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Abstract

Understanding images and text together is an
important aspect of cognition and building ad-
vanced Artificial Intelligence (AI) systems. As
a community, we have achieved good bench-
marks over language and vision domains sep-
arately, however joint reasoning is still a chal-
lenge for state-of-the-art computer vision and
natural language processing (NLP) systems.
We propose a novel task to derive joint infer-
ence about a given image-text modality and
compile the Visuo-Linguistic Question An-
swering (VLQA) challenge corpus in a ques-
tion answering setting. Each dataset item con-
sists of an image and a reading passage, where
questions are designed to combine both vi-
sual and textual information i.e., ignoring ei-
ther modality would make the question unan-
swerable. We first explore the best existing
vision-language architectures to solve VLQA
subsets and show that they are unable to rea-
son well. We then develop a modular method
with slightly better baseline performance, but
it is still far behind human performance. We
believe that VLQA will be a good benchmark
for reasoning over a visuo-linguistic context.
The dataset, code and leaderboard is available
at https://shailaja183.github.io/vlqa/.

1 Introduction

Question answering (QA) is a crucial way to eval-
uate the system’s ability to understand text and
images. In recent years, a large body of natural lan-
guage QA (NLQA) datasets and visual QA (VQA)
datasets have been compiled to evaluate the ability
of a system to understand text and images. For
most VQA datasets, the text is used merely as a
question-answering mechanism rather than an ac-
tual modality that provides contextual information.
On the other hand, deriving inference from com-
bined visual and textual information is an important
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Figure 1: Example of Visuo-Linguistic Question An-
swering (VLQA) task for joint reasoning over image-
text context.

skill for humans to perform day-to-day tasks. For
example, product assembly using instruction man-
uals, navigating roads while following street signs,
interpreting visual representations (e.g., charts) in
various documents such as newspapers and reports,
understanding concepts using textbook-style learn-
ing, etc. The importance of joint reasoning has
also been emphasized in the design of standard-
ized / psychometric tests like PISA (OECD, 2019)
and GRE1, as evident from Figure 2. PISA as-
sessments conducted post 2018 take into account
“the evolving nature of reading in digital societies-
which requires an ability to compare, contrast and
integrate information from multiple sources”. The
GRE has ‘data interpretation’ questions that assess
a student’s ability to “analyze given data as a com-
bination of text and charts.”

Both the aforementioned evidence motivate the
need to develop Visuo-Linguistic QA (VLQA) sys-
tem, posing a further challenge to state-of-the-art

1https://www.oecd.org/pisa/, https://www.ets.org/gre/

https://shailaja183.github.io/vlqa/
https://www.oecd.org/pisa/
https://www.ets.org/gre/
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Figure 2: Examples of joint-reasoning questions in standardized tests2(boldface represents correct answer)

vision and language research. There are no bench-
marking datasets that focus on reasoning over both
images and text to our best knowledge. We for-
malize the task of deriving joint inference, where
a system must utilize both visual and textual infor-
mation to correctly answer the question, as demon-
strated in Figure 1. To create a benchmark for
this task, we develop and present a new dataset:
VLQA (Visuo-Linguistic Question Answering)3

as our main contribution. VLQA dataset consists
of text together with a diverse range of visual el-
ements. Since manuals, documents and books
containing texts and visuals are ubiquitous, the
VLQA dataset is very much grounded in the real
world. The dataset is curated from multiple re-
sources (books, encyclopedias, web crawls, exist-
ing datasets, etc.) through combined automated
and manual efforts. The dataset consists of 9267
image-passage-QA tuples with detailed annotation,
which are meticulously crafted to assure its quality.

We then evaluate the best existing vision-
language architectures with respect to our VLQA
dataset. This includes LXMERT (Tan and Bansal,
2019), VL-BERT (Lu et al., 2019), ViLBERT (Su
et al., 2019) and VisualBERT (Li et al., 2019). Our
results demonstrate that despite a significant im-
provement over vision and language tasks sepa-
rately, the best existing techniques cannot reason
well on the joint tasks. We then propose a modu-
lar method HOLE (HOpping and Logical Entail-
ment), which demonstrates slightly better baseline
performance and offers more transparency for the

2Often, additional text and question are combined in stan-
dardized tests, but we segregate them into Passage and Ques-
tion for the ease of processing and structured dataset design.

