have tried
to incorporate hierarchical information on the type
distribution in different manners (Shimaoka et al.,
2016; Ren et al., 2016a). Shimaoka et al. (2017)
encode the hierarchy through a sparse matrix. Xu

Model Acc. Ma-F1 Mi-F1
Shimaoka et al. (2017) 51.7 70.9 64.9
AFET (Ren et al., 2016a) 55.1 71.1 64.7
PLE (Ren et al., 2016b) 57.2 71.5 66.1
BERT 51.8 76.6 69.1
MULTITASK 59.5 76.8 71.8
LABELGCN 59.6 77.8 72.2
HY LARGE 47.4 75.8 69.4

Table 7: Total accuracy, macro and micro F1 scores on
OntoNotes test set.
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and Barbosa (2018) model the relations through a
hierarchy-aware loss function. Xiong et al. (2019)
derive a graph from type co-occurrence statistics
in the dataset. Experimental evidence suggests that
our model encodes similar hierarchical information
without the need to provide it explicitly.

Hyperbolic representations have been employed
for Question Answering (Tay et al., 2018), in Ma-
chine Translation (Gulcehre et al., 2019), and mod-
eling language (Dhingra et al., 2018; Tifrea et al.,
2019). We build upon the hyperbolic neural layers
introduced in Ganea et al. (2018), and develop the
missing components to perform, not binary, but
multi-class multi-label text classification. We test
the proposed model not with a synthetic dataset,
but on a concrete downstream tasks, such as entity
typing. Our work resembles López et al. (2019) and
Chen et al. (2019), though they separately learn em-
beddings for type labels and text representations in
hyperbolic space, whereas we do it in an integrated
fashion.

8 Conclusions

Incorporating hierarchical information from the
label inventory into neural models has become crit-
ical to improve performance. Hyperbolic spaces
are an exciting approach since they are naturally
equipped to model hierarchical structures. How-
ever, previous work integrated isolated components
into neural systems. In this work we propose a fully
hyperbolic model and showcase its effectiveness
on challenging datasets. Our hyperbolic model
automatically infers the latent hierarchy from the
class distribution, captures implicit hyponymic re-
lations in the inventory and achieves a performance
comparable to state-of-the-art systems on very fine-
grained labels with a remarkable reduction of the
parameter size. This emphasizes the importance
of choosing a metric space suitable to the data dis-
tribution as an effective inductive bias to capture
fundamental properties, such as hierarchical struc-
ture.

Moreover, we illustrate ways to integrate dif-
ferent components with Euclidean layers, show-
ing their strengths and drawbacks. An interesting
future direction is to employ hyperbolic represen-
tations in combination with contextualized word
embeddings. We release our implementation with
the aim to ease the adoption of hyperbolic compo-
nents into neural models, yielding lightweight and
efficient systems.

Acknowledgments

This work has been supported by the German Re-
search Foundation (DFG) as part of the Research
Training Group Adaptive Preparation of Informa-
tion from Heterogeneous Sources (AIPHES) under
grant No. GRK 1994/1 and the Klaus Tschira Foun-
dation, Heidelberg, Germany.

References
Abhishek Abhishek, Ashish Anand, and Amit Awekar.

2017. Fine-grained entity type classification by
jointly learning representations and label embed-
dings. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
797–807, Valencia, Spain. Association for Compu-
tational Linguistics.

Gary Bécigneul and Octavian-Eugen Ganea. 2019. Rie-
mannian adaptive optimization methods. In 7th
International Conference on Learning Representa-
tions, ICLR, New Orleans, LA, USA.

James W. Cannon, William J. Floyd, Richard Kenyon,
and Walter R. Parry. 1997. Hyperbolic Geometry,
volume 31. Flavors of Geometry.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure
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A Basics of Riemannian Geometry

Manifold: a n-dimensional manifoldM is a space
that can locally be approximated by Rn. It general-
izes the notion of a 2D surface to higher dimensions.
More concretely, for each point x onM, we can
find a homeomorphism (continuous bijection with
continuous inverse) between a neighbourhood of x
and Rn.

Tangent space: the tangent space TxM at a point
x on M is a n-dimensional hyperplane in Rn+1

that best approximatesM around x. It is the first
order linear approximation.

Riemannian metric: A Riemannian metric g =
(gx)x∈M on M is a collection of inner-products
gx : TxM× TxM → R varying smoothly with
x on tangent spaces. Riemannian metrics can be
used to measure distances on manifolds

Riemannian manifold: is a pair (M, g), where
M is a smooth manifold and g = (gx)x∈M is a
Riemannian metric.

