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Abstract

Both syntactic and semantic structures are key
linguistic contextual clues, in which parsing
the latter has been well shown beneficial from
parsing the former. However, few works ever
made an attempt to let semantic parsing help
syntactic parsing. As linguistic representation
formalisms, both syntax and semantics may be
represented in either span (constituent/phrase)
or dependency, on both of which joint learning
was also seldom explored. In this paper, we
propose a novel joint model of syntactic and
semantic parsing on both span and dependency
representations, which incorporates syntactic
information effectively in the encoder of neu-
ral network and benefits from two representa-
tion formalisms in a uniform way. The experi-
ments show that semantics and syntax can ben-
efit each other by optimizing joint objectives.
Our single model achieves new state-of-the-art
or competitive results on both span and depen-
dency semantic parsing on Propbank bench-
marks and both dependency and constituent
syntactic parsing on Penn Treebank.

1 Introduction

This work makes the first attempt to fill the gaps on
syntactic and semantic parsing from jointly consid-
ering its representation forms and their linguistic
processing layers. First, both span (constituent) and
dependency are effective formal representations
for both semantics and syntax, which have been
well studied and discussed from both linguistic and
computational perspective, though few works com-
prehensively considered the impact of either/both
representation styles over the respective parsing

∗ Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100), Key Projects of Na-
tional Natural Science Foundation of China (U1836222 and
61733011), Huawei-SJTU long term AI project, Cutting-edge
Machine reading comprehension and language model.

(Chomsky, 1981; Li et al., 2019b). Second, as se-
mantics is usually considered as a higher layer of
linguistics over syntax, most previous studies focus
on how the latter helps the former. Though there
comes a trend that syntactic clues show less impact
on enhancing semantic parsing since neural models
were introduced (Marcheggiani and Titov, 2017).
In fact, recent works (He et al., 2017; Marcheggiani
et al., 2017) propose syntax-agnostic models for
semantic parsing and achieve competitive and even
state-of-the-art results. However, semantics may
not only benefit from syntax which has been well
known, but syntax may also benefit from seman-
tics, which is an obvious gap in explicit linguistic
structure parsing and few attempts were ever re-
ported. To our best knowledge, few previous works
focus on the relationship between syntax and se-
mantic which only based on dependency structure
(Swayamdipta et al., 2016; Henderson et al., 2013;
Shi et al., 2016).

To fill such a gap, in this work, we further ex-
ploit both strengths of the span and dependency
representation of both semantic role labeling (SRL)
(Strubell et al., 2018) and syntax, and propose a
joint model1 with multi-task learning in a balanced
mode which improves both semantic and syntac-
tic parsing. Moreover, in our model, semantics
is learned in an end-to-end way with a uniform
representation and syntactic parsing is represented
as a joint span structure (Zhou and Zhao, 2019)
relating to head-driven phrase structure grammar
(HPSG) (Pollard and Sag, 1994) which can incor-
porate both head and phrase information of depen-
dency and constituent syntactic parsing.

We verify the effectiveness and applicability of
the proposed model on Propbank semantic parsing
2 in both span style (CoNLL-2005) (Carreras and

1Our code : https://github.com/DoodleJZ/ParsingAll.
2It is also called semantic role labeling (SRL) for the se-

mantic parsing task over the Propbank.
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Màrquez, 2005) and dependency style (CoNLL-
2009) (Hajič et al., 2009) and Penn Treebank (PTB)
(Marcus et al., 1993) for both constituent and de-
pendency syntactic parsing. Our empirical results
show that semantics and syntax can indeed benefit
each other, and our single model reaches new state-
of-the-art or competitive performance for all four
tasks: span and dependency SRL, constituent and
dependency syntactic parsing.

2 Structure Representation

In this section, we introduce a preprocessing
method to handle span and dependency representa-
tion, which have strong inherent linguistic relation
for both syntax and semantics.

For syntactic representation, we use a formal
structure called joint span following (Zhou and
Zhao, 2019) to cover both constituent and head in-
formation of syntactic tree based on HPSG which
is a highly lexicalized, constraint-based grammar
(Pollard and Sag, 1994). For semantic (SRL) repre-
sentation, we propose a unified structure to simplify
the training process and employ SRL constraints
for span arguments to enforce exact inference.

