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Abstract

Existing dialogue state tracking (DST) models
require plenty of labeled data. However, col-
lecting high-quality labels is costly, especially
when the number of domains increases. In
this paper, we address a practical DST problem
that is rarely discussed, i.e., learning efficiently
with limited labeled data. We present and in-
vestigate two self-supervised objectives: pre-
serving latent consistency and modeling con-
versational behavior. We encourage a DST
model to have consistent latent distributions
given a perturbed input, making it more robust
to an unseen scenario. We also add an auxil-
iary utterance generation task, modeling a po-
tential correlation between conversational be-
havior and dialogue states. The experimental
results show that our proposed self-supervised
signals can improve joint goal accuracy by
8.95% when only 1% labeled data is used on
the MultiWOZ dataset. We can achieve an
additional 1.76% improvement if some unla-
beled data is jointly trained as semi-supervised
learning. We analyze and visualize how our
proposed self-supervised signals help the DST
task and hope to stimulate future data-efficient
DST research.

1 Introduction

Dialogue state tracking is an essential compo-
nent in task-oriented dialogue systems designed
to extract user goals/intentions expressed dur-
ing a conversation. Accurate DST performance
can facilitate downstream applications such as
dialogue management. However, collecting di-
alogue state labels is very expensive and time-
consuming (Budzianowski et al., 2018), requiring
dialogue experts or trained turkers to indicate all
(domain, slot, value) information for each turn in
dialogues. This problem becomes important from
single-domain to multi-domain scenarios. It will
be more severe for a massive-multi-domain setting,

making DST models less scalable to a new domain.
Existing DST models require plenty of state

labels, especially those ontology-based DST ap-
proaches (Henderson et al., 2014; Mrkšić et al.,
2017; Zhong et al., 2018). They assume a pre-
defined ontology that lists all possible values is
available, but an ontology requires complete state
annotation and is hard to get in real scenario (Xu
and Hu, 2018). They also cannot track unseen slot
values that are not predefined. Ontology-free ap-
proaches (Xu and Hu, 2018; Chao and Lane, 2019),
on the other hand, are proposed to generate slot
values from dialogue history directly. They achieve
good performance on multi-domain DST by copy-
attention mechanism but still observe a significant
performance drop under limited labeled data sce-
nario (Wu et al., 2019a).

In this paper, we approach the DST problem us-
ing copy-augmented ontology-free models from a
rarely discussed perspective, assuming that only
a few dialogues in a dataset have annotated state
labels. We present two self-supervised learning
(SSL) solutions: 1) Preserving latent consistency:
We encourage a DST model to have similar la-
tent distributions (e.g., attention weights and hid-
den states) for a set of slightly perturbed inputs.
This assumption is known as consistency assump-
tion (Zhou et al., 2004; Chapelle et al., 2009; Berth-
elot et al., 2019) in semi-supervised learning, mak-
ing distributions sufficiently smooth for the intrin-
sic structure collectively. 2) Modeling conversa-
tional behavior: We train a DST model to generate
user utterances and system responses, hoping that
this auxiliary generation task can capture intrinsic
dialogue structure information and benefit the DST
performance. This training only needs dialogue
transcripts and does not require any further annota-
tion. We hypothesize that modeling this potential
correlation between utterances and states is help-
ful for generalization, making a DST model more
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Usr Can you help me find a nightclub in south Cambridge?

Sys The Night is located at 22 Sidney St. Their phone number
is 01223324600. You will need to call for their entry fee.

Usr Can you schedule me a taxi to take me there?

Sys Can book you a taxi. Can you tell me the arrival or
departure time ?

Usr Also, I need a hotel with parking and 2 stars.