Geodesics: γ : [0, 1] → M are the generaliza-
tions of straight lines to Riemannian manifolds,
i.e., constant speed curves that are locally distance
minimizing. In the Poincaré disk model, geodesics
are circles that are orthogonal to the boundary of
the disc as well as diameters.

Parallel transport: defined as Px→y : TxM →
TyM, is a linear isometry between tangent spaces
that corresponds to moving tangent vectors along
geodesics. It is a generalization of translation to
non-Euclidean geometry, and it defines a canonical
way to connect tangent spaces.

B Möbius Operations

Möbius scalar multiplication: for x ∈ Dn\{0}
the Möbius scalar multiplication by r ∈ R is de-
fined as:

r ⊗ x = tanh(r tanh−1(‖x‖)) x

‖x‖ (11)

and r ⊗ 0 := 0. By making use of the exp and log
maps, this expression is reduced to:

r ⊗ x = exp0(r log0(x)), ∀r ∈ R, x ∈ Dn

(12)

Exponential and logarithmic maps: The map-
ping between the tangent space and hyperbolic
space is done by the exponential map expx :
TxDn → Dn and the logarithmic map logx : Dn →

TxDn. They are given for v ∈ TxDn\{0} and
y ∈ Dn\{0}, y 6= x:

expx(v) = x⊕
(
tanh

(
λx‖v‖

2

)
v

‖v‖

)
logx(y) =

2

λx
tanh−1(‖ − x⊕ y‖) −x⊕ y‖ − x⊕ y‖

(13)

These expressions become more appealing when
x = 0, that is, at the origin of the space. It can be
seen that the matrix-vector multiplication formula
is derived from M ⊗ y = exp0(M log0(y)). The
point y ∈ Dn is mapped to the tangent space T0Dn,
the linear mapping M is applied in the Euclidean
subspace, and finally the result is mapped back
into the ball. A similar approach holds for the
Möbius scalar multiplication and the application of
pointwise non-linearity functions to elements in the
Poincaré ball (see Ganea et al. (2018), Section 2.4).
Parallel transport with exp and log maps: By
applying the exp and log maps the parallel trans-
port in the Poincaré ball for a vector v ∈ T0Dn to
another tangent space TxDn, is given by:

P0→x(v) = logx(x⊕ exp0(v)) =
λ0

λx
v (14)

This result is used to define and optimize the
ak = (λ0/λpk)a

′
k in the Hyperbolic MLR (Ap-

pendix E)

C Hyperbolic Gated Recurrent Unit

To encode the context we apply a hyperbolic ver-
sion of gated recurrent units (GRU) (Cho et al.,
2014) proposed in Ganea et al. (2018):

rt = σ (log0(W
r ⊗ ht−1 ⊕ Ur ⊗ xt ⊕ br))

zt = σ (log0(W
z ⊗ ht−1 ⊕ Uz ⊗ xt ⊕ bz))

h̃t = tanh⊗((Wdiag(rt))⊗ ht−1 ⊕ U ⊗ xt ⊕ b)

ht = ht−1 ⊕ diag(zt)⊗ (−ht−1 ⊕ h̃t)

(15)

where W ∈ RdS×dS , U ∈ RdS×n, xt ∈ Dn and
b ∈ DdS (superscripts are omitted). rt is the reset
gate, zt is the update gate, diag(x) denotes a diag-
onal matrix with each element of the vector x on
its diagonal, and σ is the sigmoid function.

D Distance-based Attention

D.1 Formulation
In Equation 9 we calculate the Lorentz factors for
each point xi. The Lorentz factors are given by:

γ(x) =
1√

1− ‖x‖2
(16)
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In the case of Gulcehre et al. (2019), the ap-
plication of the Einstein midpoint (Ungar, 2010,
Theorem 4.4) requires the mapping of the points
onto the Klein model. By applying the Möbius
midpoint, we avoid this mapping, and achieve an at-
tention mechanism that operates only in one model
of hyperbolic space.

D.2 Experimental Observations
To obtain the weights for the attention mechanism,
initially Equation 8 was given by:

α(qi, ki) = f(−βdD(qi, ki)− c) (17)

We experimented with replacing f for sigmoid and
softmax functions. We found better performance
with the latter one. Moreover, empirical observa-
tion lead us to remove the c value, since it con-
verged to zero in all experiments. We believe that
the biases bQ and bK from Equation 8 compensate
for this c.

D.3 Queries and Keys
To further analyze the attention mechanism we plot
the query qi and key ki points of Equation 8 for
both models in Figure 5. It must be recalled that
the shorter the distance between points, the higher
the attention weight that the word gets assigned.
Furthermore, we observed that the attention gets
prominently centered on the mention in both mod-
els, assigning very low weights on the rest of the
words in the context.

