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Abstract

The goal of Document-level Relation Extrac-
tion (DRE) is to recognize the relations be-
tween entity mentions that can span beyond
sentence boundary. The current state-of-the-
art method for this problem has involved the
graph-based edge-oriented model where the
entity mentions, entities, and sentences in the
documents are used as the nodes of the docu-
ment graphs for representation learning. How-
ever, this model does not capture the represen-
tations for the nodes in the graphs, thus pre-
venting it from effectively encoding the spe-
cific and relevant information of the nodes for
DRE. To address this issue, we propose to
explicitly compute the representations for the
nodes in the graph-based edge-oriented model
for DRE. These node representations allow us
to introduce two novel representation regular-
ization mechanisms to improve the representa-
tion vectors for DRE. The experiments show
that our model achieves state-of-the-art perfor-
mance on two benchmark datasets.

1 Introduction

An important task of Information Extraction is Re-
lation Extraction (RE) that seeks to identify the
semantic relationships between entities mentioned
in text. The prior works have mainly focused on
the intra-sentence scenario where the two entity
mentions appear in the same sentences (Zhou et al.,
2005; Zeng et al., 2014; Nguyen and Grishman,
2015). In this work, we study a more recent set-
ting for RE that additionally considers relations
between two entity mentions in different sentences
of the documents (i.e., inter-sentence relations)
(called document-level RE (DRE)).

The current methods for document-level RE
have intensively relied on deep learning to induce
effective representation vectors for relation predic-
tion. Among these deep learning models, graph-
based neural networks have been demonstrated as

one of the most effective approaches for DRE due
to their ability to capture long-distance and inter-
sentential information in text (Peng et al., 2017;
Quirk and Poon, 2017; Gupta et al., 2019). In par-
ticular, (Christopoulou et al., 2019) has recently
introduced a graph-based edge-oriented network
that achieves state-of-the-art performance for DRE.
The key idea in this model is to build a interaction
graph for each input document where the nodes
include the entity mentions, the entities, and the
sentences. Note that this is fundamentally differ-
ent from the prior graph-based models for RE that
have mostly used words as the nodes for the graphs
(Zhang et al., 2018; Gupta et al., 2019). In this
model, the edges between these nodes are deter-
mined by the coreferences of the entity mentions
and the appearance of the entity mentions in the
sentences. The representation vectors for the edges
of the graph (thus called edge-oriented) are then
computed via several inference layers, serving as
the features to predict the relations between the
pairs of entities in the documents. In this way, the
model can leverage the interactions between the
nodes and edges of different types to obtain richer
representation vectors for the edges between the
entity nodes (Christopoulou et al., 2019).

Despite its good performance, a major limita-
tion of the graph-based edge-oriented model for
DRE is that it only focuses on the edge representa-
tions and ignores the representations for the nodes
of the graphs. On the one hand, this edge-only
representation approach cannot explicitly encode
the information that is specific to the entities/entity
mentions in the documents (as it only captures the
representations of pairs of entities/entity mentions),
potentially missing an important clue to boost the
performance for DRE (e.g., entity subtypes). One
the other hand, the lack of the node representations
prevents the models from exploiting the relations
between the node and edge representations (e.g.,
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the translation relation (Bordes et al., 2013)) and
the similarity for the representation vectors of the
entity mention nodes (i.e., of the same entities) to
enhance the representation learning for DRE. Con-
sequently, in this work, we propose to improve the
graph-based edge-oriented model for DRE by ex-
plicitly computing the representations for the nodes
in the graphs. Based on such node representations,
we introduce two novel regularization techniques
to improve the representations for DRP, capturing
the similarities between the node and edge repre-
sentations of the same edges or the same entities.
We conduct extensive experiments to demonstrate
the effectiveness of the proposed method for DRE,
yielding the state-of-the-art performance for this
task on two benchmark datasets.

