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Abstract

Pooling-based recurrent neural architectures
consistently outperform their counterparts
without pooling on sequence classification
tasks. However, the reasons for their enhanced
performance are largely unexamined. In this
work, we explore three commonly used pool-
ing techniques (mean-pooling, max-pooling,
and attention1), and propose max-attention, a
novel variant that captures interactions among
predictive tokens in a sentence. Using novel
experiments, we demonstrate that pooling ar-
chitectures substantially differ from their non-
pooling equivalents in their learning ability
and positional biases: (i) pooling facilitates
better gradient flow than BiLSTMs in initial
training epochs, and (ii) BiLSTMs are biased
towards tokens at the beginning and end of
the input, whereas pooling alleviates this bias.
Consequently, we find that pooling yields large
gains in low resource scenarios, and instances
when salient words lie towards the middle of
the input. Across several text classification
tasks, we find max-attention to frequently out-
perform other pooling techniques.2

1 Introduction

Pooling mechanisms are ubiquitous components
in Recurrent Neural Networks (RNNs) used for
natural language tasks. Pooling operations consoli-
date hidden representations from RNNs into a sin-
gle sentence representation. Various pooling tech-
niques, like mean-pooling, max-pooling, and atten-
tion, have been shown to improve the performance
of RNNs on text classification tasks (Lai et al.,
2015; Conneau et al., 2017). Despite widespread
adoption, precisely how and when pooling benefits
the models is largely under-explored.

1Attention aggregates representations via a weighted sum,
thus we consider it under the umbrella of pooling in this paper.

2Code and data is made available at https://github.com/dair-
iitd/PoolingAnalysis.

In this work, we perform an in-depth analysis
comparing popular pooling methods, and proposed
max-attention, with standard BiLSTMs for several
text classification tasks. We identify two key fac-
tors that explain the benefits of pooling techniques:
learnability, and positional invariance.

First, we analyze the flow of gradients for differ-
ent classification tasks to assess the learning ability
of BiLSTMs (§ 5). We observe that the gradients
corresponding to hidden representations in the mid-
dle of the sequence vanish during the initial epochs.
On training for more examples, these gradients
slowly recover, suggesting that the gates of stan-
dard BiLSTMs require many examples to learn. In
contrast, we find the gradient norms in pooling-
based architectures to be free from this problem.
Pooling enables a fraction of the gradients to di-
rectly reach any hidden state instead of having to
backpropagate through a long series of recurrent
cells. Thus we hypothesize, and subsequently con-
firm, that pooling is particularly beneficial for tasks
with long input sequences.

Second, we explore the positional biases of BiL-
STMs, with and without pooling (§ 6). Across
several classification tasks, and various novel ex-
perimental setups, we expose that BiLSTMs are
less responsive to tokens towards the middle of the
sequence, when compared to tokens at the begin-
ning or the end of the sequence. However, we find
that this bias is largely absent in pooling-based ar-
chitectures, indicating their ability to respond to
salient tokens regardless of their position.

Third, we propose max-attention, a novel pool-
ing technique, which combines the advantages of
max-pooling and attention (§ 3.2). Max-attention
uses the max-pooled representation as its query
vector to compute the attention weights for each
hidden state. Max-pooled representations are ex-
tensively used in the literature to capture promi-
nent tokens (or objects) in a sentence (or an im-

https://github.com/dair-iitd/PoolingAnalysis
https://github.com/dair-iitd/PoolingAnalysis
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age) (Zhang and Wallace, 2015; Boureau et al.,
2010b). Therefore, using them as a query vector
effectively captures interactions among salient por-
tions in the input. Max-attention is simple to use,
and yields performance gains over other pooling
methods on several classification setups.

2 Related Work

Pooling: A wide body of work compares the per-
formance of different pooling techniques in object
recognition tasks (Boureau et al., 2010a,b, 2011)
and finds max-pooling to generally outperform
mean-pooling. However, pooling in natural lan-
guage tasks is relatively understudied. For some
text classification tasks, pooled recurrent architec-
tures (Lai et al., 2015; Zhang and Wallace, 2015;
Johnson and Zhang, 2016; Jacovi et al., 2018; Yang
et al., 2016a), outperform CNNs and BiLSTMs.
Additionally, for textual entailment tasks, Conneau
et al. (2017) find that max-pooled representations
better capture salient words in a sentence. Our
work extends the analysis and examines several
pooling techniques, including attention, for BiL-
STMs applied to natural language tasks. While past
approaches assess the ability of pooling in captur-
ing linguistic phenomena, to the best of our knowl-
edge, we are the first to systematically study the
training advantages of various pooling techniques.

Attention: First proposed as a way to align tar-
get tokens to the source tokens in translation (Bah-
danau et al., 2014), the core idea behind attention—
learning a weighted sum of the hidden states—has
been widely adopted. As attention aggregates hid-
den representations, we consider it under the um-
brella of pooling. Recently, Pruthi et al. (2020)
conjecture that attention offers benefits during train-
ing; our work explains, and provides empirical evi-
dence to support the speculation.

Gradient Propagation: Vanilla RNNs are
known to suffer from the problem of vanishing
and exploding gradients (Hochreiter, 1991; Bengio
et al., 1994). In response, Hochreiter and
Schmidhuber (1997) invented LSTMs, which
provide a direct connection passage through all
the cells in order to remember new inputs without
forgetting prior history. However, recent work
suggests that LSTMs do not solve this problem
completely (Arjovsky et al., 2015; Chandar et al.,
2019). Our work quantitatively investigates this
phenomenon, exposing scenarios where the effect

is pronounced, and demonstrating how pooling
techniques mitigate the problem, leading to better
sample efficiency, and generalization.

3 Methods

3.1 Background and Notation

Let s = {x1, x2, . . . , xn} be an input sentence,
where xt is a representation of the input word at
position t. A recurrent neural network such as
an LSTM produces a hidden state ht, and a cell
state ct for each input word xt, where ht, ct =
φ(ht−1, ct−1, xt). Standard BiLSTMs concatenate
the first hidden state of the backward LSTM, and
the last hidden state of the forward LSTM for
the final sentence representation: semb = [

−→
hn,
←−
h1].

The sentence embedding (semb) is further fed to a
downstream text classifier. For training BiLSTMs,
multiple works have emphasized the importance
of initializing the bias for forget gates to a high
value (between 1-2) to prevent the model from for-
getting information before it learns what to for-
get (Gers et al., 2000; van der Westhuizen and
Lasenby, 2018). Hence, in our analysis, we ex-
periment with both a high and low value of bias
for the forget gate. For the non-pooled BiLSTM,
we initialize the forget gate bias to 1, unless speci-
fied. For brevity, from hereon we would use ht to
mean [

−→
ht ,
←−
ht ]. Below, we formally discuss popular

pooling techniques:

Max-pooling: For a max-pooled BiLSTM
(MAXPOOL), the sentence embedding semb, is:

siemb = max
t∈(1,n)

(hit)

where hit represents the ith dimension of the hidden
state corresponding to the word at position t. This
implies that while backpropagating the loss, we
find a direct pathway to the tth hidden state as:

∂siemb

∂hit
=

{
1, if t = argmaxt∈(1,n) h

i
t

∂hik
∂hit

, if k = argmaxt∈(1,n) h
i
t, k 6= t

Similarly, in mean-pooling (MEANPOOL), semb is
an average over all the hidden states.3

Attention: Attention (ATT) works by calculating
a non-negative weight for each hidden state that
together sum to 1. Hidden representations are then

3Refer to Appendix A.3 for the mathematical formulation.
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Figure 1: A pictorial overview of the pooling techniques. Left: element-wise mean and max pooling operations
aggregate hidden representations. Right: attention scores (α) are computed using the similarity between hidden
representations (h) and query vector (q), which are subsequently used to weight hidden representations. Our
proposed max-attention uses the sentence embedding from max-pooling as a query to attend over hidden states.

multiplied with these weights and summed, result-
ing in a fixed-length vector (Bahdanau et al., 2014;
Luong et al., 2015):

αt =
exp(h>t q)∑n
j=1 exp(h

>
j q)

; semb =

n∑
t=1

αtht

where q is a learnable query vector. Several varia-
tions like hierarchical attention (Yang et al., 2016b),
self-attention (Madasu and Rao, 2019) have been
proposed for text classification. However, the
above formulation (referred in literature as “Luong
attention”) is most widely used in text classifica-
tion tasks (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019; Pruthi et al., 2020).