2.1 Syntactic Representation

The joint span structure which is related to the
HEAD FEATURE PRINCIPLE (HFP) of HPSG
(Pollard and Sag, 1994) consists of all its children
phrases in the constituent tree and all dependency
arcs between the head and children in the depen-
dency tree.

For example, in the constituent tree of Figure
1(a), Federal Paper Board is a phrase (1, 3) as-
signed with category NP and in dependency tree,
Board is parent of Federal and Paper, thus in our
joint span structure, the head of phrase (1, 3) is
Board. The node SH (1, 9) in Figure 1(b) as a joint
span is: SH (1, 9) = { SH (1, 3) , SH (4, 8) , SH (9,
9), l(1, 9, <S>) , d(Board, sells) , d(., sells) },
where l(i, j, <S>) denotes category of span (i, j)
with category S and d(r, h) indicates the depen-
dency between the word r and its parent h. At last,
the entire syntactic tree T being a joint span can be
represented as:
SH (T ) = {SH (1, 9), d(sells, root)}3.
Following most of the recent work, we apply the

PTB-SD representation converted by version 3.3.0

3For dependency label of each word, we train a separated
multi-class classifier simultaneously with the parser by opti-
mizing the sum of their objectives.
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Figure 1: Constituent, dependency, and joint span struc-
tures from (Zhou and Zhao, 2019), which is indexed
from 1 to 9 and assigned interval range for each node.
The dotted box represents the same part. The special
category # is assigned to divide the phrase with mul-
tiple heads. Joint span structure contains constitute
phrase and dependency arc. Categ in each node rep-
resents the category of each constituent, and HEAD in-
dicates the head word.

of the Stanford parser. However, this dependency
representation results in around 1% of phrases con-
taining two or three head words. As shown in Fig-
ure 1(a), the phrase (5,8) assigned with a category
NP contains 2 head words of paper and products
in dependency tree. To deal with the problem, we
introduce a special category # to divide the phrase
with multiple heads to meet the criterion that there
is only one head word for each phrase. After this
conversion, only 50 heads are errors in PTB.

Moreover, to simplify the syntactic parsing al-
gorithm, we add a special empty category Ø to
spans to binarize the n-ary nodes and apply a unary
atomic category to deal with the nodes of the unary
chain, which is popularly adopted in constituent
syntactic parsing (Stern et al., 2017; Gaddy et al.,
2018).
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Figure 2: The framework of our joint parsing model.

2.2 Semantic Representation

Similar to the semantic representation of (Li et al.,
2019b), we use predicate-argument-relation tuples
Y ∈ P × A × R, where P = {w1, w2, ..., wn}
is the set of all possible predicate tokens, A =
{(wi, . . . , wj)|1 ≤ i ≤ j ≤ n} includes all
the candidate argument spans and dependencies,
and R is the set of the semantic roles and em-
ploy a null label ε to indicate no relation between
predicate-argument pair candidate. The difference
from that of (Li et al., 2019b) is that in our model,
we predict the span and dependency arguments
at the same time which needs to distinguish the
single word span arguments and dependency ar-
guments. Thus, we represent all the span argu-
ments A = {(wi, . . . , wj)|1 ≤ i ≤ j ≤ n} as
span S(i− 1, j) and all the dependency arguments
A = {(wi)|1 ≤ i ≤ n} as span S(i, i). We set a
special start token at the beginning of sentence.

3 Our Model

3.1 Overview

As shown in Figure 2, our model includes four
modules: token representation, self-attention en-
coder, scorer module, and two decoders. Using an
encoder-decoder backbone, we apply self-attention
encoder (Vaswani et al.) that is modified by posi-
tion partition (Kitaev and Klein, 2018). We take
multi-task learning (MTL) approach sharing the pa-
rameters of token representation and self-attention
encoder. Since we convert two syntactic represen-
tations as joint span structure and apply uniform se-
mantic representation, we only need two decoders,

one for syntactic tree based on joint span syntactic
parsing algorithm (Zhou and Zhao, 2019), another
for uniform SRL.