2 Related Work

RE has been extensively studied in the inter-
sentence (Zelenko et al., 2003; Zhou et al., 2005;
Zeng et al., 2014; Nguyen and Grishman, 2014,
2016; Zhang et al., 2018; Veyseh et al., 2019,
2020) and distant supervision settings (Mintz et al.,
2009; Riedel et al., 2010; Zeng et al., 2015; Lin
et al., 2016; Jiang et al., 2016; Zeng et al., 2017;
Vashishth et al., 2018). Recently, document-level
RE has gained more attention from the commu-
nity. Two major approaches have been considered
for DRE, i.e., the graph-based (Quirk and Poon,
2017; Peng et al., 2017; Song et al., 2018; Gupta
et al., 2019; Jia et al., 2019; Sahu et al., 2019) and
non-graph-based (Gu et al., 2017; Peng et al., 2016;
Zhou et al., 2016; Zheng et al., 2018; Li et al., 2018;
Verga et al., 2018; Nguyen and Verspoor, 2018; Ye
et al., 2019; Singh and Bhatia, 2019) approaches.
The closest work to ours is the graph-based edge-
oriented model in (Christopoulou et al., 2019) that
introduces new document graphs for DRE based
on entity mentions, entities and sentences as the
nodes.

3 Model

Formally, in the DRE problem, the input involves
a document D with S, M , and E as the sets of
the sentences, entity mentions, and entities (respec-
tively) in D. The goal of DRE is to predict the
semantic relationships between each pair of enti-
ties in E (i.e., including the type NONE for the
entity pairs with no relations). In this section, we
will first describe the graph-based edge-oriented
model (EoG) in (Christopoulou et al., 2019). After-

ward, we will present our novel node representation
computation and regularization for this model.

3.1 The Graph-based Edge-oriented Model

In EoG, the words in the sentences in S are first
transformed into vectors using some pre-trained
word embeddings. A bidirectional Long-short
Term Memory (BiLSTM) network is then applied
over the sentences in S (i.e., treated as word em-
bedding vector sequences) to obtain contextualized
representation vectors for the words in D (called
the BiLSTM vectors for the words). Afterward,
EoG constructs an interaction graph G = (V, E) to
compute the representations for the entity pairs in
E for relation prediction. In particular, the node set
V in G involves three types of nodes: the sentence
nodes ns for each sentence s in S, the entity men-
tion nodes nm for each entity mentionm inM , and
the entity nodes ne for each entity e in E. In EoG,
each node in V is associated with an initial em-
bedding vector to facilitate the edge representation
computation later. The embedding vectors ns, nm

and ne for the sentence node ns, the mention node
nm and the entity node ne (respectively) are formed
by: ns = [avgw∈sw, ts], nm = [avgw∈mw, tm] and
ne = [avgm∈enm, te] where: avg is the averaging
operation of the vectors in a set, w is the BiLSTM
vector of the word w, [] is the vector concatenation,
and ts, tm, and te are the embedding vectors to
specify the types of the nodes.

Given the nodes V , the edges in E in EoG are
non-directed and include the five major types, i.e.,
Mention-Mention, Mention-Sentence, Mention-
Entity, Sentence-Sentence, and Entity-Sentence.
These edge types essentially employ the coref-
erence information of the entity mentions, their
correspondence with the entities and their appear-
ance in the sentences to establish the edges in E
(Christopoulou et al., 2019).

In EoG, each edge z = (i, j) ∈ E would be as-
signed with an initial embedding vector e1z based on
the initial embedding vectors for the nodes ni and
nj described above (Christopoulou et al., 2019).
These initial edge embedding vectors will then be
fed intoN inference layers to produce the represen-
tation vectors for the entity pairs in E for relation
prediction. In particular, in the l-th inference layer
(1 ≤ l ≤ N ), EoG computes the edge embedding
vector e2lij for two nodes i 6= j ∈ N by:

e2
l

(i,j) = βe2
l−1

(i,j) +(1−β)
∑
k 6=i,j

σ(e2
l−1

(i,k) � (WEe2
l−1

(k,j))) (1)
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where σ is the sigmoid function, � is the element-
wise product, and β ∈ [0, 1] is a controlling con-
stant. Note that the representation vector e2l(i,j) is
able to capture paths with the length up to 2l in G.
The representation vectors for the entity node pairs
in the last inference layer (i.e., e2N(ei,ej)) would be
used to perform relation prediction in EoG.