3.2 Max-attention

We introduce a novel pooling variant called max-
attention (MAXATT) to capture inter-word depen-
dencies. It uses the max-pooled hidden representa-
tion as the query vector for attention. Formally:

qi = max
t∈(1,n)

(hit); ĥt = ht/‖ht‖

αt =
exp(ĥt

>
q)∑n

j=1 exp(ĥj
>
q)
; semb =

n∑
t=1

αtht

It is worth noting that the learnable query vector
in Luong attention is the same for the entire cor-
pus, whereas in max-attention each sentence has a
unique locally-informed query. Previous literature
extensively uses max-pooling to capture the promi-
nent tokens (or objects) in a sentence (or image).
Hence, using max-pooled representation as a query
for attention allows for a second round of aggrega-
tion among important hidden representations.

3.3 Transformers
We briefly experiment with transformer architec-
tures (Vaswani et al., 2017; Devlin et al., 2018),
and observe that purely attention-based architec-
tures perform poorly on text-classification without
significant pre-training. Further, the memory foot-
print for transformers isO(n2) vsO(n) for LSTMs.
Thus, for long examples used in some of our ex-
periments (∼ 4000 words), XL-Net (Yang et al.,
2019) runs out of memory even for a batch size of
1 on a 32GB GPU.

We observe that CLS-based text classification
with pretrained transformers (such as RoBERTa
(Liu et al., 2019)) results in near state-of-art perfor-
mance. Alternate classification techniques using
pooled feature representations result in a marginal
difference in performance (∼ 0.2% on IMDB senti-
ment analysis). Pooling does not benefit transform-
ers as they do not suffer from vanishing gradients
and positional biases which pooling helps to mit-
igate in LSTMs (§ 5,§ 6). Therefore, we limit the
scope of this work to recurrent architectures.

4 Datasets & Experimental Setup

We experiment with four different text classifica-
tion tasks: (1) The IMDb dataset (Maas et al.,
2011) contains movie reviews and their associated
sentiment label; (2) Yahoo! Answers (Zhang et al.,
2015) dataset comprises 1.4 million question and
answer pairs, spread across 10 topics, where the
task is to predict the topic of the answer, using the
answer text; (3) Amazon reviews (Ni et al., 2019)
contain product reviews from the Amazon website,
filtered by their category. We construct a 20-class
classification task using these reviews4; (4) Yelp

4Appendix B.1 contains further details about the dataset.
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Reviews (Zhang et al., 2015) is another sentiment
polarity classification task.

For these datasets, we only use the text and la-
bels, ignoring any auxiliary information (like title
or location). We select subsets of the datasets with
sequences having greater than 100 words to bet-
ter understand the impact of vanishing gradients
and positional bias in recurrent architectures. A
summary of statistics is presented in Table 1.

Dataset Classes Avg.
Length

Max
Length

Train
Size

Test
Size

IMDb 2 240.4 2470 20K 9.8K
Yahoo! Answers 10 206.2 998 25K 4.8K
Amazon Reviews 20 185.6 500 25K 12.5K
Yelp Reviews 2 202.4 1000 25K 9.5K

Table 1: Corpus statistics for classification tasks.

In all the experiments, we use a single-layered
BiLSTM with hidden dimension size of 256 and
embedding dimension size of 100 (initialized with
GloVe vectors (Pennington et al., 2014) trained on
a 6 billion word corpus). The sentence embeddings
generated by the BiLSTM are passed to a final
classification layer to obtain per-class probability
distributions. We train our models using Adam
optimizer (Kingma and Ba, 2014), with a learning
rate of 2 × 10−3. The batch size is set to 32 for
all the experiments. We train for 20 epochs and
select the model with the best validation accuracy.
All experiments are repeated over 5 random seeds
using a single GPU (Tesla K40).5

5 Gradient Propagation

In this section, we study the flow of gradients in
different architectures and training regimes. Pool-
ing techniques used in conjunction with BiLSTMs
provide a direct gradient pathway to intermediate
hidden states. However for BiLSTMs without pool-
ing, it is crucial that the parameters for the input,
output, and forget gates are appropriately learned
so that the loss backpropagates across long input
sequences, without the gradients vanishing.

Experimental Setup: In order to quantify the ex-
tent to which the gradients vanish across different
word positions, we compute the gradient of the
loss function w.r.t the hidden state at every word
position t, and study their `2 norm (‖ ∂L∂ht ‖). To ag-
gregate the gradients across multiple training exam-

5Further details to aid reproducibility are in the Ap-
pendix B.2.

ples (of different lengths), we linearly interpolate
the distribution of gradient values for each example
to a fixed length between 1 and 100. The gradient
values at each (normalized) position are averaged
across all the training examples. We plot these
values (on a log scale) after training on the first
500 IMDb reviews to study the effect of gradient
vanishing at the beginning of training (Figure 2a).

To understand how the distribution of gradients
(across word positions) changes with the number
of training batches, we compute the ratio of the gra-
dient norm corresponding to the word at the middle
and word at the end: ‖ ∂L

∂hmid
‖ / ‖ ∂L

∂hend
‖.6 We call

this the vanishing ratio and use it as a measure to
quantify the extent of vanishing (where lower val-
ues indicate severe vanishing). Each training batch
on the x-axis in Figures 2b, 2c corresponds to 64
training examples.

Results It is evident from Figure 2a that the gra-
dients vanish significantly for BiLSTM, with ‖ ∂L∂ht ‖
falling to the order of 10−6 as we approach the mid-
dle positions in the sequence. This effect is even
more pronounced for the case of BiLSTMLowF,
which uses the Xavier initialization (Glorot and
Bengio, 2010) for the bias of the forget-gate. The
plot suggests that specific initialization of the gates
with best practices (such as setting the bias of
forget-gate to a high value) helps to reduce the
extent of the issue, but the problem still persists. In
contrast, none of the pooling techniques face this
issue, resulting in an almost straight line.

Additionally, from Figure 2b we note that the
problem of vanishing gradients is more pronounced
at the beginning of training, when the gates are
still untrained. The problem continues to persist,
albeit to a lesser degree, until later in the training
process. This specifically limits the performance
of BiLSTM in resource-constrained settings, with
fewer training examples. For instance, in the 1K
training data setting, BiLSTM has an extremely
low value of vanishing ratio (∼ 10−3) at the 200th

training batch (denoted by red vertical line in the
plot), when it achieves nearly 100% accuracy on
the training data.7

Consequently, the BiLSTM model (prematurely)
achieves a high training accuracy, solely based on
the starting and ending few words, well before
the gates can learn to allow the gradients to pass

6Implementation detail: we choose the left end, as some
sequences in a batch might be padded with zeros on the right.

7Refer to Appendix C for plots of other pooling techniques.
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(c) MAXATT

Figure 2: (a): The gradient norm (‖ ∂L
∂ht
‖) across different word positions. BiLSTMLowF suffers from extreme

vanishing of gradients, with the gradient norm in the middle nearly 10−15 times that at the ends. In contrast,
pooling methods result in gradients of nearly the same value, irrespective of the word position. (b), (c): The
vanishing ratio (‖ ∂L

∂hmid
‖/‖ ∂L

∂hend
‖) over training batches for BiLSTM and MAXATT, using 1K, 20K unique training

examples from the IMDb dataset. The respective training and validation accuracies are also depicted.

Vanishing ratio Validation acc.

1K 5K 20K 1K 5K 20K

BiLSTM 5×10−3 0.03 0.06 64.9 82.8 88.4
MEANPOOL 2.5 0.56 1.32 78.4 82.6 88.5
MAXPOOL 0.40 0.42 0.53 78.0 84.7 89.6
ATT 3.87 1.04 1.19 77.1 84.6 90.0
MAXATT 0.69 0.69 0.64 78.1 86.0 90.2

Table 2: Values of vanishing ratio as computed when
different models achieve 95% training accuracy, along
with the best validation accuracy for that run.

through (and mitigate the vanishing gradients prob-
lem). Further reduction in vanishing ratio is unable
to improve validation accuracy, due to saturation in
training. To examine this more closely, we tabulate
the vanishing ratios at the point where the model
reaches 95% accuracy on the training data in Ta-
ble 2. A low value at this point indicates that the
gradients are still skewed towards the ends, even
as the model begins to overfit on the training data.
The vanishing ratio is low for BiLSTM, especially
in low-data settings. This results in a 13-14% lower
test accuracy in the 1K data setting, compared to
other pooling techniques. We conclude that the phe-
nomenon of vanishing gradients results in poorer
performance of BiLSTMs. Encouragingly, pooling
methods do not exhibit low vanishing ratios, right
from the beginning of training, leading to perfor-
mance gains as demonstrated in the next section.

6 Positional Biases

Analyzing the gradient propagation in BiLSTMs
suggests that standard recurrent networks are bi-

ased towards the end tokens, as the overall contribu-
tion of distant hidden states is extremely low in the
gradient of the loss. This implies that the weights
of various parameters in an LSTM cell (all cells of
an LSTM have tied weights) are hardly influenced
by the middle words of the sentence. In this light,
we aim to evaluate positional biases of recurrent
architectures with different pooling techniques.