3Creation of VLQA is purely research-oriented; By re-
ferring standardized tests as an inspiration, comparison with
professional organizations like ETS or OECD is not intended.

interpretation of intermediate outputs. The results
indicate that VLQA task is relatively harder com-
pared to existing vision-language tasks due to di-
versity of figures and additional textual component,
demanding the need of better approaches to tackle
multi-modal question answering. The VLQA chal-
lenge thus has the potential to open new research
avenues spanning language and vision.

2 Related Work

We identify Image-Text Multi-modality, Multi-hop
Reasoning and variants of Visual Question Answer-
ing (VQA) closest to VLQA and compare with
relevant datasets in these areas (refer Appendix A.1
for comprehensive comparison with more datasets).

2.1 Image-Text Multi-modality
Multimodal learning aims to build models that
can process and relate information from two or
more modalities. Image-Text multi-modality has
received growing interest from the Artificial Intel-
ligence (AI) community recently. Diagram QA
component of TQA (Kembhavi et al., 2017) and a
portion of AI2D (Kembhavi et al., 2016) with ad-
ditional text are most relevant to ours. They share
similarities with VLQA in terms of the presence of
additional text, diagram style images and QA style
evaluation, but there are important distinctions.

First, TQA uses long lessons (⇠50 sentences and
4-5 images) to describe concepts in textbook-style
learning, whereas text passages for subsets of AI2D
and VLQA are short (1-5 sentences). The goal of
TQA aligns with the careful selection of neces-
sary facts from the long-tailed contexts, which is
perhaps less important in VLQA as the context is
much smaller. At the same time, AI2D aims at AI-
based diagram understanding. Contrary to that, we
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focus on enhancing the capability of AI models for
joint reasoning. Secondly, AI2D and TQA are cu-
rated from the school science curriculum whereas,
we have a broader horizon of possible reasoning.
Lastly, TQA and AI2D do not impose that one
must use both modalities while answering, unlike
VLQA. For TQA, one can answer 40% of text QA
using a single sentence and 50% of diagram QA
using the only image. In that case, a significant por-
tion of the dataset becomes analogous to machine
comprehension or ordinary VQA, losing out on the
actual purpose of multi-modality.

2.2 Multi-Hop Reasoning
In the natural language processing (NLP) domain,
multi-hop reasoning is proposed to encourage the
development of models that can reason about two
or more textual contexts. QAngaroo (Welbl et al.,
2018) and ComplexWebQuestions (Talmor and Be-
rant, 2018) include multi-hop questions that can
be answered by linking entities from a knowledge
base (KB). HotpotQA (Yang et al., 2018) is a multi-
hop benchmark over pairs of text paragraphs from
wikipedia, not being constrained by retrieval from
fixed KB schemas. QASC (Khot et al., 2019)
dataset made this task further challenging, which
first requires to retrieve necessary facts from a large
corpus (knowledge ranking) and compose them to
answer a multi-hop question.

Solving VLQA examples requires linking infor-
mation from image and text. Therefore, VLQA
can be considered a novel kind of multi-hop task
involving images and text, which we believe will
drive future vision-language research.

2.3 Visual Question Answering (VQA)
Followed by the success of the VQA dataset (Antol
et al., 2015), several variants of visual QA have
been proposed. The following are most relevant;

Reasoning-based VQA Reasoning-based VQA
datasets aim at measuring a system’s capability to
reason about a set of objects, their attributes and
relationships. HowManyQA (Trott et al., 2017) and
TallyQA (Acharya et al., 2019) have object count-
ing questions over images. SNLI-VE (Xie et al.,
2019), VCOPA (Yeo et al., 2018) focus on causal
reasoning whereas CLEVR (Johnson et al., 2017),
NLVR (Suhr et al., 2017) target spatial reasoning.
FigureQA (Kahou et al., 2017), DVQA (Kafle et al.,
2018) are testbeds for QA over charts/plots. The ob-
jective of VLQA is to equip AI models with diverse

reasoning capabilities over the image-text context.
A model solving VCR (Zellers et al., 2019) dataset
first answers a question in VQA style, then needs
to provide a rationale explaining why the answer is
true. Therefore, items in VCR could be turned to
particular VLQA data items. However, images in
VCR are much more specific than ours e.g., they
do not have charts, diagrams, or multiple images.
Also, the rationale selection is limited to ‘Why’
questions, not so in VLQA. We identify 10 broad
reasoning categories needed to solve VLQA, which
is described in Section 3.3.