3.2 Token Representation

In our model, token representation xi is com-
posed of characters, words, and part-of-speech
(POS) representation. For character-level repre-
sentation, we use CharLSTM (Ling et al., 2015).
For word-level representation, we concatenate ran-
domly initialized and pre-trained word embed-
dings. We concatenate character representation
and word representation as our token representa-
tion xi=[xchar;xword;xPOS].

In addition, we also augment our model with
BERT (Devlin et al., 2019) or XLNet (Yang et al.,
2019) as the sole token representation to compare
with other pre-training models. Since BERT and
XLNet are based on sub-word, we only take the
last sub-word vector of the word in the last layer of
BERT or XLNet as our sole token representation
xi.

3.3 Self-Attention Encoder

The encoder in our model is adapted from (Vaswani
et al.) and factor explicit content and position in-
formation in the self-attention process. The in-
put matrices X = [x1, x2, . . . , xn] in which xi is
concatenated with position embedding are trans-
formed by a self-attention encoder. We factor the
model between content and position information
both in self-attention sub-layer and feed-forward
network, whose setting details follow (Kitaev and
Klein, 2018).
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3.4 Scorer Module
Since span and dependency SRL share uniform
representation, we only need three types of scores:
syntactic constituent span, syntactic dependency
head, and semantic role scores.

We first introduce the span representation sij for
both constituent span and semantic role scores. We
define the left end-point vector as concatenation
of the adjacent token

←−
pli = [←−yi ;←−−yi+1], which ←−yi

is constructed by splitting in half the outputs from
the self-attention encoder. Similarly, the right end-
point vector is −→pri = [−−→yi+1;

−→yi ]. Then, the span
representation sij is the differences of the left and
right end-point vectors sij = [−→prj −

←−
pli]

4.
Constituent Span Score We follow the con-
stituent syntactic parsing (Zhou and Zhao, 2019;
Kitaev and Klein, 2018; Gaddy et al., 2018) to train
constituent span scorer. We apply one-layer feed-
forward networks to generate span scores vector,
taking span vector sij as input:

S(i, j) = W2g(LN(W1sij + b1)) + b2,

where LN denotes Layer Normalization, g is the
Rectified Linear Unit nonlinearity. The individual
score of category ` is denoted by

Scateg(i, j, `) = [S(i, j)]`,

where []` indicates the value of corresponding the l-
th element ` of the score vector. The score s(T ) of
the constituent parse tree T is obtained by adding
all scores of span (i, j) with category `:

s(T ) =
∑

(i,j,`)∈T

Scateg(i, j, `).

The goal of constituent syntactic parsing is to
find the tree with the highest score: T̂ =
arg maxT s(T ). We use CKY-style algorithm
(Gaddy et al., 2018) to obtain the tree T̂ in O(n3)
time complexity. This structured prediction prob-
lem is handled with satisfying the margin con-
straint:

s(T ∗) ≥ s(T ) + ∆(T, T ∗),

where T ∗ denotes correct parse tree, and ∆ is the
Hamming loss on category spans with a slight mod-
ification during the dynamic programming search.

4Since we use the same end-point span sij = [−→prj −
←−
pli]

to represent the dependency arguments for our uniform SRL,
we distinguish the left and right end-point vector (

←−
pli and −→pri)

to avoid having the zero vector as a span representation sij .

The objective function is the hinge loss,

J1(θ) = max(0,max
T

[s(T )+∆(T, T ∗)]−s(T ∗)).

Dependency Head Score We predict a the pos-
sible heads and use the biaffine attention mecha-
nism (Dozat and Manning, 2017) to calculate the
score as follow:

αij = hTi Wgj + UThi + V T gj + b,

where αij indicates the child-parent score, W de-
notes the weight matrix of the bi-linear term, U and
V are the weight vectors of the linear term, and b is
the bias item, hi and gi are calculated by a distinct
one-layer perceptron network.