6.1 Evaluating Natural Positional Biases

Can organically trained recurrent models skip over
unimportant words on either ends of the sentence?

Experimental Setup: We append randomly cho-
sen Wikipedia sentences to the input examples of
two text classification tasks, based on IMDb and
Amazon Reviews, only at test time, keeping the
training datasets unchanged. Wikipedia sentences
are declarative statements of fact, and should not in-
fluence the sentiment of movie reviews, and given
the diverse nature of the Wikipedia sentences it is
unlikely that they would interfere with the few cat-
egories (i.e. the labels) of Amazon product reviews.
Therefore, it is not unreasonable to expect the mod-
els to be robust to such random noise, even though
they were not trained for the same. We perform this
experiment in three configurations, such that orig-
inal input is preserved on the (a) left, (b) middle,
and (c) right of the modified input. For these con-
figurations, we vary the length of added Wikipedia
text in proportion to the length of the original sen-
tence. Figure 4 illustrates the setup when 66% of
the total words come from Wikipedia.
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Figure 3: For models trained on 10K examples, varying amounts of random Wikipedia sentences are appended to
the original IMDb reviews at test time. Original review is preserved on the (a) left; (b) middle; and (c) right of the
modified input. Performance degrades significantly for BiLSTM and MEANPOOL, whereas ATT, MAXPOOL and
MAXATT are more resilient.
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Figure 4: Explaining Wikipedia sentence addition.

Results: The effect of adding random words can
be seen in Figure 3. We draw two conclusions: (1)
Adding random sentences on both ends is more
detrimental to the performance of BiLSTM as com-
pared to the scenario where the input is appended
to only one end.8 This corroborates our previous
findings that these models largely account for in-
formation at the ends for their predictions. (2) We
speculate that paying equal importance to all hid-
den states prevents MEANPOOL from distilling out
important information effectively, making it more
susceptible to random noise addition. On the con-
trary, both max-pooling and attention based archi-
tectures like MAXPOOL, ATT and MAXATT are
significantly more robust in all the settings. This
indicates that max-pooling and attention can help
account for salient words and ignore unrelated ones,
regardless of their position. Lastly, we provide con-
curring results on the Amazon dataset, and exam-
ine the robustness of different models given lesser
training data in Appendix D.

8One practical implication of this finding is that adversaries
can easily attack middle portions of the input text.

6.2 Training to Skip Unimportant Words
How well can different models be trained to skip
unrelated words?

Experimental setup: We create new training
datasets by appending random Wikipedia sentences
to the original input examples of the datasets de-
scribed in § 4, such that 66% of the text of each
new training example comes from Wikipedia sen-
tences (see Figure 4). We experiment with a vary-
ing number of training examples, however, the test
set remains the same for fair comparisons.

Results The results are presented in Table 3.
First, we note that BiLSTM severely suffers when
random sentences are appended at both ends. In
fact, the accuracy of BiLSTM in mid settings drops
to 50%, 12%, 5%, 50% on IMDb, Yahoo, Amazon,
Yelp datasets respectively, which is equal to the
majority class baseline. However, the performance
drop (while large) is not as drastic when sentences
are added to only one end of the text. We speculate
that this is because a BiLSTM is composed of a
forward and a backward LSTM, and when random
sentences are appended to the left, the backward
LSTM is able to capture information about the orig-
inal sentence on the right and vice versa.

Second, while accuracies of all pooling tech-
niques begin to converge given sufficient data, the
differences in low training data regime are substan-
tial. Further, the poor performance of BiLSTM
re-validates the findings of § 5, where we hypothe-
size that the model’s training saturates before the
gradients can learn to reach the middle tokens.9

9Results on more dataset sizes, and the ‘left’ setting are in
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IMDb IMDb (mid) + Wiki IMDb (right) + Wiki

1K 2K 10K 1K 2K 10K 1K 2K 10K

BiLSTM 64.7 ± 2.3 75.0 ± 0.4 86.6 ± 0.8 49.6 ± 0.7 49.9 ± 0.5 50.3 ± 0.3 53.5 ± 2.5 64.7 ± 2.8 85.9 ± 0.5

MEANPOOL 73.0 ± 3.0 81.7 ± 0.7 87.1 ± 0.6 69.8 ± 2.1 76.2 ± 1.0 84.1 ± 0.7 70.0 ± 1.1 76.8 ± 1.0 84.8 ± 0.9

MAXPOOL 69.0 ± 3.9 80.1 ± 0.5 87.8 ± 0.6 64.5 ± 1.8 77.2 ± 2.0 86.0 ± 0.8 65.9 ± 4.6 77.8 ± 0.9 87.2 ± 0.6

ATT 75.7 ± 2.6 82.8 ± 0.8 89.0 ± 0.3 75.0 ± 0.8 79.4 ± 0.8 86.7 ± 1.4 74.7 ± 1.4 80.2 ± 1.8 87.1 ± 1.0

MAXATT 75.9 ± 2.2 82.5 ± 0.4 88.5 ± 0.5 75.4 ± 2.4 80.9 ± 1.8 86.8 ± 0.5 77.9 ± 0.9 81.9 ± 0.5 87.2 ± 0.5

Yahoo Yahoo (mid) + Wiki Yahoo (right) + Wiki

1K 2K 10K 1K 2K 10K 1K 2K 10K

BiLSTM 38.3 ± 4.8 51.4 ± 2.1 63.5 ± 0.6 12.7 ± 1.1 12.7 ± 1.1 11.4 ± 0.8 18.8 ± 2.5 37.3 ± 0.9 60.1 ± 1.5

MEANPOOL 48.2 ± 2.3 56.6 ± 0.5 64.7 ± 0.6 31.9 ± 2.3 43.1 ± 2.0 58.5 ± 0.6 33.9 ± 2.1 43.2 ± 1.0 58.6 ± 0.4

MAXPOOL 50.2 ± 2.1 56.3 ± 1.8 63.9 ± 1.1 33.0 ± 1.0 40.1 ± 1.4 58.4 ± 1.2 33.1 ± 2.5 41.2 ± 0.9 60.9 ± 1.0

ATT 47.3 ± 2.2 54.2 ± 1.1 65.1 ± 1.5 39.4 ± 0.5 45.1 ± 1.8 61.5 ± 1.7 37.9 ± 1.4 47.6 ± 2.3 62.2 ± 0.9

MAXATT 51.8 ± 1.1 57.0 ± 1.1 65.1 ± 1.1 39.6 ± 0.9 48.5 ± 0.6 62.2 ± 1.6 40.3 ± 1.5 50.1 ± 1.6 63.1 ± 0.7

Amazon Amazon (mid) + Wiki Amazon (right) + Wiki

1K 2K 10K 1K 2K 10K 1K 2K 10K

BiLSTM 38.5 ± 4.2 52.7 ± 7.7 76.2 ± 0.7 5.3 ± 0.3 5.4 ± 0.3 5.1 ± 0.4 7.9 ± 0.6 27.9 ± 9.9 70.8 ± 1.5

MEANPOOL 44.8 ± 9.8 55.6 ± 6.4 76.9 ± 0.4 34.4 ± 3.5 52.7 ± 3.5 70.3 ± 1.7 33.3 ± 1.0 48.2 ± 3.4 71.9 ± 0.8

MAXPOOL 49.6 ± 3.9 61.6 ± 2.6 79.1 ± 0.4 17.0 ± 0.7 34.5 ± 2.0 72.8 ± 0.6 17.0 ± 1.7 36.5 ± 3.0 72.4 ± 0.3

ATT 54.1 ± 5.2 61.2 ± 2.9 77.0 ± 0.3 48.0 ± 1.7 59.1 ± 1.8 75.3 ± 0.5 48.9 ± 1.5 58.9 ± 1.3 75.7 ± 0.3

MAXATT 58.2 ± 3.8 65.6 ± 0.9 77.3 ± 0.2 57.7 ± 0.5 63.0 ± 0.8 74.8 ± 0.5 57.8 ± 0.8 63.7 ± 0.8 75.3 ± 0.3

Yelp Yelp (mid) + Wiki Yelp (right) + Wiki

1K 2K 10K 1K 2K 10K 1K 2K 10K

BiLSTM 80.7 ± 4.1 84.9 ± 8.0 93.1 ± 0.1 50.2 ± 0.4 51.1 ± 0.9 51.4 ± 0.7 59.4 ± 3.7 79.6 ± 6.2 92.7 ± 0.4

MEANPOOL 87.1 ± 1.2 87.9 ± 1.7 93.4 ± 0.3 79.2 ± 1.1 86.7 ± 1.0 92.7 ± 0.2 79.4 ± 0.9 87.1 ± 0.6 92.3 ± 0.4

MAXPOOL 84.4 ± 2.0 86.4 ± 5.1 93.4 ± 0.2 81.1 ± 1.5 85.6 ± 0.6 92.5 ± 0.4 80.6 ± 0.8 86.7 ± 0.9 93.2 ± 0.2

ATT 82.5 ± 3.7 85.6 ± 6.5 93.7 ± 0.2 84.4 ± 1.0 89.3 ± 1.0 92.5 ± 0.6 84.8 ± 0.7 89.1 ± 0.9 92.8 ± 0.4

MAXATT 81.3 ± 5.1 86.0 ± 6.3 93.7 ± 0.3 85.1 ± 0.8 89.4 ± 0.5 92.9 ± 0.3 84.1 ± 2.5 89.5 ± 0.7 93.0 ± 0.4

Table 3: Mean test accuracy (± std) (in %) across 5 random seeds. In low-resource settings, MAXATT consistently
outpeforms other pooling variants. The performance of different pooling methods converges with increase in data.