Knowledge-based VQA There are several
vision-language tasks that require additional
knowledge beyond the provided image and text.
F-VQA (Wang et al., 2018), KB-VQA (Wang
et al., 2015) and KVQA (Shah et al., 2019) rely
on retrieving commonsense or world-knowledge
from a Knowledge Base (KB), whereas OK-VQA
(Marino et al., 2019) is related to open-ended
knowledge extraction from the web. In VLQA,
61% of samples require commonsense or domain
knowledge, which is not explicitly stated in
image-text context. Knowledge extraction for
VLQA is kept open-ended as of now.

3 VLQA Dataset

We formally define the VLQA task, explain our
approach to curate this dataset and necessary mea-
sures for quality assurance below;

3.1 Task Overview

A datapoint in VLQA is a 4-tuple <I, P, Q, A>;

Image(I) It is provided imagery, which ranges
from daily life scenes, a variety of data represen-
tations to complex diagrams. A portion of VLQA
examples also requires reasoning over multiple im-
ages. For the simplicity of processing and retrieval,
we compose all images into a single file. Each
image is bounded by a red box and provided an
explicit detection tag ([0],[1],..) for identification
purposes, inspired by VCR (Zellers et al., 2019) an-
notations. This also provides a convenient way to
reference images in passage, question, or answers.

Passage(P) It is a textual modality that provides
additional contextual information related to the im-
age. The passages in VLQA dataset is composed
of 1-5 sentences, which consists of facts, imaginary
scenarios or their combination.
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Example 1 Example 2 Example 3

Figure 3: Examples from VLQA Train Set. Each example contains image, corresponding text passage and
Multiple Choice Question (MCQ) with correct answer choice highlighted by the boldface. Further, each sample is
classified based on image type, answer type, knowledge/reasoning type and human annotated difficulty level.
(For more examples, refer to A.4 or visit dataset webpage

Question(Q) It is a question in natural language
that tests the reasoning capability of a model over
a given image-passage context. In addition to stan-
dard ‘Wh’ patterns and fact-checking style (True/-
False), some questions in VLQA are of ‘do-as-
directed’ form, similar to standardized tests.

Answer Choices(A) VLQA is formed as a classi-
fication task over 2-way or 4-way plausible choices,
with exactly one of the candidate answers being cor-
rect. Answer choices may contain boolean, alpha-
numeric phrases, image tags or their combination.

Task Given the VLQA dataset as a collection of
4-tuple <I, P, Q, A> as shown in Figure 3, the
task is to build an AI model that can answer a
given question using image-text multi-modal con-
text. The correctness of the prediction is measured
against the ground-truth answer. Additionally, we
provide rich annotations and classification on sev-
eral aspects such as image types, question types,
required reasoning capability and need for external
knowledge. However, this metadata is optional and
useful for researchers interested in tackling specific
subsets of VLQA.

3.2 Constructing VLQA

3.2.1 Data Collection

The main goal of our work is to collect a QA dataset
that requires to derive joint inference from image-
text modality. We classify our data sources as Pri-
mary and Secondary;

We obtain raw textual/visual information
through primary sources, which can be later used as
a modality in VLQA. For example, text crawls from
wikipedia containing facts or images crawled by
keyword-search can be used as passage and image
respectively. Similarly, we collect tabular data from
CIA ‘world factbook’ (Central Intelligence Agency,
2019), WikiTables (Pasupat and Liang, 2015) and
convert them into templated figures like bar charts,
pie charts, scatter plots, etc. We consider existing
structured or semi-structured materials as a sec-
ondary data source, which can be quickly manipu-
lated to use for our purpose; educational materials,
standardized tests, and existing vision-language
datasets are important. We used scrapers to collect
textbook exercises, encyclopedias, practice work-
sheets and question banks. Further, we obtained a
subset of interesting samples from existing datasets
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Figure 4: VLQA data creation process: collect data using primary and secondary sources, then perform post-
processing (if any), then finally create question-answers that require joint reasoning.

such as RecipeQA (Yagcioglu et al., 2018), Wik-
iHow (Koupaee and Wang, 2018), PhysicalIQA
(Bisk et al., 2019), ART (Bhagavatula et al., 2019)
and TQA (Kembhavi et al., 2017).