In the Euclidean space we can clearly distinguish
the two clusters which make the distance-based
attention to give very low weights on most words
of the context. The small red cluster on the top
right of the image belongs to points corresponding
to words in the mention span. These words get
projected very close to the key vector, in order to

(a) Euclidean Space. (b) Hyperbolic Space.

Figure 5: Queries (red) and keys (blue) projected in 2D
for different spaces.

minimize the distance and increase the attention
weight.

On the hyperbolic model, the queries get clus-
tered at the bottom of the plot, whereas the keys
are the points adjusting the distance to define the
weight on each word.

E Multinomial Logistic Regression

E.1 Hyperbolic MLR
The original formula from Ganea et al. (2018) for
MLR in the Poincaré ball, given K classes and
k ∈ {1, ...,K}, pk ∈ Dn, ak ∈ TpkDn\{0}, the
formula for the hyperbolic MLR is:

p(y = k|x) ∝

f

(
λcpk‖ak‖√

c
sinh−1

(
2
√
c〈−pk ⊕ x, ak〉

(1− c‖ − pk ⊕ x‖2)‖ak‖

)) (18)

Where x ∈ Dn, pk and ak are trainable parame-
ters, and c is a parameter in relation to the radius
of the Poincaré ball r = 1/

√
c which in this work

we assume to be c = 1, hence it is omitted of the
formulations. Since ak ∈ TpkDn and therefore
depends on pk, it is unclear how to perform opti-
mization. The solution proposed by Ganea et al.
(2018) is to re-express it as:

ak = P0→pk(a
′
k) =

λ0

λpk
a′k (19)

where a′k ∈ T0Dn = Rn. In this way we can opti-
mize a′k as a Euclidean parameter. Finally, when
we use a′k instead of ak, the formula for the MLR
is:

p(y = k|x) ∝

f

(
2‖a′k‖ sinh−1

(
2〈−pk ⊕ x, a′k〉

(1− ‖ − pk ⊕ x‖2)‖a′k‖

)) (20)

E.2 Euclidean MLR
The Euclidean formulation of the MLR is given by:

p(y = k|x) ∝ f(4〈−pk ⊕ x, ak〉) (21)

This equation arise from taking the limit of c→ 0
in Equation 18. In that case, f(4〈−pk ⊕ x, ak〉) =
f((λ0pk)

2〈−pk ⊕ x, ak〉) = f(〈−pk ⊕ x, ak〉0).

F Experimental Details

For the context-GRU we use tanh as non-linearity
to establish a fair comparison against the classi-
cal GRU (Cho et al., 2014). On the char-RNN
we use the identity (no non-linearity). The MLR
is fed with the final representation achieved by
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the concatenation of mention and context features:
concat(M,C,S) ∈ Dm with m = dM + dC +
2dS .

In the XLARGE model, we use the Euclidean
encoder in all experiments given time constraints.

Hyperparameters: Both hyperbolic and Eu-
clidean models were trained with the hyperparame-
ters detailed in Table 8.

Dropout: We apply low values of dropout given
that the model was very sensitive to the this param-
eter. We consider this a logical behaviour since the
distances in hyperbolic space grow exponentially
with the norm of the points, making the model very
responsive to this parameter.

Numerical Errors: they appear when the norm
of the hyperbolic vectors is very close to 1 or 0.
To avoid them we follow the recommendations re-
ported on Ganea et al. (2018). The result of hyper-
bolic operations is always projected in the ball of ra-
dius 1− ε, where ε = 10−5. When vectors are very
close to 0, they are perturbed with an ε = 10−15

before they are used in any of the above opera-
tions. Finally, arguments of the tanh function are
clipped between ±15, while arguments of tanh−1

are clipped in the interval [−1+10−15, 1−10−15].
Finally, and by recommendations of the Geoopt
developers (Kochurov et al., 2020), we operate on
floating point of 64 bits.

Initialization: we initialize character and posi-
tional embeddings randomly from the uniform dis-
tribution U(−0.0001, 0.0001). In the case of the
hyperbolic model, we map them into the ball with
the exp0 map. We initialize all layers in the model
using Glorot uniform initialization.

Exponential and logarithmic map: In the case of
the Glove embedding ablation (Section 6.1.1), we
used the 100d version, trained over Wikipedia and
Gigaword4. By directly applying the logarithmic
map, the embeddings were projected close to the
border of the ball, making the model very unstable.
To overcome this, we use a parameter c described
in Ganea et al. (2018) to adjust the radius of the
ball, which helps to project the embeddings closer
to the origin of the space.

Hardware: All experiments for the hyperbolic and
Euclidean models were performed using 2 NVIDIA
P40 GPUs, with the batch sizes specified in Table 8.