Third, when the number of classes is large (as
in Yahoo and Amazon datasets), we observe a sig-
nificant performance difference between ATT and
MAXATT. We speculate that as the number of la-
bels increase, a single global query vector (as in
ATT) is inadequate to identify important words rel-
evant to each label, whereas a sentence dependent
query (as in MAXATT) mitigates this concern.

Evaluation on Short Sentences Finally, we re-
evaluate this experiment on (new) datasets with
short sentences (< 100 words). Results for the
standard and ‘mid’ settings are presented in Table 4.
Unlike long sequences, where BiLSTM model was
no better than majority classifier (see Table 3), with
shorter sequences, the BiLSTM model performs
better. This result supports our hypothesis that the
effect of vanishing gradients is prominent in longer
sequences.10 Overall, among all the scenarios dis-
cussed in tables 3 and 4, on comparing all pooling

Appendix E.1. Conclusions drawn from the ‘right’ setting are
in line with the observations from the ‘left’.

10Refer to Appendix E.2 for full evaluation.

methods (and BiLSTM) on the basis of their mean
test accuracy, MAXATT is the best performing
model in about 80% cases, ATT in 18% cases.

Datasets with Short Sentences

Yahoo Yahoo (mid) + Wiki

1K 10K 1K 10K

BiLSTM 20.5 ± 2.9 42.4 ± 0.2 9.9 ± 0.7 24.2 ± 0.9

MEANPOOL 23.1 ± 1.8 43.0 ± 0.3 14.9 ± 2.2 32.8 ± 0.8

MAXPOOL 23.0 ± 2.8 43.3 ± 0.4 14.1 ± 2.6 33.8 ± 1.2

ATT 24.3 ± 1.1 43.1 ± 0.2 16.9 ± 3.0 37.6 ± 0.5

MAXATT 25.1 ± 2.2 43.3 ± 0.3 18.2 ± 2.4 37.8 ± 0.8

Amazon Amazon (Mid) + Wiki

1K 10K 1K 10K

BiLSTM 26.6 ± 4.4 54.0 ± 2.6 5.6 ± 0.4 37.9 ± 0.9

MEANPOOL 29.4 ± 4.0 54.4 ± 2.6 10.8 ± 1.9 46.5 ± 0.5

MAXPOOL 33.5 ± 4.5 55.9 ± 2.0 10.6 ± 1.8 47.0 ± 0.9

ATT 36.4 ± 3.7 55.6 ± 0.6 17.4 ± 3.2 49.7 ± 0.3

MAXATT 37.4 ± 3.8 56.2 ± 0.8 17.8 ± 4.6 49.7 ± 0.5

Table 4: Mean test accuracy (± std) (in %) on standard,
‘mid’ settings across 5 random seeds on Yahoo, Ama-
zon datasets with short sentences (< 100 words).
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6.3 Fine-grained Positional Biases

How does the position of a word affect its contribu-
tion to a model’s prediction?

Figure 5: Explaining NWI evaluation.

Experimental Setup: We aim to achieve a fine-
grained understanding of model biases w.r.t. each
word position, as opposed to evaluating the same at
a coarse level (between left, mid and right) as in the
previous experiment (§ 6.2). To this end, we define
Normalized Word Importance (NWI), a metric to
determine the per-position importance of words as
attributed by the model. It measures the importance
of a particular word (or a set of words) on a model’s
prediction by calculating the change in the model’s
confidence in the prediction after replacing it with
UNK. (Figure 5). The evaluation is further extended
by removing a sequence of k consecutive words
to get a smoother metric. The metric is adapted
from past efforts to assign word importance, with
some differences (Khandelwal et al., 2018; Ver-
wimp et al., 2018; Jain and Wallace, 2019).11 We
provide a complete description of the algorithm to
compute NWI in Appendix F, along with further
evaluation on IMDb and Amazon datasets.

Results: The results from this experiment are pre-
sented in Figure 6 (on the Yahoo dataset). The NWI
for architectures with pooling indicate no bias w.r.t.
word position, however for BiLSTM there exists
a clear bias towards the extreme words on either
ends (c.f. Figure 6a). The word importance plots
in Figure 6b & 6c demonstrate how pooling is able
to learn to disambiguate between words that are
important for sentence classification significantly
better as opposed to BiLSTM. There is a clear peak
in the middle in case of ‘mid’ setting, and on the
left in case of ‘left’ setting for all the pooling archi-
tectures. BiLSTM is unable to respond to middle

11Unlike our metric, Khandelwal et al. (2018) remove all
words beyond a certain context, and thus capture how im-
portant are all the removed words, and not one particular
word. Jain and Wallace (2019), in their leave-one-out ap-
proach, delete a given word rather than replacing it with UNK,
thus shifting positions of words by one.

words in Figure 6c. However, they show reasonably
higher importance to the left tokens in Figure 6b
which is justified by their good performance in
the ‘left’ experimental setting in Table 3. Results
for NWI evaluation on all datasets and modified
settings (left, mid and right) are available in Ap-
pendix F, and are consistent with the representative
graphs in Figure 6. We also perform such an anal-
ysis on models that are trained on datasets with
shorter sentences. Interestingly, the NWI analy-
sis for the Yahoo short dataset in Figure 6d shows
that while BiLSTM can better respond to middle
words for shorter sentences, it still remains heavily
biased towards the ends. We detail these findings
in Appendix F.1

7 Discussion & Conclusion

Through detailed analysis we identify why and
when pooling representations are beneficial in
RNNs. While some of the results pertaining to
gradient propagation in pooling-based RNNs may
be obvious in hindsight, we note that this is the first
work to systematically and explicitly analyze the
phenomenon.

1. We attribute the performance benefits of pool-
ing techniques to their learning ability (pool-
ing mitigates the problem of vanishing gradi-
ents), and positional invariance (pooling elimi-
nates positional biases). Our findings suggest
that pooling offers large gains when training
examples are few and long, or when salient
words lie in the middle of the sequence.

2. In § 5, we observe that gradients in BiLSTM
vanish only in initial iterations, but recover
slowly during further training. We link the
observation with training saturation to pro-
vide insights as to why BiLSTMs fail in low-
resource setups but pooled architectures don’t.

3. We show that BiLSTMs suffer from positional
biases even when sentence lengths are as short
as 30 words (Figure 6d).

4. We note that pooling makes models signifi-
cantly more robust to insertions of random
words on either end of the input regardless of
the amount of training data (Figures 3, 8, 9).

5. Lastly, we introduce a novel pooling tech-
nique (max-attention) that combines the bene-
fits of max-pooling and attention and achieves
superior performance on 80% of our tasks.
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Figure 6: Normalized Word Importance w.r.t. word position averaged over examples of length between 400-500
on the Yahoo (25K) dataset in (a,b,c) using k = 5; and NWI for examples of length between 50-60 on the Yahoo
Short (25K) dataset in (d) with k. = 3. Results shown for ‘standard’, ‘left’ & ‘mid’ training settings described in
§ 6.2. The vertical red line represents a separator between relevant and irrelevant information (by construction).

Most of our insights are derived for sequence clas-
sification tasks using RNNs. While our proposed
pooling method and analyses are broadly applica-
ble, it remains a part of the future work to evaluate
its impact on other tasks and architectures.
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Supplementary Material

A Equations for Recurrent Networks

In this section, we provide a mathematical formula-
tion of the equations governing LSTMs and basic
RNNs.

A.1 Basic RNN
Recurrent Neural Networks use a series of input
sequence xt and pass it sequentially over a network
of hidden states where each each hidden state leads
to the next. Mathematically, this is given by:

ht = σ(Uxt +Wht−1 + b)

yt = softmax(V ht + c)

where xt refers to the input sequence at time step t,
and W , U , V are weights for the RNN cell, and σ
is a non-linearity of choice.