We minimize the negative log-likelihood of the
golden dependency tree Y , which is implemented
as a cross-entropy loss:

J2(θ) = − (logPθ(hi|xi) + logPθ(li|xi, hi)) ,

where Pθ(hi|xi) is the probability of correct parent
node hi for xi, and Pθ(li|xi, hi) is the probability
of the correct dependency label li for the child-
parent pair (xi, hi).
Semantic Role Score To distinguish the cur-
rently considered predicate from its candidate argu-
ments in the context, we employ one-layer percep-
tron to contextualized representation for argument
aij

5 candidates:

aij = g(W3sij + b1),

where g is the Rectified Linear Unit nonlinearity
and sij denotes span representation.

And predicate candidates pk is simply repre-
sented by the outputs from the self-attention en-
coder: pk = yk.

For semantic role, different from (Li et al.,
2019b), we simply adopt concatenation of predi-
cates and arguments representations, and one-layer
feedforward networks to generate semantic role
score:

Φr(p, a) = W5g(LN(W4[pk; aij ] + b4)) + b5,

and the individual score of semantic role label r is
denoted by:

Φr(p, a, r) = [Φr(p, a)]r.

5When i=j, it means a uniform representation of depen-
dency semantic role.
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Since the total of predicate-argument pairs are
O(n3), which is computationally impractical. We
apply candidates pruning method in (Li et al.,
2019b; He et al., 2018a). First of all, we train
separate scorers (φp and φa) for predicates and ar-
guments by two one-layer feedforward networks.
Then, the predicate and argument candidates are
ranked according to their predicted score (φp and
φa), and we select the top np and na predicate and
argument candidates, respectively:

np = min(λpn,mp), na = min(λan,ma),

where λp and λa are pruning rate, and mp and ma

are maximal numbers of candidates.
Finally, the semantic role scorer is trained to

optimize the probability Pθ(ŷ|s) of the predicate-
argument-relation tuples ŷ(p,a,r) ∈ Y given the
sentence s, which can be factorized as:

J3(θ) =
∑

p∈P,a∈A,r∈R
−logPθ(y(p,a,r)|s)

=
∑

p∈P,a∈A,r∈R
−log expφ(p, a, r)∑

r̂∈R expφ(p, a, r̂)

where θ represents the model parameters, and
φ(p, a, r) = φp + φa + Φr(p, a, r) is the score
by the predicate-argument-relation tuple including
predicate score φp, argument score φa and seman-
tic role label score Φr(p, a, r). In addition, we fix
the score of null label φ(p, a, ε) = 0.

At last, we train our scorer for simply minimiz-
ing the overall loss:

Joverall(θ) = J1(θ) + J2(θ) + J3(θ).

3.5 Decoder Module
Decoder for Joint Span Syntax

As the joint span is defined in a recursive way, to
score the root joint span has been equally scoring
all spans and dependencies in syntactic tree.

During testing, we apply the joint span CKY-
style algorithm (Zhou and Zhao, 2019), as shown in
Algorithm 1 to explicitly find the globally highest
score SH(T ) of our joint span syntactic tree T 6.

Also, to control the effect of combining span and
dependency scores, we apply a weight λH7:

s(i, j, `) = λHScateg(i, j, `), d(i, j) = (1−λH)αij ,

6For further details, see (Zhou and Zhao, 2019) which has
discussed the different between constituent syntactic parsing
CKY-style algorithm, how to binarize the joint span tree and
the time, space complexity.

7We also try to incorporate the head information in con-
stituent syntactic training process, namely max-margin loss

Algorithm 1 Joint span syntactic parsing algorithm
Input: sentence leng n, span and dependency score s(i, j, `),
d(r, h), 1 ≤ i ≤ j ≤ n,∀r, h, `

Output: maximum value SH(T ) of tree T
Initialization:
sc[i][j][h] = si[i][j][h] = 0, ∀i, j, h
for len = 1 to n do

for i = 1 to n− len+ 1 do
j = i+ len− 1
if len = 1 then
sc[i][j][i] = si[i][j][i] = max` s(i, j, `)

else
for h = i to j do
splitl = max

i≤r<h
{ max

r≤k<h
{ sc[i][k][r]+

si[k + 1][j][h] }+ d(r, h) }
splitr = max

h<r≤j
{ max

h≤k<r
{ si[i][k][h]+

sc[k + 1][j][r] }+ d(r, h) }
sc[i][j][h] =max { splitl, splitr }+

max
6̀=∅

s(i, j, `)

si[i][j][h] =max { splitl, splitr }+
max

`
s(i, j, `)

end for
end if

end for
end for
SH(T ) = max1≤h≤n { sc[1][n][h] + d(h, root) }

where λH in the range of 0 to 1. In addition, we can
merely generate constituent or dependency syntac-
tic parsing tree by setting λH to 1 or 0, respectively.