Annotated State

(attraction, type, nightclub),
(attraction, area, south),
(attraction, name, The Night),
(hotel, parking, yes), (hotel, stars, 2)

Table 1: A multi-domain dialogue example in Multi-
WOZ.

robust to unseen scenarios.
We simulate limited labeled data using Multi-

WOZ (Budzianowski et al., 2018), one of the task-
oriented dialogue benchmark datasets, with 1%,
5%, 10%, and 25% labeled data scenarios. The
experimental results of 1% data setting show that
we can improve joint goal accuracy by 4.5% with
the proposed consistency objective and with an ad-
ditional 4.43% improvement if we add the behavior
modeling objective. Furthermore, we found that
a DST model can also benefit from those remain-
ing unlabeled data if we joint train with their self-
supervised signals, suggesting a promising research
direction of semi-supervised learning. Lastly, we
visualize the learned latent variables and conduct
an ablation study to analyze our approaches.

2 Background

Let us define X1:T = {(U1, R1), . . . , (UT , RT )}
as the set of user utterance and system response
pairs in T turns of a dialogue, and B =
{B1, . . . , BT } are the annotated dialogue states.
Each Bt contains a set of (domain, slot, value) tu-
ples accumulated from turn 1 to turn t, therefore,
the number of tuples usually grows with turn t.
Note that it is possible to have multiple domains
triggered in the same state Bt. A dialogue example
and its labeled states are shown in Table 1.

We briefly introduce a common approach for
ontology-free DST in the following. As shown in
Figure 1, a context encoder encodes dialogue his-
tory X1:t, and a state generator decodes slot values
Vij for each (domain, slot) pair {(Di, Sj)}, where
i denotes the domain index and j is the slot index.
The context encoder and the state generator can be
either a pre-trained language model or a simple re-
current neural network. During the decoding stage
for each Vij , a copy-attention mechanism such as
text span extraction (Vinyals et al., 2015) or pointer

Figure 1: The block diagram of copy-attention
ontology-free framework for dialogue state tracking.
The self-supervised modules (dotted parts) are dis-
carded during inference time.

generator (See et al., 2017) approach is added to the
state generator and strengthen its value generation
process.

Moreover, many ontology-free DST models are
also equipped with a slot gate mechanism (Xu and
Hu, 2018; Rastogi et al., 2019; Zhang et al., 2019),
which is a classifier that predicts whether a (do-
main, slot) pair is mentioned, not mentioned, or
a user does not care about it. In this pipeline set-
ting, they can add additional supervision to their
models and ignore the not mentioned pairs’ pre-
diction. More specifically, the (domain, slot) pair
{(Di, Sj)} obtains its context vector Cij to predict
a slot gate distribution Gij . The context vector Cij

is the weighted-sum of encoder hidden states using
the attention distribution Aij , and Gij is a three-
way classification distribution mapping from the
context vector:

Gij = FFN(Cij) 2 R3
,

Cij = Aijh
enc 2 Rdemb ,

Aij = Softmax(Dist(hdecij , h
enc)) 2 RM

,

(1)

where demb is the hidden size, henc 2 RM⇥demb is
hidden states of the context encoder for M input
words, and h

dec
ij 2 Rdemb is the first hidden state of

the state generator. The Dist function can be any
vector similarity metric, and FFN can be any kind
of classifier.

Such model is usually trained end-to-end with
two loss functions, one for slot values generation
and the other for slot gate prediction. The overall
supervised learning objective from the annotated
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state labels is

Lsl =

|ij|X
H(Vij , V̂ij) +H(Gij , Ĝij), (2)

where H is the cross-entropy function. The total
number of (domain, slot) pairs is |ij|, and there are
30 pairs in MultiWOZ.

3 Self-Supervised Approaches

This section introduces how to leverage dialogue
history X , which is easy to collect, to boost DST
performance without annotated dialogue state la-
bels implicitly. We first show how we preserve
latent consistency using stochastic word dropout,
and we discuss our design for utterance generation.

3.1 Latent Consistency
The goal of preserving latent consistency is that
DST models should be robust to a small perturba-
tion of input dialogue history. As shown in Figure 2,
we first randomly mask out a small number of input
words into unknown words for Ndrop times. Then
we use Ndrop dialogue history together with the
one without dropping any word as input to the base
model and obtain Ndrop + 1 model predictions.