A.2 LSTM
The forward propagation of information in a basic
LSTM are governed by the following equations:

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

where at time t, ht is the hidden state, ct is the cell
state, xt is the input, and it, ft, gt, ot are the input,
forget, cell, and output gates, respectively. σ is the
sigmoid function, and * is the Hadamard product.

A.3 MEANPOOL

For a mean-pooled LSTM, while the forward prop-
agation remains the same as BiLSTM, the output
embedding is given by:

siemb =

∑
t∈(1,n) h

i
t

n

where hit represents the ith dimension of the hid-
den state at time step = t, and semb represents the
final output embedding returned by the recurrent
structure. This implies that during backpropagation
we find a direct influence of the tth hidden state as:

∂siemb
∂hit

=

∑
k∈(1,n)

∂hik
∂hit

n

B Datasets and Experimental Settings

B.1 Dataset Extraction

Amazon Reviews The Amazon Reviews Dataset
(Ni et al., 2019) includes reviews (ratings, text,
helpfulness votes) and product metadata (descrip-
tions, category etc.) pertaining to products on the
Amazon website. We extract the product category
and review text corresponding to 2500 reviews
from to each of the following 20 classes:

• Automotive
• Books
• Clothing Shoes and Jewelry
• Electronics
• Movies and TV
• Arts Crafts and Sewing
• Toys and Games
• Pet Supplies
• Sports and Outdoors
• Grocery and Gourmet Food
• CDs and Vinyl
• Tools and Home Improvement
• Software
• Office Products
• Patio Lawn and Garden
• Home and Kitchen
• Industrial and Scientific
• Luxury Beauty
• Musical Instruments
• Kindle Store

In the standard setting, we ensure that all reviews
have lengths between 100 and 500 words.

IMDb The IMDb Movie Reviews Dataset (Maas
et al., 2011) is a popular binary sentiment classifi-
cation task. We take a subset of 20000 reviews that
have length greater than 100 words for the purposes
of experimentation in this paper.

Yahoo Yahoo! Answers (Zhang et al., 2015) has
over 1,400,000 question and answer pairs spread
across 10 classes. We do not use information such
as question, title, date and location for the purpose
of classification. As in the case of Amazon reviews,
in the standard setting, we ensure that all answers
have lengths between 100 and 1000 words, while
in the short sentence setting, the maximum answer
length in the filtered dataset is 100 words.
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(c) MEANPOOL
Figure 7: The vanishing ratio (‖ ∂L

∂hend
‖/‖ ∂L

∂hmid
‖) over training steps for ATT, MAXPOOL, MEANPOOL using 1K,

20K training examples from the IMDb dataset. The respective training and validation accuracies are also depicted.

Yelp Reviews : Yelp Reviews (Zhang et al.,
2015) is a sentiment analysis task with 5 match-
ing classes. For the purposes of experimentation,
we create a subset which is filtered to contain sen-
tences in the range 100 to 1000 tokens. Further,
all reviews with a score of 4 or 5 are maked posi-
tive, while those with a score of 1 or 2 are marked
negative for the binary classification task.

B.2 Reproducibility

Computing Infrastructure For all the experi-
ments described in the paper, we use a Tesla K40
GPUs supporting a maximum of 10GB of GPU
memory. All experiments can be performed on a
single GPU. The brief experimentation done on
transformer models was done using Tesla V100s
that support 32 GB of GPU memory.

Run Time The average run-time for each epoch
varies linearly with the amount of training data and
average sentence length. For the mode with 25K
training data in standard setting (sentences with
greater than 100 words, and no wikipedia words)
the average training time for 1 epoch is under 2
minutes. Further, across all pooling techniques, the
run time varies only marginally.

Number of Parameters The number of param-
eters in the model varies with the vocabulary size.
We cap the maximum vocabulary size to 25,000
words. However, in the 1K training data setting, the
actual vocabulary size is lesser (depending on the
training data). The majority of the parameters of
the model are accounted for in the model’s embed-
ding matrix = (vocabulary size)×(embedding size).
The number of parameters for the main LSTM
model are around 70,000, with the ATT model hav-

ing a few more parameters than other methods due
to a learnable query vector.

Validation Scores We provide validation results
in Table 2 for the standard setting. However, in
interest of brevity, we only detail the test scores in
all subsequent tables. Note that we always select
the model based on the best validation accuracy
during the training process (among all the epochs).

Evaluation Metric The evaluation metric used
is the model’s accuracy on the test set and is re-
ported as an average over 5 different seeds. All
the classes are nearly balanced in the datasets cho-
sen, hence standard accuracy metric serves as an
accurate indicator.

Hyperparameters search An explicit hyperpa-
rameter search is not performed for each model
in each training setting over all seeds, since the
purpose of the paper is not to beat the state of
art, but rather to analyze the effect of pooling in
recurrent architectures. We do note that, in the
manual search performed on the learning rates of
{1× 10−3, 2× 10−3, 5× 10−3} on the IMDb and
Yahoo datasets, we find that for all the pooling and
non-pooling methods discussed, models trained on
learning rate equal to 2 × 10−3 showed the best
validation accuracy. Thus, we use that for all the
following results. However, we do perform a hy-
perparameter search for the best regularization pa-
rameters as described in Appendix E.3. We keep
the embedding dimension and hidden dimension
fixed for all experiments.

C Gradient Propagation

The plots of the change in vanishing ratios for ATT,
MAXPOOL and MEANPOOL are shown in Figure 7.
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Figure 8: Amazon Dataset (10K setting): Random Wikipedia sentences are appended to the original input para-
graphs. Original input is preserved on the (a) left, (b) middle, and (c) right of the new input. Test accuracies are
reported by varying the percentage of total Wikipedia words in the new input.
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Figure 9: IMDb Dataset (BiLSTM): Random Wikipedia sentences are appended to the original input paragraphs
for the standard BiLSTM models trained on 1K, 5K, 10K and 20K examples. Original input is preserved on the
(a) left, (b) middle, and (c) right of the new input. Test accuracies are reported by varying the percentage of total
Wikipedia words in the new input. BiLSTM is unrepsonsive to any appended tokens as long as the ‘left’ text is
preserved in the 1K and 5K setting. But this bias dilutes with more training samples. Given sufficient data (more
than 10K unique examples) the effect of appending random words on both ends is more detrimental than that on
appending at only one end.

This completes the representative analysis for BiL-
STM and MAXATT shown in Figure 2. It can be
seen that for all the different pooling types dis-
cussed in this paper, the vanishing ratios are small
right from the beginning of training. This moti-
vates future research to further formally analyze
and discover other learning advantages (apart from
vanishing ratios) that distinguish the performance
of one pooling technique from the other.

D Evaluating Natural Positional Biases

In line with our results in § 6.1, we further evaluate
models trained on the Amazon dataset in the same
settings to re-validate our results. The effect of
appending random Wikipedia sentences to input

examples on models trained on the Amazon dataset
can be found in Figure 8. We use the model trained
on 10K examples to perform this experiment. The
graphs show similar findings as in Figure 3, and
further supports the hypothesis that BiLSTM gives
a strong emphasis on extreme words when trained
on standard datasets, which is why its performance
significantly deteriorates when random Wikipedia
sentences are appended on both ends.

Effect of Amount of Training Data: Figure 3
suggests that BiLSTM is equally responsive to the
effect of appending random words to the left or
right. However, in case of the Amazon Reviews
dataset (Figure 8), we notice that the BiLSTM is
more resilient when the text to the left is preserved.
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Datasets with Long Sentences

Yahoo Dataset Amazon Dataset

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 38.3 ± 4.8 51.4 ± 2.1 57.4 ± 0.6 63.5 ± 0.6 67.5 ± 0.8 38.5 ± 4.2 52.7 ± 7.7 70.0 ± 0.9 76.2 ± 0.7 81.8 ± 0.3

MEANPOOL 48.2 ± 2.3 56.6 ± 0.5 60.8 ± 0.5 64.7 ± 0.6 68.7 ± 0.6 44.8 ± 9.8 55.6 ± 6.4 71.2 ± 0.9 76.9 ± 0.4 82.0 ± 0.3

MAXPOOL 50.2 ± 2.1 56.3 ± 1.8 61.3 ± 0.9 63.9 ± 1.1 67.0 ± 1.1 49.6 ± 3.9 61.6 ± 2.6 73.9 ± 0.2 79.1 ± 0.4 84.2 ± 0.2

ATT 47.3 ± 2.2 54.2 ± 1.1 61.0 ± 0.5 65.1 ± 1.5 68.2 ± 0.7 54.1 ± 5.2 61.2 ± 2.9 72.0 ± 0.2 77.0 ± 0.3 82.6 ± 0.1

MAXATT 51.8 ± 1.1 57.0 ± 1.1 63.2 ± 0.4 65.1 ± 1.1 68.4 ± 0.6 58.2 ± 3.8 65.6 ± 0.9 72.8 ± 0.5 77.3 ± 0.2 82.4 ± 0.2

Yahoo (left) + Wiki Amazon (left) + Wiki

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 41.4 ± 2.9 51.0 ± 0.5 56.2 ± 1.2 60.9 ± 0.7 64.6 ± 2.0 44.9 ± 0.7 57.0 ± 0.8 68.3 ± 0.9 73.5 ± 0.4 79.6 ± 0.2