3.2 The Proposed Model
The Node Representation: As mentioned in the
introduction, a problem with the original EoG
model is the failure to exploit the representations
for the nodes in N to improve the representations
for DRE. In this work, we propose to explicitly
compute the node representation vectors and use
them to aid the representation learning for DRE.
In particular, starting with the initial embedding
vectors for the nodes n1

s , n1
m, and n1

e (i.e., n1
s = ns,

n1
m = nm, and n1

e = ne for the nodes in N ), we
obtain the representation for the node i ∈ N at
the l-th inference layer via (motivated by the edge
representation computation in EoG) (1 ≤ l ≤ N ):

n2l

i = γn2l−1

i +(1−γ)
∑

(i,j)∈E

σ(n2l−1

i �(WNn2l−1

j )) (2)

where γ is a controlling factor. With these node
representation vectors, we predict the relation be-
tween the entities ei, ej ∈ E by first forming a
feature vector Vei,ej = [n2N

ei ,n
2N
ej , e

2N

(ei,ej)
] (i.e., the

vectors in the last inference layers). Vei,ej would
then be sent to a feed-forward network with the
softmax layer in the end to produce the distribution
Pei,ej (.|ei, ej) over the possible relations for DRE.
Finally, the negative log-likelihood Lpred for all
the entity pairs in E would be employed to train
the models in this work:
Lpred = −

∑
ei 6=ej∈E logPei,ej (yei,ej |ei, ej)

where yei,ej is the golden relation for ei and ej .
The Node-Edge Representation Consistency:

The introduction of the node representation vectors
allows us to leverage the relations between the rep-
resentation vectors of an edge (i, j) ∈ V and its
two end nodes (i.e., i, j ∈ N ) to regularize the rep-
resentations, potentially improving their quality for
DRE. In particular, motivated from the knowledge
graph embedding methods (Bordes et al., 2013), in
this work, we propose to enforce the representation
vectors for the nodes and edges in G to follow the
translation relation (i.e., the sum of the representa-
tion for the node i ∈ N and the representation for
the edge (i, j) ∈ E should be as close as possible to

the representation for the node j ∈ N ). Formally,
this amounts to adding the following term Lrel
into the overall loss function to train the models:
Lrel =

∑N
l=1

∑
(i,j)∈E ||n2l

i + e2l(ij) − n2l
j ||.

The Mention Representation Consistency: In
addition to the node-edge consistency, the explicit
representations for the nodes in G facilitates the
use of the coreference information between the en-
tity mentions to constrain the representations for
DRE. Specifically, to further improve the repre-
sentation vectors for DRE, we propose to encour-
age the embedding vectors for the entity mention
nodes of the same entities to be similar to each
other. This is based on the intuitive assumption
that the embedding vectors for the coreferred en-
tity mentions should capture the underlying seman-
tics/information of the entity they are referring to,
thus being close to each other. We expect that this
explicit similarity regulation between the entity
mention representations would help to regularize
the embedding vectors to encode more meaningful
information for DRE. In particular, to achieve such
similarities, we propose to incorporate the follow-
ing loss term Lconst into the overall loss function:
Lconst =

∑N
l=1

∑
e∈E

∑
mi 6=mj∈e

∑N
l=1(1 −

cosine(n2l
mi
,n2l

mj
)).

Here, 1 − cosine(n2l
mi
,n2l

mj
) is to measure the

similarity between n2l
mi

and n2l
mj

.
To summarize, the overall loss function L in this

work is: L = Lpred+αrelLrel+αconstLconst with
αrel and αconst as the trade-off parameters. The
EoG model Augmented with Node Representations
in this work is called EoGANE for convenience.

4 Experiments

Datasets & Parameters: We evaluate the mod-
els on two benchmark datasets for DRE, i.e., CDR
and GDA. The CDR (Chemical-Disease Reactions)
dataset is manually annotated for the binary inter-
actions between Chemical and Disease concepts
(Li et al., 2016a) while GDA (Gene-Disease As-
sociations) (Ye et al., 2019) provides the annota-
tions for the binary interactions between Gene and
Disease concepts using distant supervision. For
both datasets, we follow the same data preprocess-
ing and spits (i.e., for training/development/test
data) as the prior work (Christopoulou et al., 2019)
to achieve a fair comparison. Also, similar to
(Christopoulou et al., 2019), we use the PubMed
pre-trained word embeddings (Chiu et al., 2016)
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for the models on CDR while randomly initialized
word embeddings are employed for GDA. These
word embeddings are optimized during the training
process of the models in this work.