Masking words into unknown words can also
strengthen the representation learning because
when important words are masked, a model needs
to rely on its contextual information to obtain a
meaningful representation for the masked word.
For example, “I want a cheap restaurant that does
not spend much.” becomes “I want a [UNK] restau-
rant that [UNK] not spend much.” This idea is
motivated by the masked language model learn-
ing (Devlin et al., 2019). We randomly mask words
instead of only hiding slot values because it is not
easy to recognize the slot values without ontology.

Afterward, we produce a “gues” for its latent
variables: the attention distribution and the slot
gate distribution in our setting. Using the Ndrop+1
model’s predictions, we follow the label guessing
process in MixMatch algorithm (Berthelot et al.,
2019) to obtain a smooth latent distribution. We
compute the average of the model’s predicted dis-
tributions by

Â
⇤
ij , Ĝ

⇤
ij =

Ndrop+1P
d=1

P (Aij , Gij |Xd
1:t, ✓)

Ndrop + 1
,

(3)

where ✓ is the model parameters. Aij and Gij are
the smooth latent distribution that we would like a

Figure 2: The block diagram of preserving latent con-
sistency. Ndrop+1 attention and slot gate distributions
are averaged (and sharpened) to be the guessed distri-
bution.

DST model to follow. We include the original input
without word masking input the average. During
the early stage of training, we may not have a good
latent distribution even if it has labeled supervision.

Furthermore, inspired by the common usage
of entropy minimization (Grandvalet and Bengio,
2005), we perform one more step for the gate distri-
bution. We apply a sharpening function, adjusting
the temperature T of the categorical distribution,
to reduce the entropy of slot gate prediction.

Ĝ
⇤⇤
ij = Sharp(Ĝ⇤

ij , T ),

Sharp(p, T )i = p

1
T
i /

P
p

1
T
i .

(4)

In this way, we encourage a DST model to be
more confident to its gate prediction as T decreases,
since the sharpen Ĝ

⇤⇤
ij will approach a one-hot dis-

tribution when T = 0. The sharpening function
is not applied to the predicted attention distribu-
tion because we do not expect and force attention
distribution to be a sharp categorical distribution.

We use the two guessed distributions to train a
DST model to be consistent for the attention and
slot gate given noise inputs. The following consis-
tency loss is added:

Lcons =

|ij|XNdrop+1X

d

(MSE(Ĝ⇤⇤
ij , Ĝ

d
ij)

+ MSE(Â⇤
ij , Â

d
ij)).

(5)

We follow Berthelot et al. (2019) to apply the mean-
squared error function as our loss function.

We train a model to be consistent in terms of la-
tent distributions because it is hard to guarantee the
quality of generated values in different perturbed in-
put, especially when we do not have much labeled
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data. Also, each perturbed sample may generate
slot values that have different number of words, and
maintaining consistency of sequential distributions
could be challenging. As a result, we use slot gate
distribution and attention distribution as interme-
diate targets since the former is the first stage for
the whole prediction process, and the latter directly
influences the copy mechanism.

3.2 Conversational Behavior Modeling
We hypothesize that with similar dialogue states,
a system will reply also similar responses. For
example, when a system asks “What is your taxi
destination from Palo Alto?”, then we can infer that
system’s state may include (taxi, departure, Palo
Alto). In this way, we can potentially model the
correlation between dialogue states and dialogue
behavior. In practice, we use two decoders, one
modeling user and one modeling system behavior,
to generate utterances based on the learned repre-
sentations from a DST model.

We use a gated recurrent unit (GRU) to generate
the next system response based on the dialogue
history X1:t and current predicted dialogue states
Bt, and use another GRU to generate/recover user
utterance based on last dialogue history X1:t�1 and
current predicted dialogue states Bt. Intuitively,
we expect the system GRU to capture correlation
between Rt+1 and Bt, and the user GRU to learn
for Ut and Bt. GRUs generate a sequence of words
during training and compute cross-entropy losses
between generated sentences and target sentences.
We do not use the attention mechanism intention-
ally because 1) our goal is not to have an outstand-
ing performance on sentence generation, and 2) we
expect the model can generate sentences by solely
aligning its initial states from a DST model.