MEANPOOL 31.9 ± 1.5 43.3 ± 1.7 51.4 ± 0.9 58.8 ± 0.7 65.1 ± 0.3 31.0 ± 2.1 48.1 ± 1.4 65.0 ± 1.4 70.8 ± 1.2 79.1 ± 0.8

MAXPOOL 33.6 ± 0.9 42.3 ± 1.4 52.7 ± 2.0 60.7 ± 0.9 66.0 ± 1.0 19.2 ± 1.9 42.5 ± 3.5 68.5 ± 2.6 76.8 ± 0.6 82.1 ± 0.5

ATT 37.3 ± 0.5 47.2 ± 2.2 57.6 ± 1.6 62.5 ± 1.0 67.6 ± 0.3 47.6 ± 2.0 59.3 ± 1.1 70.8 ± 0.9 75.6 ± 0.3 81.3 ± 0.3

MAXATT 40.0 ± 0.6 48.7 ± 0.5 59.6 ± 1.4 63.0 ± 1.4 67.2 ± 0.9 56.1 ± 1.3 63.8 ± 1.3 70.3 ± 0.3 75.6 ± 0.2 80.7 ± 0.5

Yahoo (mid) + Wiki Amazon (mid) + Wiki

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 12.7 ± 1.1 12.7 ± 1.1 12.0 ± 0.9 11.4 ± 0.8 13.2 ± 2.2 5.3 ± 0.3 5.4 ± 0.3 5.0 ± 0.1 5.1 ± 0.4 7.8 ± 5.2

MEANPOOL 31.9 ± 2.3 43.1 ± 2.0 50.1 ± 1.6 58.5 ± 0.6 64.9 ± 0.7 34.4 ± 3.5 52.7 ± 3.5 63.4 ± 2.0 70.3 ± 1.7 79.0 ± 0.6

MAXPOOL 33.0 ± 1.0 40.1 ± 1.4 51.0 ± 1.2 58.4 ± 1.2 65.5 ± 0.7 17.0 ± 0.7 34.5 ± 2.0 58.8 ± 0.4 72.8 ± 0.6 80.4 ± 0.3

ATT 39.4 ± 0.5 45.1 ± 1.8 57.0 ± 2.0 61.5 ± 1.7 66.5 ± 0.6 48.0 ± 1.7 59.1 ± 1.8 69.5 ± 0.6 75.3 ± 0.5 81.1 ± 0.2

MAXATT 39.6 ± 0.9 48.5 ± 0.6 58.7 ± 1.5 62.2 ± 1.6 66.5 ± 0.7 57.7 ± 0.5 63.0 ± 0.8 69.8 ± 0.6 74.8 ± 0.5 80.3 ± 0.4

Yahoo (right) + Wiki Amazon (right) + Wiki

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 18.8 ± 2.5 37.3 ± 0.9 52.9 ± 2.1 60.1 ± 1.5 65.4 ± 0.6 7.9 ± 0.6 27.9 ± 9.9 45.8 ± 16.2 70.8 ± 1.5 78.7 ± 0.8

MEANPOOL 33.9 ± 2.1 43.2 ± 1.0 50.6 ± 0.8 58.6 ± 0.4 64.6 ± 0.5 33.3 ± 1.0 48.2 ± 3.4 64.1 ± 0.7 71.9 ± 0.8 78.8 ± 0.2

MAXPOOL 33.1 ± 2.5 41.2 ± 0.9 53.0 ± 3.6 60.9 ± 1.0 66.0 ± 0.7 17.0 ± 1.7 36.5 ± 3.0 64.3 ± 1.5 72.4 ± 0.3 80.2 ± 0.9

ATT 37.9 ± 1.4 47.6 ± 2.3 58.1 ± 1.4 62.2 ± 0.9 67.0 ± 0.3 48.9 ± 1.5 58.9 ± 1.3 69.7 ± 0.6 75.7 ± 0.3 81.1 ± 0.3

MAXATT 40.3 ± 1.5 50.1 ± 1.6 59.3 ± 1.2 63.1 ± 0.7 66.8 ± 0.3 57.8 ± 0.8 63.7 ± 0.8 71.1 ± 0.6 75.3 ± 0.3 80.7 ± 0.5

Table 5: Mean test accuracy (± std) (in %) on different manipulated settings across 5 random seeds on the Yahoo,
Amazon datasets with long sentences (greater than 100 words).

This indicates a learning bias, where the BiLSTM
pays greater emphasis to outputs of one chain of
the bidirectional LSTM. It is interesting to note that
on reducing the training data, this bias increases
significantly in the case of IMDb dataset as well.

We hypothesize that such a phenomenon may
have resulted due to an artifact of the training pro-
cess itself, that is, the model is able to find ‘easily
identifiable’ important sentiment at the beginning
of the reviews during training (speculatively due to
the added effects of padding to the right). There-
fore, given less training data, BiLSTMs prema-
turely learn to use features from only one of the
two LSTM chains and (in this case) the left →
right chain of the dominates the final prediction.
We confirm from Figure 9 that with a decrease in
training data (such as in the 1K IMDb data setting),
the bias towards one end substantially increases,
that is, BiLSTM is extremely insensitive to ran-
dom sentence addition, as long as the left end is
preserved.

Practical Implications We observe that MEAN-
POOL and BiLSTM can be susceptible to changes
in test-time data distribution. This questions the
use of such models in real word settings. We spec-
ulate that paying equal importance to all hidden
states handicaps MEANPOOL from being able to
distil out important information effectively, while
the preceding discussion on the effect of size of
training data highlights the possible cause of this
occurrence in BiLSTM. We observe that other pool-
ing methods like MAXATT are able to circumvent
this issue as they are only mildly affected by the
added Wikipedia sentences.

E Training to Skip Unimportant Words

We demonstrate in § 6.2 that the ability of BiLSTM,
and its different pooling variants, to learn to skip
unrelated words can be greatly diminished in chal-
lenging datasets especially given less amount of
input data. In this section, we aim to (a) provide a
complete evaluation on all positions of data modi-
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Datasets with Long Sentences