We then refactor textual/ visual information col-
lected from the above sources and mold it as per
our task requirements. Figure 4 illustrates this
process. Refactoring includes manual or semi-
automated post-processing such as replacing given
textual/visual attributes with equivalent visual/tex-
tual counterparts, adding/removing partial informa-
tion to/from text or visuals, and creating factual
or hypothetical situations around images. Then
we standardize all information collected the us-
ing above methods as Multiple Choice Questions
(MCQ) and get the initial version of the dataset.

Since we impose the condition that a question
must be answered through joint reasoning over both
the modalities, our annotation process becomes
non-trivial and requires careful manual annotation.
We opted for a limited number of in-house expert
annotators for quality purposes rather than a noisier
hard-to-control crowdsourcing alternative.

3.2.2 Ensuring dataset integrity
A combined understanding about visual and textual
inputs is a key aspect of the VLQA task. As we
model it as a classification task, some models might
exploit various biases in the dataset to get good per-
formance without proper reasoning. To discourage
such models, we employ 3-level verification over
the full dataset to ensure the quality.

Firstly, for all collected image-passage pairs, hu-
man annotators quickly verify if a portion of image
and passage represent identical information. All
such image-passage pairs are discarded from the

dataset. Secondly, we create 3 baselines- question-
only, passage-only and image-only which ignore at
least one modality (among image and passage) and
try to predict answers. We repeat this experiment 3
times by shuffling answer choices with a fixed seed.
We remove samples that are answered correctly by
any unimodal baseline in all trials.

Finally, we perform another round of manual
quality checks. We instruct workers first to answer
a question based only on image(s) and then try to
answer a question based only on the text passage.
If a question can be answered using a single modal-
ity, we suggest annotators to mark the checkbox.
Finally, we look over all bad samples and either
provide a fix or remove, on a case-by-case basis.
(refer Appendix A.2 for detailed explanation on
dataset creation process)

3.3 VLQA Dataset Analysis
In this section we analyze VLQA on following
aspects; Table 1 provides a summary of relevant
statistics.

Multi-modal Contexts The final version of the
VLQA dataset has 9267 unique image-passage-
QA items. For each item, the multi-modal con-
text is created by pairing images (roughly 10k col-
lected) with the relevant text passages (roughly 9k
retrieved or manually written).

Text-length Analysis We provide analysis about
lengths of various textual components in our
dataset i.e., passages, questions and answers.
Length of each textual component is calculated
by counting the tokens separated by whitespaces
and then averaged out across the dataset. The aver-
age passage length of 34.1 tokens indicates that in
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VLQA textual contexts are relatively smaller than
Reading Comprehension tasks and in most cases, it
contains precise context necessary for the joint rea-
soning. The average question length of 10.0 tokens
is larger compared to most other VQA datasets
provided in (Hudson and Manning, 2019). Shorter
answer lengths (1.7 tokens) suggest that most of
the dataset questions have short answers, which
provides inherent flexibility if someone wants to
leverage generative models to solve this task. The
dataset has a vocabulary size of 13259, contributed
by all three textual components together.

Image types We categorize images in VLQA
into 3 major kinds: Natural Images, Template-
based Figures and Free-form Figures. Natural im-
ages incorporate day-to-day scenes around us, con-
taining abundant objects and actions. Template-
based figures are visuals that follow a common
structure for information representation. We further
categorize template-based figures into 20 sub-types
like bar, pie, maps, tables, cycles, processes, etc.
The images which neither fit in any templates nor
are natural have been put into a free-form category
(e.g., science experiments, hypothetical scenarios,
etc.). In VLQA, it is also possible that the visual
context has multiple related images to reason about.

Answer types 4-way or 2-way image MCQ con-
tains 4 and 2 images as plausible answer choices
respectively, where the model needs to correctly
pick the image best described by the passage and
question. 4-way or 2-way text MCQ contains 4 and
2 alphanumeric text as plausible answer choices re-
spectively, where the model needs to reason about
given image-text scenario and pick the most likely
answer to the question. 4-way Sequencing task
assesses a model’s capability to order 4 spatial or
temporal events represented as a combination of
images and text. Binary Classification (Yes/No or
True/False) can be considered a fact-checking task
where we want to determine the truth value of a
question provided image-passage context.