As shown in Figure 1, we initial our system and
user GRUs using latent variables from an ontology-
free DST model. The initial state hinit to be aligned
is defined by

hinit =

|ij|X
[hdecij ;Cij ], (6)

where [; ] denotes vector concatenation and we sum
representations from all (domain, slot) pairs. We
use the context vector Cij to represent dialogue
history, and h

dec
ij to represent dialogue state. The

overall self-supervised loss function for modeling
conversational behavior is

Lcb = H(Rt+1, R̂t+1) +H(Ut, Ût), (7)

where R̂t+1 and Ût are predicted response and user
utterance initialized by the hinit vector.

3.3 Overall Objectives

During training, we optimize both supervised sig-
nal and self-supervised signal using the labeled
data. The overall loss function is

Llabel = Lsl + ↵Lcb + �Lcons, (8)

where ↵ and � are hyper-parameters.
Other than labeled data, we can also sample un-

labeled data to perform self-supervision as a regu-
larization term. This strategy can be considered as
a semi-supervised approach, leveraging unlabeled
data to learn a smooth prediction. For unlabeled
data, we use only the self-supervised signal to up-
date the model,

Lunlabel = Lcb + �Lcons. (9)

In practice, we first draw a batch of samples from
labeled data to update the model’s parameters and
then draw another batch of samples from unla-
beled data. We find that taking turns to train un-
labeled data with labeled data works better than
pre-training with unlabeled data then fine-tuning
on labeled data.

4 Experiments

4.1 Base Model

In this paper, we focus on applying self-supervision
for ontology-free DST approaches. We select
TRADE (Wu et al., 2019a) model as the base
model. We select TRADE because 1) it is a pointer-
generator based dialogue state tracker with a copy-
attention mechanism that can generate unseen slot
values, and 2) it is one of the best ontology-free
models that show good domain generalization abil-
ity in its zero-shot and few-shot experiments, and
it is open-source 1. Note that our proposed self-
supervised training objectives are not limited to
one DST model. For example, the BERTQA-based
span extraction methods (Chao and Lane, 2019;
Gao et al., 2019) can be applied with slight modifi-
cation, viewing [CLS] token as the encoded vector
and the span distributions as the slot contextual
representations.

1github.com/jasonwu0731/trade-dst

github.com/jasonwu0731/trade-dst
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1% 5% 10% 25%
TRADE (w/o Ont.) (Wu et al., 2019a) 9.70 (11.74) 29.38 (32.41) 34.07 (37.42) 41.41 (44.01)

+ Consistency 14.22 (15.77) 30.18 (33.59) 36.14 (39.03) 41.38 (44.33)
+ Behavior 18.31 (20.59) 31.13 (34.38) 36.90 (40.70) 42.48 (45.12)

Consistency + Behavior 18.65 (21.21) 31.61 (35.67) 37.05 (40.29) 42.71 (45.21)
Consistency + Behavior

+ Unlabeled Data 20.41 (23.0) 33.67 (37.82) 37.16 (40.65) 42.69 (45.14)

SUMBT (w/ Ont.) (Lee et al., 2019) 4.30 (-) 30.56 (-) 38.31 (-) 42.59 (-)
TOD-BERT (w/ Ont.) (Wu et al., 2020) 10.3 (-) 27.8 (-) 38.8 (-) 44.3 (-)

DSDST-Span (w/o Ont.) (Zhang et al., 2019) 19.82 (-) 32.20 (-) 37.81 (-) 39.48 (-)

Table 2: Joint goal accuracy and its fuzzy matching version in parentheses on MultiWOZ test set from 1% to 25%
labeled training data. As a reference, we test some other DST trackers that using the pre-trained language model
BERT (Devlin et al., 2019) under limited labeled scenario, as shown in the last few rows.