We implement the EoGANE model in this work
by extending the code for the EoG model that is
provided in its original paper (Christopoulou et al.,
2019). As such, we inherit the values for the com-
mon hyper-parameters between EoG and EoGANE
from (Christopoulou et al., 2019) for the proposed
model EoGANE (e.g., 0.002 for the learning rate
of the Adam optimizer, 2 and 3 for the batch sizes
with the CDR and GDA datasets respectively, 100
for the dimension of the node/edge representation
vectors in the inference layers). The values for the
specific hyper-parameters of EoGANE (i.e., tuned
with the development data for each dataset) include:
γ = 0.4 for the controlling constant in the node rep-
resentation computation of the inference layers (for
both CDR and GDA), αrel = 0.5 and αconst = 0.1
for the trade-off parameters in the overall loss func-
tion L for the CDR dataset, and αrel = 0.4 and
αconst = 0.6 for the GDA dataset.

Comparing to the State of the Art: This part
compares the proposed model EoGANE with the
state-of-the-art models for DRE. Table 1 reports
the performance of the models on the CDR test
set. In particular, the direct baseline for EoGANE
is the EoG model in (Christopoulou et al., 2019)
that also has the best-reported performance on
the CDR dataset. In this table, we distinguish
the models for DRE based on whether they use
external knowledge/resources (i.e., the syntactic
dependency tools) or not. As we can see from
the table, among the models that do not rely on
any external knowledge/resources (i.e., (Gu et al.,
2017; Verga et al., 2018; Nguyen and Verspoor,
2018; Christopoulou et al., 2019) and the pro-
posed model EoGANE), EoGANE achieves the
best performance for all the overall, intra- and inter-
sentence settings. In particular, EoGANE is 2.5%
better than the second-best and direct baseline EoG
on the absolute overall F1 score. This is signifi-
cant with p < 0.01 and clearly demonstrates the
effectiveness of the proposed model for DRE. Com-
paring to the models with external resources (e.g.,
additional training data, external tools) (Zhou et al.,
2016; Zheng et al., 2018), EoGANE is also signifi-
cantly better than the other models over different
settings (i.e., the overall, inter-, and intra-sentence
performance). The only exception is with the over-

Model Overall Intra Inter
(Gu et al., 2017) 61.3 57.2 11.7
(Verga et al., 2018) 62.1 - -
(Nguyen and Verspoor, 2018) 62.3 - -
EoG (Christopoulou et al., 2019) 63.6 68.2 50.9
EoGANE (our system) 66.1 70.7 53.5
(Zhou et al., 2016)* 61.3 - -
(Peng et al., 2016)* 63.1 - -
(Li et al., 2016b)* 67.7 58.9 -
(Chandrasekarasastry et al., 2018)* 60.3 65.1 45.7
(Zheng et al., 2018)* 61.5 - -

Table 1: Overall, intra- and inter-sentence performance
(i.e., F1 scores) of the models on the CDR test set. The
methods with * employ additional training data or ex-
ternal tools.

Model Overall Intra Inter
EoG (Christopoulou et al., 2019) 81.5 85.2 50.0
EoGANE (our system) 82.8 86.3 58.6

Table 2: Performance (i.e., F1 scores) on the GDA test
set.

all F1 score for the model in (Li et al., 2016b) that
utilizes additional unlabeled training data. This fur-
ther testifies to the benefits of EoGANE for DRE.

Finally, Table 2 shows the performance of EoG
and EoGANE on the GDA test set. Note that in
this dataset, EoG also has the best-reported per-
formance. It is clear from the table that EoGANE
is still significantly better than EoG for all per-
formance settings (with p < 0.01), thus further
confirming the advantage of EoGANE for DRE.

Ablation Study: There are three major com-
ponents of EoGANE in this work, i.e., the node
representation computation in the inference layers
for G (called NodeRep), the Lrel loss term for the
consistency of the node and edge representations
in the inference layers, and the Lconst loss term
for the similarity of the mention representations.
This part evaluates the contribution of these com-
ponents by removing each of them from EoGANE
and evaluating the performance of the remaining
models. Note that if the node representation com-
putation is not included in the inference layers
(i.e., EoGANE-NodeRep), the two losses Lrel and
Lconst are also not used and the feature vectors
Vei,ej only involves the edge representation e2Nei,ej
(i.e., Vei,ej = [e2N(ei,ej)]). In order to further shows
the benefits of including the node representations
in the inference layers, we also evaluate the perfor-
mance of the “EoGANE-NodeRep” model when
the initial embedding vectors for the nodes (i.e., n1

i )
are incorporated into the feature vectors Vei,ej for
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Model P R F1
EoGANE (full model) 63.4 64.3 63.8
EoGANE-Lrel 60.6 61.7 61.1
EoGANE-Lconst 60.8 62.3 61.5
EoGANE-Lconst-Lrel 61.1 60.6 60.8
EoGANE-NodeRep 58.6 60.8 59.7
EoGANE-NodeRep+Init 63.8 57.0 60.2