4http://nlp.stanford.edu/data/glove.6B.
zip

Parameter Value

Batch size BASE 900
Batch size LARGE 350
Batch size XLARGE 160
BASE dM 40
BASE dC 20
BASE dS 20
BASE dM + dC + 2dS 100
LARGE dM 100
LARGE dC 50
LARGE dS 50
LARGE dM + dC + 2dS 250
XLARGE dM 200
XLARGE dC 100
XLARGE dS 100
XLARGE dM + dC + 2dS 500
Mention non-linearity tanh
Context non-linearity tanh
Epochs 40
Crowd cycles 5
Input dropout 0.2
Concat dropout 0.1
Learning rate 0.0005
Weight decay 0.0
Max. gradient norm 5

Table 8: Hyperparameters of the models.

G Closest Types

We report the points pk learned by the model to de-
fine the hyperplanes of Equation 10. Table 9 shows
the types corresponding to the closest points, mea-
sured by their hyperbolic distance dD (see Eq 1),
to the coarse labels. We observe that the types are
highly correlated given that they often co-occur in
the same context.

H More Experimental Observations

Text vectors norms: By “text vector” we refer
the concatenated vector of the context, mention
and char-level mention representations before the
MLR layer. We report the average norm of this
vectors per training epoch, for the 20D Euclidean
and hyperbolic model on Figure 6. The norm of
the vectors of the hyperbolic model are measured
according to the hyperbolic distance dD (see Equa-
tion 1). That is, we take the hyperbolic distance
from the origin to the point, thus the values are
above one. The norm of the Euclidean model is
measured according to the Euclidean norm. We

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
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Figure 6: Norm of text vectors for the Euclidean and
hyperbolic model. The hyperbolic norm is measured as
the hyperbolic distance dD from the origin to the point,
hence the values can be greater than 1.

observe that both models learn to reduce the norm
of the vectors, and it is noticeable that the conver-
gence value for the Euclidean model is higher than
for the hyperbolic model.



475

organization institution firm group unit division
Types dD Types dD Types dD Types dD Types dD Types dD

institution 0.34 firm 0.24 business 0.23 unit 0.34 division 0.26 subsidiary 0.25
company 0.35 company 0.26 institution 0.24 gathering 0.34 theatre 0.28 unit 0.26
news agency 0.36 university 0.26 company 0.25 subject 0.34 activist 0.28 track 0.28
business 0.38 operator 0.28 maker 0.27 administration 0.36 position 0.28 half 0.28
administration 0.40 maker 0.28 operator 0.28 affiliation 0.36 half 0.28 activist 0.29

location state country place space half
Types dD Types dD Types dD Types dD Types dD Types dD

state 0.33 country 0.29 state 0.31 space 0.40 half 0.28 peak 0.26
cemetery 0.35 half 0.31 nation 0.31 localization 0.40 shopping mall 0.29 operator 0.26
space 0.35 agency 0.31 agency 0.32 place name 0.40 venue 0.29 theatre 0.26
half 0.35 activist 0.32 kingdom 0.34 close 0.41 landmark 0.30 placement 0.26
area 0.36 unit 0.32 world 0.35 birthplace 0.41 localization 0.30 summit 0.26

event conflict war time duration calendar
Types dD Types dD Types dD Types dD Types dD Types dD

conflict 0.44 war 0.34 guerrilla 0.32 duration 0.40 calendar 0.30 date 0.22
activist 0.45 dispute 0.36 conflict 0.34 period 0.43 peak 0.31 phrase 0.25
election 0.45 series 0.37 military 0.35 length 0.46 half 0.32 second 0.26
activity 0.46 guerrilla 0.38 citizen 0.36 month 0.46 second 0.32 activist 0.27
holiday 0.46 future 0.38 situation 0.36 date 0.46 fantasy 0.32 need 0.28

object machine computer entity separation placement
Types dD Types dD Types dD Types dD Types dD Types dD

machine 0.37 computer 0.29 version 0.29 separation 0.43 placement 0.27 position 0.25
arrangement 0.39 theatre 0.30 machine 0.30 relative 0.44 missionary 0.27 localization 0.26
medium 0.39 operator 0.30 communication 0.30 meaning 0.44 meaning 0.27 half 0.26
method 0.39 card game 0.31 activist 0.31 warlord 0.45 variation 0.27 separation 0.27
representation 0.39 core 0.31 maker 0.32 baseball 0.45 phrase 0.27 winner 0.27

Table 9: Closest pk points in the Poincaré Ball to coarse entity types, with their hyperbolic distance. In many cases,
a hierarchical relation holds with the closest type. For example: firm is-a institution is-a organization.