1% 5% 10% 25% 100%
Hotel 33 174 341 862 3381
Train 35 166 332 809 3103

Attraction 29 143 276 696 2717
Restaurant 36 181 377 928 3813

Taxi 11 71 150 395 1654
Total* 84 421 842 2105 8420

Table 3: Number of simulated labeled dialogues on
MultiWOZ training set. (* Total number of dialogues
is less than the summation of dialogues in each domain
because each dialogue has multiple domains.)

4.2 Dataset

MultiWOZ (Budzianowski et al., 2018) is one of
the largest existing human-human conversational
corpus spanning over seven domains, containing
around 8400 multi-turn dialogues, with each dia-
logue averaging 13.7 turns. We follow Wu et al.
(2019a) to only use the five domains (hotel, train,
attraction, restaurant, taxi) because the other two
domains (hospital, police) have very few dialogues
(10% compared to others) and only exist in the
training set. In total, there are 30 (domain, slot)
pairs. We also evaluate on its revised version 2.1
from Eric et al. (2019) in our experiments, due to
the space limit, results on version 2.1 are reported
in the Appendix.

We simulate a limited labeled data scenario by
randomly selecting dialogues from the original cor-
pus using a fixed random seed. The dataset statis-
tics of each labeled ratio is shown in Table 3. For
example, in 1% labeled data setting, there are 84
dialogues across five different domains. Note that
the summation of dialogues from each domain is
more than the number of total dialogues because
each dialogue could have more than one domain,
e.g., two domains are triggered in the Table 1.

4.3 Training Details
The model is trained end-to-end using Adam op-
timizer (Kingma and Ba, 2015) with a batch size
of 8 or 32. A grid search is applied for ↵ and � in
the range of 0.1 to 1, and we find that models are
sensitive to different ↵ and �. The learning rate
annealing is used with a 0.2 dropout ratio. All the
word embeddings have 400 dimensions by concate-
nating 300 Glove embeddings (Pennington et al.,
2014) and 100 character embeddings (Hashimoto
et al., 2016). A greedy decoding strategy is used
for the state generator because the slot values are
usually short in length. We mask out 20%-50% of
input tokens to strengthen prediction consistency.
The temperature T for sharpening is set to 0.5, and
augmentation number Ndrop is 4.

4.4 Results
Joint goal accuracy and its fuzzy matching 2 ver-
sion are used to evaluate the performance on multi-
domain DST. The joint goal accuracy compares the
predicted dialogue states to the ground truth Bt at
each dialogue turn t, and the output is considered
correct if and only if all the (domain, slot, value)
tuples exactly match the ground truth values in Bt,
which is a very strict metric. The fuzzy joint goal
accuracy is used to reward partial matches with the
ground truth (Rastogi et al., 2019). For example,
two similar values “Palo Alto” and “Palo Alto city”
have a fuzzy score of 0.78.

In Table 2, we evaluate four different limited
labeled data scenarios: 1%, 5%, 10%, and 25%.
We test our proposed self-supervised signals by
only adding latent consistency objective (row 2),
only adding conversational behavior objective (row
3), using both of them (row 4), and using both

2github.com/seatgeek/fuzzywuzzy

github.com/seatgeek/fuzzywuzzy
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Gate Acc (") Attention KL (#)
100% Data 97.61 -

1% Data w/o SSL 91.38 10.58
1% Data w/ SSL 94.30 6.19

Table 4: Gate accuracy on 1% data improves 2.92% and
KL divergence between 1% and 100% data decreases
4.39 with self-supervision.

of them together with unlabeled data (row 5). In
general, we find that each self-supervision signal
we presented is useful in its degree, especially for
1% and 5% labeled data scenarios. Modeling con-
versational behavior seems to be more effective
than preserving prediction consistency, which is
not surprising because the latter is a point-wise self-
supervised objective function. We also found that
self-supervision becomes less dominant and less ef-
fective as the number of labeled data increases. We
try 100% labeled data with self-supervision, and
it only achieves slight improvement, 48.72% joint
goal accuracy compared to the original reported
48.62%.