Knowledge and Reasoning types 61% of
VLQA items are observed to incorporate some
commonsense or domain knowledge beyond the
provided context. This missing knowledge has
to be retrieved through the web. The remaining
39% samples can be answered through a simple
join of information from visuo-linguistic context.
We observe the following 10 most-frequent rea-
soning types needed to solve VLQA questions;

conditional retrieval, math operations, deduction,
temporal, spatial, causal, abductive, logical, and
verbal reasoning. We further categorize VLQA
samples based on whether it requires a single-step
or multi-step inference to answer the question. By
multi-step inference, we mean that answering a
question involves more than one reasoning types.

Measure Stats.

Multimodal Context
Total #Images 10209
#Unique Text Passages 9156
#Questions 9267

Text-length Analysis
Avg. Passage Length 34.1
Avg. Question Length 10.0
Avg. Answer Length 1.7
Vocabulary Size 13259

Image types
Natural Images 4445
Templated Figures 3920
Free-form Figures 1854

Answer types
4-way image MCQ 1172
4-way text MCQ 4647
4-way Sequencing 1088
2-way image MCQ 1088
Binary Classification (T/F or Yes/No) 1272

Knowledge/Reasoning types
No Ext. Knowledge required 3145
Ext. Knowledge+Single-step Inference 2783
Ext. Knowledge+Multi-step Inference 2939

Difficulty Level (human annotated)
Easy 4188
Moderate 2943
Hard 2136

Dataset Split
Train (80%) 7413
Test (10%) 927
Validation (10%) 927

Table 1: VLQA Statistics and Diversity (MCQ is mul-
tiple choice questions, Ext. is External).

Difficulty Level Determining difficulty levels is
a subjective notion therefore, we asked an odd num-
ber of annotators to rate VLQA items as ‘easy’,
‘moderate’, or ‘hard’ based on their personal opin-
ion. Then we take a majority vote of all annotators
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to assign difficulty level to each question.

Dataset Splits VLQA contains 9267 items in
<I,P,Q,A> format, with detailed classification
based on figure types, answer types, reasoning
skills, requirement of external knowledge and dif-
ficulty levels as explained above. The data is split
in train-test-val (80-10-10%), ensuring the uniform
distribution based on the above taxonomies. To
preserve the integrity of the test results, we do not
release the test set publicly. Note that the use of the
metadata for model design is completely optional.

4 Benchmarking

Human Performance We performed human
evaluation on 927 test samples with a balanced
variety of questions by image types, answer types,
knowledge/reasoning types and hardness. First, we
ask 3 in-house experts to take tests in isolation.
We also ask them to rate questions based on the
difficulty levels (easy/medium/hard) and an option
to mark a dataset sample ‘ambiguous’. Then we
match their predictions against ground-truth an-
swers, which turned out to be 84%.

Random Baseline VLQA dataset contains 4-
way and 2-way multiple choice questions (MCQs)
where each answer choice is likely to be picked
with 25% and 50% chance. Based on the answer-
type distribution provided in Table 1, the perfor-
mance of the random baseline is 31.36%.

Question-only, Passage-only and Image-only
Baselines We use three unimodal baselines only
for automated quality assurance of VLQA data
(and do no not train) to prevent models from ex-
ploiting bias in data. Question-only, Passage-only
and Image-only models are implemented using
RoBERTa (Liu et al., 2019) finetuned on ARC
(Clark et al., 2018), ALBERT (Lan et al., 2019)
finetuned on RACE and LXMERT (Tan and Bansal,
2019) finetuned on VQA (Antol et al., 2015) respec-
tively. We report the poor performance of these
baselines over resulting VLQA data to indicate the
need for joint reasoning over multi-modal context.

Best Existing Architectures Recently, several
attempts have been made to derive transformer-
based pre-trainable generic representations for
visuo-linguistic tasks. We pick top-performing
single-model architectures VL-BERT (Su et al.,
2019), VisualBERT (Li et al., 2019), ViLBERT (Lu
et al., 2019) and LXMERT (Tan and Bansal, 2019)

that support Visual Question Answering (VQA)
downstream task. For the VQA task, the input is
an image and a question. To finetune VQA style
models with VLQA data, we compose all images
into one (in case of multiple images) as a single
visual input, and concatenate Passage and Question
as a single language input. Hyperparameters and
Performance of all 4 architectures is reported in 2
and 3 respectively.