IMDb Dataset Yelp Dataset

1K 2K 5K 10K 20K 1K 2K 5K 10K 25K

BiLSTM 64.7 ± 2.3 75.0 ± 0.4 83.2 ± 0.4 86.6 ± 0.8 88.7 ± 0.6 80.7 ± 4.1 84.9 ± 8.0 92.2 ± 0.3 93.1 ± 0.1 94.1 ± 0.3

MEANPOOL 73.0 ± 3.0 81.7 ± 0.7 85.4 ± 0.1 87.1 ± 0.6 88.6 ± 0.3 87.1 ± 1.2 87.9 ± 1.7 92.2 ± 0.4 93.4 ± 0.3 94.4 ± 0.1

MAXPOOL 69.0 ± 3.9 80.1 ± 0.5 85.7 ± 0.2 87.8 ± 0.6 89.9 ± 0.3 84.4 ± 2.0 86.4 ± 5.1 92.2 ± 0.3 93.4 ± 0.2 94.7 ± 0.2

ATT 75.7 ± 2.6 82.8 ± 0.8 86.9 ± 0.7 89.0 ± 0.3 90.3 ± 0.2 82.5 ± 3.7 85.6 ± 6.5 92.6 ± 0.4 93.7 ± 0.2 94.9 ± 0.1

MAXATT 75.9 ± 2.2 82.5 ± 0.4 86.1 ± 0.8 88.5 ± 0.5 89.9 ± 0.2 81.3 ± 5.1 86.0 ± 6.3 92.6 ± 0.2 93.7 ± 0.3 94.8 ± 0.1

IMDb (left) + Wiki Yelp (left) + Wiki

1K 2K 5K 10K 20K 1K 2K 5K 10K 25K

BiLSTM 67.6 ± 1.1 74.7 ± 1.2 80.6 ± 0.3 84.5 ± 0.4 87.2 ± 0.4 81.7 ± 0.5 87.5 ± 0.5 90.7 ± 0.5 92.0 ± 0.3 93.8 ± 0.2

MEANPOOL 69.7 ± 3.4 76.6 ± 0.9 81.7 ± 0.7 83.6 ± 1.0 86.5 ± 0.8 78.1 ± 1.3 87.0 ± 1.1 90.9 ± 0.3 92.5 ± 0.1 93.8 ± 0.2

MAXPOOL 68.8 ± 1.2 76.8 ± 1.7 82.2 ± 0.8 86.9 ± 0.9 88.4 ± 0.5 80.2 ± 1.5 87.5 ± 1.0 91.4 ± 0.2 93.0 ± 0.4 94.3 ± 0.1

ATT 76.5 ± 1.5 79.6 ± 1.1 82.6 ± 0.6 86.9 ± 0.8 88.9 ± 0.5 84.7 ± 1.6 89.5 ± 0.7 92.0 ± 0.2 92.9 ± 0.4 94.4 ± 0.2

MAXATT 75.8 ± 1.5 80.6 ± 1.0 84.1 ± 1.5 87.1 ± 0.6 89.1 ± 0.2 84.7 ± 1.3 89.7 ± 0.6 92.1 ± 0.1 93.1 ± 0.4 94.2 ± 0.4

IMDb (mid) + Wiki Yelp (mid) + Wiki

1K 2K 5K 10K 20K 1K 2K 5K 10K 25K

BiLSTM 49.6 ± 0.7 49.9 ± 0.5 50.2 ± 0.3 50.3 ± 0.3 50.1 ± 0.3 50.2 ± 0.4 51.1 ± 0.9 51.2 ± 0.8 51.4 ± 0.7 51.5 ± 0.5

MEANPOOL 69.8 ± 2.1 76.2 ± 1.0 82.2 ± 0.7 84.1 ± 0.7 86.5 ± 0.8 79.2 ± 1.1 86.7 ± 1.0 90.7 ± 0.3 92.7 ± 0.2 94.0 ± 0.1

MAXPOOL 64.5 ± 1.8 77.2 ± 2.0 82.9 ± 1.2 86.0 ± 0.8 88.4 ± 0.6 81.1 ± 1.5 85.6 ± 0.6 90.7 ± 0.4 92.5 ± 0.4 94.1 ± 0.2

ATT 75.0 ± 0.8 79.4 ± 0.8 83.4 ± 1.0 86.7 ± 1.4 88.8 ± 0.2 84.4 ± 1.0 89.3 ± 1.0 91.8 ± 0.6 92.5 ± 0.6 94.4 ± 0.2

MAXATT 75.4 ± 2.4 80.9 ± 1.8 84.7 ± 1.3 86.8 ± 0.5 88.7 ± 0.4 85.1 ± 0.8 89.4 ± 0.5 91.7 ± 0.7 92.9 ± 0.3 94.3 ± 0.2

IMDb (right) + Wiki Yelp (right) + Wiki

1K 2K 5K 10K 20K 1K 2K 5K 10K 25K

BiLSTM 53.5 ± 2.5 64.7 ± 2.8 79.7 ± 4.3 85.9 ± 0.5 88.5 ± 0.2 59.4 ± 3.7 79.6 ± 6.2 91.7 ± 0.3 92.7 ± 0.4 93.7 ± 0.4

MEANPOOL 70.0 ± 1.1 76.8 ± 1.0 81.8 ± 0.5 84.8 ± 0.9 87.1 ± 0.3 79.4 ± 0.9 87.1 ± 0.6 90.9 ± 0.7 92.3 ± 0.4 93.8 ± 0.3

MAXPOOL 65.9 ± 4.6 77.8 ± 0.9 84.9 ± 0.8 87.2 ± 0.6 89.3 ± 0.3 80.6 ± 0.8 86.7 ± 0.9 91.9 ± 0.5 93.2 ± 0.2 94.5 ± 0.3

ATT 74.7 ± 1.4 80.2 ± 1.8 84.7 ± 1.1 87.1 ± 1.0 89.4 ± 0.3 84.8 ± 0.7 89.1 ± 0.9 92.0 ± 0.4 92.8 ± 0.4 94.3 ± 0.1

MAXATT 77.9 ± 0.9 81.9 ± 0.5 85.2 ± 0.8 87.2 ± 0.5 89.4 ± 0.3 84.1 ± 2.5 89.5 ± 0.7 91.7 ± 0.9 93.0 ± 0.4 94.3 ± 0.1

Table 6: Mean test accuracy (± std) (in %) on different manipulated settings across 5 random seeds on the IMDb,
Yelp Reviews datasets with long sentences (less than 100 words).

fication and dataset size settings (including those
which were skipped in the main paper for brevity);
(b) evaluate the same experiment in a setting where
input examples are shorter in length.

E.1 Full Evaluation

For completeness, we perform the evaluation in
§ 6.2 on each of {1K, 2K, 5K, 10K, 25K} dataset
size settings, and also report the results when
Wikipedia words are appended on the right, preserv-
ing the original input to the left. We report results
for the Yahoo and Amazon datasets in Table 5 and
the IMDb and Yelp Reviews datasets in Table 6. It
can be noted that the advantages of MAXATT over
other pooling and non-pooling techniques signifi-
cantly increase in the three Wikipedia settings in
each of the tables. This suggests that MAXATT per-
forms better in more challenging scenarios where
the important signals are hidden in the input data.
Further, the performance advantages of MAXATT

are more when amount of training data is less.

E.2 Short Sentences

Dataset Classes Avg.
Length

Max
Length

Train
Size

Test
Size

Yahoo! Answers 10 30.1 95 25K 25K
Amazon Reviews 20 29.1 100 25K 12.5K

Table 7: Corpus statistics for classification tasks (short
datasets).

For shorter sequences, we reuse two of our text
classification tasks: (1) Yahoo! Answers; and (2)
Amazon Reviews. Similar to the setting with long
sentences in the main paper, we use only the text
and labels, ignoring any auxiliary information (like
title or location). We select subsets of the datasets
with sequences having a length (number of space
separated words) less than 100. A summary of
statistics with respect to sentence length and corpus
size is given in Table 7.

The results for the performance of the trained
models can be found in Table 8. In the ‘Mid’ set-
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Datasets with Short Sentences

Yahoo Dataset Amazon Dataset

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 20.5 ± 2.9 25.8 ± 3.7 33.1 ± 2.4 42.4 ± 0.2 46.0 ± 0.4 26.6 ± 4.4 37.7 ± 3.4 48.6 ± 2.2 54.0 ± 2.6 61.7 ± 0.2

MEANPOOL 23.1 ± 1.8 28.4 ± 1.5 35.3 ± 1.8 43.0 ± 0.3 46.5 ± 0.4 29.4 ± 4.0 38.2 ± 3.4 49.0 ± 1.8 54.4 ± 2.6 62.0 ± 0.2

MAXPOOL 23.0 ± 2.8 31.2 ± 1.4 37.3 ± 1.9 43.3 ± 0.4 46.8 ± 0.8 33.5 ± 4.5 41.4 ± 3.3 50.8 ± 1.7 55.9 ± 2.0 62.8 ± 0.1

ATT 24.3 ± 1.1 30.7 ± 2.5 36.3 ± 2.0 43.1 ± 0.2 46.4 ± 0.6 36.4 ± 3.7 43.3 ± 1.7 50.9 ± 0.6 55.6 ± 0.6 61.9 ± 0.2

MAXATT 25.1 ± 2.2 30.8 ± 2.6 37.9 ± 1.1 43.3 ± 0.3 46.8 ± 0.7 37.4 ± 3.8 44.6 ± 1.2 51.6 ± 0.8 56.2 ± 0.8 62.4 ± 0.4

Yahoo (left) + Wiki Amazon (left) + Wiki

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 19.6 ± 1.7 28.5 ± 0.8 34.5 ± 0.3 38.2 ± 0.7 43.0 ± 0.4 20.0 ± 1.8 30.7 ± 1.9 43.4 ± 0.4 49.9 ± 0.4 56.1 ± 0.3

MEANPOOL 17.0 ± 2.9 20.3 ± 0.3 29.1 ± 1.1 34.8 ± 1.1 42.0 ± 0.3 10.4 ± 2.1 18.0 ± 2.4 34.3 ± 2.4 46.2 ± 1.1 55.0 ± 0.5

MAXPOOL 15.7 ± 0.8 24.0 ± 1.2 33.5 ± 0.4 37.5 ± 1.0 43.7 ± 0.1 12.4 ± 1.9 26.0 ± 0.6 44.5 ± 1.0 51.4 ± 0.3 57.5 ± 0.2

ATT 19.8 ± 3.1 26.0 ± 0.5 35.5 ± 0.9 40.1 ± 0.5 43.8 ± 0.2 21.3 ± 4.3 37.1 ± 0.7 46.1 ± 0.6 51.3 ± 0.8 57.2 ± 0.2

MAXATT 19.7 ± 3.5 27.0 ± 0.9 36.2 ± 1.3 40.0 ± 0.6 43.7 ± 0.3 22.1 ± 5.9 36.7 ± 1.3 46.7 ± 0.1 52.2 ± 0.1 57.5 ± 0.2

Yahoo (mid) + Wiki Amazon (mid) + Wiki

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 9.9 ± 0.7 12.3 ± 0.8 17.4 ± 1.1 24.2 ± 0.9 36.3 ± 0.5 5.6 ± 0.4 6.9 ± 0.5 20.3 ± 1.0 37.9 ± 0.9 51.5 ± 1.0