Taking a closer look to the results in Table 2,
preserving consistency has 4.52% (or 4.03% fuzzy)
improvement for 1% scenario. Once the labeled
data increases to 25% (2105 dialogues), there is no
difference with or without the consistency objec-
tive. Meanwhile, modeling conversational behav-
ior objective seems to be more effective than the
consistency objective, as it has 8.61% (or 8.85%
fuzzy) improvement. A small improvement can be
further observed if we combine both of them and
jointly train end-to-end. When we also leverage
those remaining dialogue data and conduct semi-
supervised learning, we can achieve the highest
joint goal accuracy, 20.41% in 1% setting, and
33.67% in 5% setting. In these experiments, we
simply use the remaining dialogues in the dataset
as unlabeled data, e.g., 1% labeled with 99% unla-
beled, 5% labeled with 95% unlabeled, etc.

We also test some other DST trackers in the last
few rows in Table 2, which all of them are replied
on the pre-trained language model BERT (Devlin
et al., 2019). SUMBT (Lee et al., 2019) and TOD-
BERT (Wu et al., 2020) are ontology-based ap-
proaches. The former uses BERT to encode each
utterance and builds an RNN tracker on top of
BERT. The latter uses its pre-trained task-oriented
dialogue BERT to encode dialogue history and adds
simple slot-dependent classifiers. Note that we still
assume they have a full ontology in this setting even

Figure 3: The correlation on test set between latent di-
alogue states and true dialogue states on 1% labeled
data. Left-hand side is without self-supervision and
right-hand side is with self-supervision.

though it is not a fair comparison under a limited
labeled scenario. DSDST-Span (Zhang et al., 2019)
is an ontology-free DST tracker, it uses BERT to en-
code dialogue history together with each (domain,
slot) pair separately and extract a corresponding
text span as its slot values.

5 Analysis and Visualization

We would interpret how self-supervised signals
help to learn better DST performance. The first
interesting observation is that the key improvement
comes from the slot-dependent context vectors Cij .
If we remove the context vector Cij from Eq (6),
the performance of 1% labeled data setting drops
from 18.31% to 11.07%. The next question is:
what do these contextual vectors influence? First,
context vectors are the weighted-sum of encoder
hidden states, which means they correlate with the
learned attention distribution. Also, context vectors
are used to predict slot gates, which is essential to
be able to trigger the state generator. Therefore,
using self-supervision to align contextual slot vec-
tors may help get better attention distributions and
better slot gate prediction.

Slot Gate As shown in Table 4, gate accuracy
of 1% labeled data improves by around 3% with
self-supervision. We also compare attention dis-
tributions among a model trained with 1% labeled
data, a model trained with 1% labeled data and self-
supervision, and a model trained with 100% labeled
data. We observe a smaller value of KL divergence
with self-supervision (the lower, the better), i.e.,
the attention distribution becomes more similar to
the one learned from 100% labeled data, which we
assume that it is supposed to be a better attention
distribution.

We randomly pick up 2,000 dialogue turns on the
test set to compute the correlation between latent
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Dialogue History
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; hi ; hello , i am trying to find a train that goes from cambridge to
london kings cross . can you help me book a ticket ? ; i can help with
that . can you tell me what day you will be traveling ? ; i need to leave
on saturday after 18:45 . ; the soonest departure time would be at 19:00
on saturday , is that okay ? ; yes , that s perfect . can you book that for
8 people ? ; you are all booked with reference number 144vdbrm . the
cost of 151.04 gbp will be payable at the station . can i be of further
assistance today ? ; i am looking for an expensive place to eat in the
centre , what is there that fits that criteria ? ; there 33 place -s that fit
your criteria . do you have a particular cuisine type in mind so that i can
narrow the results down ? ; it does not matter what kind of food . what
would you recommend for a large group of 8 people ? ; how about don
pasquale pizzeria ? ; that sounds great . please book it for 8 on saturday
at 14:15 and get a reference number . ; unfortunately , the restaurant
does not have a table for that time . can you do it earlier or later ? ;
how about 13:15 ? ; great . that was successful . your reference number
is q0ij8u6u . ; thank you , you’ve been a great help . ; is there anything
else that i could help you with today ? ; no thank you , that s all for
now ! ;