Model and Hyperparameters

VisualBERT
Ft VQA: EP=20, BS=256, LR=1e-4, WD=1e-4
Ft VLQA: BS=16, LR=2e-5, EP=15

VL-BERT
Ft VQA: BS=32, LR=2e-5, EP=10
Ft VLQA: BS=16, LR=1e-5, EP=10

ViLBERT
Ft VQA: BS=32, LR=1e-5, EP=20, WR=0.1
Ft VLQA: BS=32, LR=1e-5, EP=10

LXMERT
Ft VQA: BS=32, LR=5e-5, EP=4
Ft VLQA: BS=16, LR=5e-5, EP=8

Table 2: Manual finetuning of best existing architures
with VQA followed by VLQA (BS-Batch Size, EP-
Epochs, LR-Learning Rate, WD-Weight Decay, WR-
Warmup Ratio, Ft.-Manual Finetuning)

5 Fusion of HOpping and Logical
Entailment (HOLE) to solve VLQA

We propose ‘HOLE’- a fusion of modality HOp-
ping (Image-to-passage hop and Passage-to-Image
hop) and Logical Entailment as a modular baseline
for VLQA, shown in Figure 5. We leverage ‘answer
types’ metadata from the annotations and learn a
simple 5-class classifier (‘4-way Image’, ‘2-way
Image’, ‘4-way Sequencing’, ‘Binary Classifica-
tion’ or ‘4-way Text’) in order to decide between
modality hopping and logical entailment. Note that
our model is not end-to-end.

5.1 Modality Hopping based Solver
4-way text MCQ are solved using modality hop-
ping approach (lower half pipeline in Figure 5). We
first compute Image-to-Question Attention (I2Q)
and Passage-to-Question Attention (P2Q) scores to
determine which modality is important as a start-
ing point for solving a question. I2Q is computed
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Figure 5: Proposed HOLE method to solve VLQA: Based on the answer type classification, a dataset item is solved
as a sequence of Logical Entailment operations or performs Hopping between modalities to find the correct answer.

using Stacked Attention Network (SAN) (Yang
et al., 2016), which takes Convolution Neural Net-
work (CNN) encoding of I and Q. Whereas, P2Q
is computed using a variant of Bi-Directional At-
tention Flow (BIDAF) (Seo et al., 2016) trained
using Embeddings from Language Models (ELMo)
(Peters et al., 2018) over Long-Short Term Memory
(LSTM) encoding of Q and P.

A higher I2Q score suggests that Q has more
overlap with I than P. Therefore, image modality
should be used first and then incorporate passage to
compute the answer. This is termed as an ‘Image-
to-Passage Hop’. This is identical to a Visual Ques-
tion Answering (VQA) scenario that takes an image
and a question as input. Since we have P as an addi-
tional text component, we combine passage (P+Q).
This is implemented through pre-trained architec-
ture LXMERT (Tan and Bansal, 2019) which is
state-of-the-art on VQA that picks the most likely
answer choice as a correct answer.

Similarly, a higher P2Q score suggests that Q
has more overlap with P than I. Therefore, passage
modality should be used first and then incorporate
image to compute the answer. This is termed as
a ‘Passage-to-Image Hop’. This can be achieved
by a machine comprehension model followed by a
VQA model. We use ALBERT (Lan et al., 2019)
as a machine comprehension model which takes in
P and Q to generate an open-ended response in the
style of SQuAD (Rajpurkar et al., 2016), which we
refer to as A’. Now we want to determine where is
A’ located in the image I. Therefore, we formulate
a new question Q’ as “Where is A’?”, where A’
is substituted by the answer from ALBERT. We

then use LXMERT (Tan and Bansal, 2019) that
takes image I, new question Q’ and original answer
choices A to pick the most likely one.

5.2 Logical Entailment based Reasoner
4 For all other answer types, we leverage Logical
Entailment (upper half pipeline in 5) of image and
text to answer questions. We create an ‘Entailment
Toolbox’ which consists of image-image, image-
text (Xie et al., 2019), text-image and textual en-
tailment (Khot et al., 2018) sub-modules and use
them as required. For image-image and image-text
entailment, we augment Visual COPA (Yeo et al.,
2018) dataset and train custom network for both.
(refer Supplementary Material B for more details)

4-way or 2-way image MCQ contains images
as an answer choice, which is similar to an Image
Selection task (Hu et al., 2019). The goal here is to
identify an image that best matches the description
of P or mathematically, determine P ` Ak (i.e.,
text-image entailment) with maximum score. Ak

represents answer choices where k=4 and k=2 for
4-way and 2-way image problems respectively.