Decoder for Uniform Semantic Role Since we
apply uniform span for both dependency and span
semantic role, we use a single dynamic program-
ming decoder to generate two semantic forms fol-
lowing the non-overlapping constraints: span se-
mantic arguments for the same predicate do not
overlap (Punyakanok et al., 2008).

4 Experiments

We evaluate our model on CoNLL-2009 shared
task (Hajič et al., 2009) for dependency-style SRL,
CoNLL-2005 shared task (Carreras and Màrquez,
2005) for span-style SRL both using the Propbank
convention (Palmer et al., 2005), and English Penn
Treebank (PTB) (Marcus et al., 1993) for con-
stituent syntactic parsing, Stanford basic dependen-
cies (SD) representation (de Marneffe et al., 2006)
converted by the Stanford parser8 for dependency
syntactic parsing. We follow standard data splitting:

for both two scores, but it makes the training process become
more complex and unstable. Thus we employ a parameter to
balance two different scores in joint decoder which is easily
implemented with better performance.

8http://nlp.stanford.edu/software/lex-parser.html
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semantic (SRL) and syntactic parsing take section
2-21 of Wall Street Journal (WSJ) data as train-
ing set, SRL takes section 24 as development set
while syntactic parsing takes section 22 as devel-
opment set, SRL takes section 23 of WSJ together
with 3 sections from Brown corpus as test set while
syntactic parsing only takes section 23. POS tags
are predicted using the Stanford tagger (Toutanova
et al., 2003). In addition, we use two SRL setups:
end-to-end and pre-identified predicates.

For the predicate disambiguation task in depen-
dency SRL, we follow (Marcheggiani and Titov,
2017) and use the off-the-shelf disambiguator from
(Roth and Lapata, 2016). For constituent syntactic
parsing, we use the standard evalb9 tool to evalu-
ate the F1 score. For dependency syntactic pars-
ing, following previous work (Dozat and Manning,
2017), we report the results without punctuations of
the labeled and unlabeled attachment scores (LAS,
UAS).

4.1 Setup

Hyperparameters In our experiments, we use
100D GloVe (Pennington et al., 2014) pre-trained
embeddings. For the self-attention encoder, we set
12 self-attention layers and use the same other hy-
perparameters settings as (Kitaev and Klein, 2018).
For semantic role scorer, we use 512-dimensional
MLP layers and 256-dimensional feed-forward
networks. For candidates pruning, we set λp =
0.4 and λa = 0.6 for pruning predicates and ar-
guments, mp = 30 and ma = 300 for max num-
bers of predicates and arguments respectively. For
constituent span scorer, we apply a hidden size
of 250-dimensional feed-forward networks. For
dependency head scorer, we employ two 1024-
dimensional MLP layers with the ReLU as the
activation function for learning specific representa-
tion and a 1024-dimensional parameter matrix for
biaffine attention.

In addition, when augmenting our model with
BERT and XLNet, we set 2 layers of self-attention
for BERT and XLNet.
Training Details we use 0.33 dropout for bi-
affine attention and MLP layers. All models are
trained for up to 150 epochs with batch size 150
on a single NVIDIA GeForce GTX 1080Ti GPU
with Intel i7-7800X CPU. We use the same training
settings as (Kitaev and Klein, 2018) and (Kitaev
et al., 2019).

9http://nlp.cs.nyu.edu/evalb/

Figure 3: Syntactic parsing performance of different
parameter λH on PTB dev set.