Table 3: The performance on the CDR development
set.

prediction (i.e., Vei,ej = [n1
ei ,n

1
ej , e

2N

(ei,ej)
]) (called

EoGANE-NodeRep+Init). Table 3 presents the
overall performance of the models on the CDR de-
velopment set. As we can see from the table, the
elimination of any component in EoGANE would
significantly hurt the performance, clearly verify-
ing the effectiveness of the node representations
and the proposed consistency constraints for DRE.

Analysis: In order to better understand the con-
tribution of the node representation vectors in the
proposed model EoGANE, we examine the exam-
ples in the CDR test set that are correctly predicted
by EoGANE, but lead to incorrect predictions for
EoG. Our analysis reveals that these examples tend
to involve entities where the local/specific informa-
tion of the individual entities is crucial to determine
the relations between them. As EoGANE explicitly
induces the node representations for the entities
and include them in the feature vector for relation
prediction, it can learn to capture those specific
information of the entities to make correct predic-
tions for these examples. Consider the following
document (with two sentences) as an example:

“The annual incidence of warfarin1-related
bleeding at Brigham and Women’s Hospital in-
creased from 0.97/1,000 patient admissions in the
first time period (January 1995 to October 1998)
to 1.19/1,000 patient admissions in the second time
period (November 1998 to August 2002) of this
study. The proportion of patients with major and
intracranial bleeding2 increased from 20.2% and
1.9%, respectively, in the first time period , to 33.3%
and 7.8%, respectively, in the second.”

The two entities of interest in this document are
“warfarin” (a chemical) and “intracranial bleeding”
(a disease) whose entity mentions are in bold (i.e.,
“warfarin” and “intracranial bleeding”). In order
to successfully predict the interaction relation be-
tween these two entities, the most important infor-
mation for the models is that both entities are con-
nected to the topic phrase “warfarin-related bleed-
ing” of the document. In particular, for the entity

“warfarin”, the appearance of its only mention “war-
farin” in the topic phrase “warfarin-related bleed-
ing” in the document directly helps to identify “war-
farin” as the chemical causing or being related to
the bleeding in the phrase. Afterward, for the entity
“intracranial bleeding”, it also has only one men-
tion in the document (i.e., “intracranial bleeding”).
Based on the appearance of the word “bleeding”
in both the only mention “intracranial bleeding”
and the topic phrase “warfarin-related bleeding”,
we can infer that the entity “intracranial bleeding”
is referring to the bleeding type expressed by the
topic phrase in the document. Consequently, com-
bining these evidences, we can conclude that the
entity “intracranial bleeding” is caused by the entity
“warfarin” in this case.

A notable point in our argument is that for
both entities “warfarin” and “intracranial bleed-
ing”, their connections to the topic phrase can only
be induced from the local context of their own en-
tity mentions (i.e., the phrases “warfarin-related
bleeding” and “intracranial bleeding”), highlight-
ing the importance of the local/specific context of
entity mention nodes for DRE. As EoGANE ex-
plicitly computes representation vectors for nodes
in document graphs, it can learn to encode such
local/specific context information of the entity men-
tions/entities into its representation vectors for the
entities. These entity representation vectors, once
incorporated into the feature vector Vei,ej for rela-
tion prediction, can help the model to emphasize on
these entity-specific information to do appropriate
reasoning and produce correct prediction. This is in
contrast to EoG that only focuses on the represen-
tation vectors of the edges, potentially blurring the
information specific to the individual entities/entity
mentions and failing to predict the relation in this
case.

5 Conclusion

We present a novel deep learning model for DRE
that explicitly computes the node representations
for the document graphs in the graph-based edge-
oriented models for DRE. This enables the models
to better capture the specific information of the
nodes and facilitates the incorporation of two novel
consistency constraints to improve the represen-
tation vectors. The experiments demonstrate the
effectiveness of the proposed method for DRE. In
the future, we plan to apply the models in this work
to the related tasks in information extraction.
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