1%
D

at
a

w
/o

Se
lf-

su
pe

rv
is

io
n

; hi ; hello , i am trying to find a train that goes from cambridge to
london kings cross . can you help me book a ticket ? ; i can help with
that . can you tell me what day you will be traveling ? ; i need to leave
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8 people ? ; you are all booked with reference number 144vdbrm . the
cost of 151.04 gbp will be payable at the station . can i be of further
assistance today ? ; i am looking for an expensive place to eat in the
centre , what is there that fits that criteria ? ; there 33 place -s that fit
your criteria . do you have a particular cuisine type in mind so that i can
narrow the results down ? ; it does not matter what kind of food . what
would you recommend for a large group of 8 people ? ; how about don
pasquale pizzeria ? ; that sounds great . please book it for 8 on saturday
at 14:15 and get a reference number . ; unfortunately , the restaurant
does not have a table for that time . can you do it earlier or later ? ;
how about 13:15 ? ; great . that was successful . your reference number
is q0ij8u6u . ; thank you , you’ve been a great help . ; is there anything
else that i could help you with today ? ; no thank you , that s all for
now ! ;
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does not have a table for that time . can you do it earlier or later ? ;
how about 13:15 ? ; great . that was successful . your reference number
is q0ij8u6u . ; thank you , you’ve been a great help . ; is there anything
else that i could help you with today ? ; no thank you , that s all for
now ! ;

Figure 4: Attention visualization for a dialogue history.
The darker color means higher attention weight. The
1% labeled data model with self-supervision learns at-
tention distribution more similar to the one using 100%
labeled data.

learned states (hinit) of 1% labeled data and the
true gating status (G) of the (domain, slot) pairs. As
shown in Figure 3, the x-axis is the cosine similarity
score between two latent dialogue states the model
learned, and the y-axis is the cosine similarity score
of their true gating status. Ideally, when the slot
gate status is similar, then the learned representa-
tions should also have a high similarity score. We
find the model trained with self-supervision (right)
has a higher Pearson correlation coefficient than
the one without (left), increasing from 0.4315 to
0.7035, implying that with self-supervision, mod-
els can learn better state representations.

Copy Attention We also visualize the attention
distributions of a dialogue history in Figure 4. The
darker red color means the higher attention weight

and the higher copy probability. We sum attention
distributions of Aij for all (domain, slot) pairs and
normalize it. The 1% labeled data model with self-
supervision has an attention distribution similar to
the one using 100% labeled data. For example,
both of them focus on some useful slot informa-
tion such as “Cambridge”, “London”, “Saturday”,
and “18:45”. The results of attention distribution
are crucial, especially in our limited labeled set-
ting. The higher the attention weight, the higher
the probability that such word will be copied from
the dialogue history to the output slot values. More
attention visualizations are shown in the Appendix.

Slot Accuracy Analysis We are interested in
which domains and which slots are easier to be
self-supervised learned. As shown in Figure 5, the
x-axis is each (domain, slot) pair, and the y-axis
is its slot accuracy (at each dialogue turn whether
the pair is predicted correctly). The blue bar is
the performance of 1% labeled data without self-
supervision. The orange part is the improvement
by using self-supervision. The green part can be
viewed as the upper-bound of the base model using
100% labeled data.

The top three (domain, slot) pairs that is most
effective with self-supervision are (train, day), and
(train, departure), (train, destination). On the other
hand, self-supervision are less helpful to pairs such
as (hotel, parking), (hotel, internet), (restaurant,
name), and all the pairs in the taxi domain. One
possible reason is that self-supervision is sensitive
to the unlabeled data size, i.e., the major domain
is dominant in the overall performance. It is worth
mentioning that in the taxi domain, all the slots
perform relatively well with 1% labeled data. This
could also explain why the zero-shot performance
reported in Wu et al. (2019a) is much better than
the other four domains.