MEANPOOL 14.9 ± 2.2 22.1 ± 1.3 28.3 ± 0.4 32.8 ± 0.8 39.2 ± 0.4 10.8 ± 1.9 20.8 ± 1.3 39.0 ± 0.6 46.5 ± 0.5 54.8 ± 0.1

MAXPOOL 14.1 ± 2.6 22.6 ± 0.3 28.6 ± 0.5 33.8 ± 1.2 40.1 ± 0.5 10.6 ± 1.8 21.3 ± 1.7 37.1 ± 1.4 47.0 ± 0.9 55.3 ± 0.4

ATT 16.9 ± 3.0 24.8 ± 1.1 31.4 ± 0.9 37.6 ± 0.5 42.1 ± 0.4 17.4 ± 3.2 33.2 ± 1.0 43.9 ± 0.5 49.7 ± 0.3 55.4 ± 0.1

MAXATT 18.2 ± 2.4 25.7 ± 0.5 32.6 ± 0.6 37.8 ± 0.8 42.1 ± 0.4 17.8 ± 4.6 35.0 ± 1.2 44.7 ± 0.3 49.7 ± 0.5 55.8 ± 0.4

Yahoo (right) + Wiki Amazon (right) + Wiki

1K 2K 5K 10K 25K 1K 2K 5K 10K 25K

BiLSTM 12.3 ± 0.5 23.8 ± 1.2 33.4 ± 0.6 38.2 ± 0.2 43.8 ± 0.3 7.4 ± 0.8 15.3 ± 3.2 40.8 ± 0.5 50.4 ± 0.7 58.4 ± 0.4

MEANPOOL 15.7 ± 1.9 22.7 ± 0.4 27.7 ± 0.9 34.2 ± 0.6 41.3 ± 0.1 14.8 ± 2.0 20.4 ± 3.3 40.1 ± 1.2 48.6 ± 0.5 56.9 ± 0.3

MAXPOOL 14.7 ± 0.6 22.5 ± 1.5 33.6 ± 0.5 38.5 ± 0.4 43.4 ± 0.5 11.1 ± 2.3 24.0 ± 1.9 45.6 ± 0.5 52.0 ± 0.4 58.4 ± 0.3

ATT 19.7 ± 0.2 27.4 ± 1.5 35.9 ± 0.2 40.0 ± 0.4 43.8 ± 0.7 22.4 ± 5.7 36.6 ± 1.3 46.7 ± 0.4 52.5 ± 0.4 59.1 ± 0.3

MAXATT 20.3 ± 1.3 28.1 ± 0.9 35.4 ± 0.8 40.3 ± 0.4 43.8 ± 0.4 20.8 ± 6.8 37.3 ± 0.9 47.8 ± 0.4 53.1 ± 0.3 59.0 ± 0.2

Table 8: Mean test accuracy (± std) (in %) on different manipulated settings across 5 random seeds on the Yahoo,
Amazon datasets with short sentences (less than 100 words).

ting, we observe that BiLSTM performs signifi-
cantly better on shorter sequences as opposed to
the long sequences. For instance, in case of Ama-
zon Dataset (Mid), under the 25K data setting, the
classification accuracy increases from 7.8% in Ta-
ble 5 to 51.5% in Table 8, which is a significant
improvement from only doing as well as majority
guessing in the former. We note that most of the
learning issues of BiLSTM in long sentence setting
are largely absent when sentence lengths are short,
with BiLSTM also emerging as the best-performing
model in a few cases. This corroborates the effect
of gradients vanishing with longer time steps.

E.3 On using regularization

For the experiments in the work, we do not reg-
ularize trained LSTMs. This has two analytical
advantages (1) we can examine the benefits of pool-
ing without having to account for the the effect
of regularization; and (2) training to 100% accu-
racy acts as an indicator of training the models

adequately. However, for validation, we also per-
formed our experiments on the IMDb dataset with
2 different types of regularization schemes, follow-
ing best practices used in previous works (Merity
et al., 2017). We use DropConnect (Wan et al.,
2013) 12 and Weight Decay 13 for regularization
of all the models. We observe that the effect of
regularization consistently improves the final accu-
racies by 1-2% across the board. However, even
after sustained training (up to 50 epochs), BiLSTM
still suffers from the learning issues outlined in
the paper. The goal of this paper is not to study
the effect of various regularization schemes, but to
merely understand the effect pooling in improving
the performance of BiLSTM.

F Fine-grained Positional Biases

We detail the method for calculating the Normal-
ized Word Importance (NWI) score in Algorithm 1.

12grid search over mask rate: {0.1,0.3,0.5}
13grid search over decay value: {10−3, 10−4, 10−6, 10−8}
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Figure 10: Normalized Word Importance w.r.t. word position for k = 5; averaged over sentences of length between
400-500 on the IMDb, Yahoo, Amazon (10K) Datasets. Results shown for the ‘standard’, ‘left’, ‘mid’ and ‘right’
training settings described in § 6.2. The vertical red line represents an approximate separator between relevant and
irrelevant information (by construction). For instance, The word positions to the ‘left’ of the vertical line in graphs
in the second row of the Figure contain data from true input examples, while those to the right contain Wikipedia
sentences.
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Figure 11: Normalized Word Importance w.r.t. word position for k = 3; averaged over sentences of length between
50-60 on the Yahoo, Amazon (10K) Datasets. Results shown for the ‘standard’, ‘left’ and ‘mid’ training settings
described in Appendix E.2. The vertical red line represents an approximate separator between relevant and irrel-
evant information (by construction). For instance, The word positions to the ‘left’ of the vertical line in (b), (e)
contain data from true input examples, while those to the right contain Wikipedia sentences.

Algorithm 1 NWI evaluation

Input: softmax classifier Pθ, test set D
Parameters: k
for sj = {x1j , . . . , xnj }, yj in D do
pj = log{Pθ(yj |sj)}
for t = 0 . . . nk do
stj = {x1j , . . . , xk.tj ,UNK, . . . ,UNK︸ ︷︷ ︸

k words

, . . . , xnj }

ptj = log{Pθ(yj |stj)}
δtj = |ptj − pj |

end for
nwij =

δj
maxt∈(1, n

k
) δ

t
j

nwij = nwij −mint∈(1,n
k
) δ
t
j

nwij = LinInterp(nwij , nk , 100)
end for
return 1

|D|
∑|D|

j=1 nwij
*LinInterp(x, n, l) linearly interpolates in-
put distribution x of n discrete steps to l steps.

The parameter k can be adjusted according to
the average sentence length. For a sentence of

length 100, setting an extremely low value of k
(say 1) may have very little impact of the model’s
prediction log{Pθ(yj |stj)} for all positions t. On
the other hand, setting an extremely high value of
k (say 20) may provide only few data points, and
also change the model prediction drastically at all
values of t.

Complete graphs for the positional importance
(as perceived by the model) of words are detailed in
this section. The trends observed for the remaining
datasets are similar to the representative graphs
shown in the main paper. We show graphs for the
IMDb, Yahoo and Amazon datasets in Figure 10.

Practical Implications Our findings suggest
that adversaries can easily replace the middle por-
tion of texts with racist or abusive sentences, and
still stay undetected by BiLSTM based detection
systems. This is because BiLSTM attributes little
or no importance to words in the middle of the in-
put. Pooling based models are able to circumvent
this issue by being able to attribute importance to
words irrespective of their position.
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F.1 NWI for Short sentences
We repeat our experiments of NWI evaluation on
the datasets with short sentences (<100 words) as
described in Appendix E.2. It is interesting to ob-
serve the graphs on the Yahoo and Amazon short
datasets in Figure 11, where due to the short sen-
tence length, even BiLSTM is able to show the
desired importance characteristic in case of mid
setting. This supports the fact that the test time ac-
curacies in the mid setting are no longer as bad as
a majority class predictor. Interestingly, in case of
short sentences in the mid setting (Figures 11c,11f),
we observe three peaks in the NWI graph. The one
in the middle is expected given the data distribu-
tion. However, the two peaks in NWI at the extreme
ends help establish that while BiLSTM is able to
propagate gradients to the middle given the short
sentences, it is still not able to forego the extreme
bias towards the end tokens.