Binary Classification can be considered as a
fact-checking task where we want to determine the
truth value of a question provided image-passage,
or mathematically, P [ I ` Q. We use textual
entailment to determine P ` Q and image-text en-
tailment to determine I ` Q. If both entailment
modules’ confidence score is above 0.65 then it is
determined as True, otherwise False.

4` is the symbolic representation of entailment
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4-way Sequencing task assesses a model’s capa-
bility to order 4 spatial or temporal events. If we
consider I-II-III-IV as a sequence of events, it is
equivalent to 3 entailment tasks: I-II, II-III, and
III-IV, where each I to IV can be an image or a text.
Among the answer choices, the sequence with max-
imum overall confidence is selected as an answer.

6 Results & Discussion

Multi-modality brings both pros and cons while
developing new Artificial Intelligence (AI) bench-
marks. The presence of multiple modalities provide
natural flexibility for varied inference tasks, simul-
taneously making the reasoning process more com-
plex as information is now spanned across them
and requires cross-inferencing. In this work, we
focused on joint reasoning over image-text multi-
modal context and developed a Visuo-Linguistic
Question Answering (VLQA) Dataset. Our pro-
posed VLQA dataset has important distinctions
from existing VQA datasets. Firstly, it incorpo-
rates a text passage that contains additional contex-
tual information. Secondly, it offers various figure
types including natural images, templated images
and free-form images (unstructured), which is not
so common for other VQA datasets. Thirdly, it
tests diverse reasoning capabilities, including cross-
inferencing between visual and textual modalities.

We then use several baselines and benchmark
their performance over the resulting VLQA dataset.
As VLQA has multiple choice questions with ex-
actly one correct answer, we use standard accu-
racy as an evaluation metric. From the results in
3, we can observe that pre-trained vision-language
models fail to solve a significant portion of the
VLQA items. Our proposed modular method
HOLE slightly outperforms them and is more in-
terpretable for analysis. We also report the perfor-
mance of Question-only, Image-only and Passage-
only baselines which we used for quality check.
The poor performance of these baselines indicate
that the VLQA dataset requires models to jointly
understand both image and text modalities and is
relatively harder than other vision-language tasks.

For human evaluation of the VLQA test-set, the
reported accuracy is 84.0%. For 148 wrongly pre-
dicted answers, we group them according to 4 rea-
sons for failures, which are listed in 4. The results
demonstrate a room for significant improvement
in existing vision-language models that are far be-
hind the human performance. This stimulates the

Method Test(%) Val(%)

Human 84.00 –

Random 31.36 31.36

Question-only: RoBERTaARC 28.56 29.42
Passage-only: ALBERTRACE 30.16 30.25
Image-only: LXMERTV QA 29.48 30.56

Vision-Language
VL-BERT 35.92 34.60
VisualBERT 33.17 34.17
ViLBERT 34.70 35.25
LXMERT 36.41 37.82

HOLE (Proposed Model) 39.63 40.08

Table 3: Performance benchmarks over test-set of
VLQA task and corresponding validation results

Underlying reason for incorrect
answer provided by test-taker

#incorrect/148
(%incorrect)

Lacked necessary knowledge 27 (18.2%)
Misunderstood the provided info 47 (31.7%)
Mistake in deduction/calculation 63 (42.5%)
Felt that data item is ambiguous 11 (7.4%)

Table 4: Classification of incorrectly predicted an-
swers in Human-evaluation of VLQA test-data

need for more complex reasoning capabilities of
AI models. We suspect that VLQA questions that
purely rely on facts might be exploited by the latest
language models, despite strong measures taken
through manual and automated quality control dur-
ing the creation of the dataset. We would like to
explore this further in the future.

7 Conclusion

In this work, we introduced the Visuo-Linguistic
Question Answering (VLQA) challenge that we
believe has the potential to open new research av-
enues in areas of joint vision & language. Our
experiments show that a system equipped with
state-of-the-art vision-language pre-training does
not perform well on the task that requires joint
image-text inference. There is a room for signif-
icant improvement in capability of these models
to tackle multi-modal contexts. Our future work
would include further expansion of this dataset and
building generic AI models that can learn novel
visual concepts from a small set of examples.
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