6 Related Work

Dialogue State Tracking Traditional dialogue
state tracking models combine semantics extracted
by language understanding modules to estimate the
current dialogue states (Williams and Young, 2007;
Thomson and Young, 2010; Wang and Lemon,
2013; Williams, 2014), or to jointly learn speech
understanding (Henderson et al., 2014; Zilka and
Jurcicek, 2015). One drawback is that they rely on
hand-crafted features and complex domain-specific
lexicons besides the ontology, and are difficult to
extend and scale to new domains. As the need
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Figure 5: Slot accuracy visualization for each (domain, slot) pairs. Several slots such as (train, day) and (hotel,
book stay) that using 1% data with self-supervision almost perform the same as using 100% data.

for domain expanding, research direction moves
from single domain DST setting and datasets (Wen
et al., 2017) to multi-domain DST setting and
datasets (Budzianowski et al., 2018; Eric et al.,
2019).

There are three main categories to perform
DST, ontology-based, partial-ontology-based, and
ontology-free approaches. Ontology-based meth-
ods (Mrkšić et al., 2017; Wen et al., 2017; Ras-
togi et al., 2017; Ren et al., 2018; Zhong et al.,
2018; Ramadan et al., 2018; Lee et al., 2019; Chen
et al.) train metric learning functions for context
encoder and ontology encoder, and score over a
predefined slot value candidates. Partial-ontology-
based (Goel et al., 2019; Zhang et al., 2019; Ras-
togi et al., 2019) approaches only use part of an
ontology to perform ranking and use generation
techniques for the remaining slots. Ontology-free
methods (Chao and Lane, 2019; Gao et al., 2019;
Ren et al., 2019; Kumar et al., 2020; Wu et al.,
2019a; Kumar et al., 2020; Kim et al., 2019) rely
on generation with copy mechanism without pre-
defined ontology, which has better generalization
ability to unseen slot values. Our work is closer to
ontology-free approaches because it is reasonable
to assume that we cannot access an ontology under
a limited labeled data scenario.

Self-Supervised Learning There is a wide lit-
erature on self-supervision (Barlow, 1989) and
semi-supervised techniques (Chapelle et al., 2009).
Swayamdipta et al. (2018) introduce a syntactic
scaffold, an approach to incorporate syntactic in-

formation into semantic tasks. Sankar et al. (2019)
found that Seq2Seq models are rarely sensitive to
most perturbations, such as missing or reordering
utterances. Shi et al. (2019) used variational RNN
to extract latent dialogue structure and applied it to
dialogue policy learning. Wu et al. (2019b) intro-
duced a self-supervised learning task, inconsistent
order detection, to explicitly capture the flow of
conversation in dialogues. Jin et al. (2018) use un-
labeled data to train probabilistic distributions over
the vocabulary space as dialogue states for neural
dialogue generation. Su et al. (2020) provide both
supervised and unsupervised learning algorithms to
train language understanding and generation mod-
els in a dual learning setting. Tseng et al. (2019) ap-
plied pseudo-labeling and

Q
-model (Sajjadi et al.,

2016) as additional semi-supervision to bootstrap
state trackers. Our latent consistency comes from
the consistency regularization (Sajjadi et al., 2016;
Berthelot et al., 2019), leveraging the idea that a
model should output the same class distribution
for an unlabeled example even after it has been
augmented.

7 Conclusion

We investigate the potential of using self-
supervised approaches for label-efficient DST in
task-oriented dialogue systems. We strengthen la-
tent consistency by augmenting data with stochas-
tic word dropout and label guessing. We model
conversational behavior by the next response gen-
eration and turn utterance generation tasks. Ex-
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perimental results show that we can significantly
boost the joint goal accuracy with limited labeled
data by exploiting self-supervision. We conduct
comprehensive result analysis to cast light on and
stimulate label-efficient DST.
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