Model F1 UAS LAS
separate constituent 93.98 − −
converted dependency 95.38 94.06
separate dependency − 95.80 94.40
joint span λH = 1.0 93.89 − −
joint span λH = 0.0 − 95.90 94.50
joint span λH = 0.8 93.98 95.99 94.53
converted dependency 95.70 94.60

Table 1: PTB dev set performance of joint span syn-
tactic parsing. The converted means the corresponding
dependency syntactic parsing results are from the cor-
responding constituent parse tree using head rules.

4.2 Joint Span Syntactic Parsing

This subsection examines joint span syntactic pars-
ing decoder 3.5 with semantic parsing both of de-
pendency and span. The weight parameter λH
plays an important role to balance the syntactic
span and dependency scores. When λH is set to 0
or 1, the joint span parser works as the dependency-
only parser or constituent-only parser respectively.
λH set to between 0 to 1 indicates the general joint
span syntactic parsing, providing both constituent
and dependency structure prediction. We set the
λH parameter from 0 to 1 increased by 0.1 step as
shown in Figure 3. The best results are achieved
when λH is set to 0.8 which achieves the best per-
formance of both syntactic parsing.

In addition, we compare the joint span syntac-
tic parsing decoder with a separate learning con-
stituent syntactic parsing model which takes the
same token representation, self-attention encoder
and joint learning setting of semantic parsing on
PTB dev set. The constituent syntactic parsing re-
sults are also converted into dependency ones by
PTB-SD for comparison.
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System
SEMspan SEMdep SYNcon SYNdep

F1 F1 F1 UAS LAS

End-to-end
SEMspan 82.27 − − − −
SEMdep − 84.90 − − −
SEMspan,dep 83.50 84.92 − − −
SEMspan,dep, SYNcon 83.81 84.95 93.98 − −
SEMspan,dep, SYNdep 83.13 84.24 − 95.80 94.40
SYNcon,dep − − 93.78 95.92 94.49
SEMspan,dep, SYNcon,dep 83.12 83.90 93.98 95.95 94.51

Given predicate
SEMspan 83.16 − − − −
SEMdep − 88.23 − − −
SEMspan,dep 84.74 88.32 − − −
SEMspan,dep, SYNcon 84.46 88.40 93.78 − −
SEMspan,dep, SYNdep 84.76 87.58 − 95.94 94.54
SEMspan,dep, SYNcon,dep 84.43 87.58 94.07 96.03 94.65

Table 2: Joint learning analysis on CoNLL-2005,
CoNLL-2009, and PTB dev sets.

Table 1 shows that joint span decoder benefit
both of constituent and dependency syntactic pars-
ing. Besides, the comparison also shows that the
directly predicted dependencies from our model
are better than those converted from the predicted
constituent parse trees in UAS term.

4.3 Joint Learning Analysis

Table 2 compares the different joint setting of se-
mantic (SRL) and syntactic parsing to examine
whether semantics and syntax can enjoy their joint
learning. In the end-to-end mode, we find that
constituent syntactic parsing can boost both styles
of semantics while dependency syntactic parsing
cannot. Moreover, the results of the last two rows
indicate that semantics can benefit syntax simply by
optimizing the joint objectives. While in the given
predicate mode, both constituent and dependency
syntactic parsing can enhance SRL. In addition,
joint learning of our uniform SRL performs better
than separate learning of either dependency or span
SRL in both modes.

Overall, joint semantic and constituent syntactic
parsing achieve relatively better SRL results than
the other settings. Thus, the rest of the experiments
are done with multi-task learning of semantics and
constituent syntactic parsing (wo/dep). Since se-
mantics benefits both of two syntactic formalisms
and two syntactic parsing can benefit each other, we
also compare the results of joint learning with se-
mantics and two syntactic parsing models (w/dep).

4.4 Syntactic Parsing Results

In the wo/dep setting, we convert constituent syn-
tactic parsing results into dependency ones by PTB-
SD for comparison and set λH described in 3.5 to

UAS LAS
Dozat and Manning (2017) 95.74 94.08
Ma et al. (2018) 95.87 94.19
Strubell et al. (2018) 94.92 91.87
Fernández-González and Gómez-Rodrı́guez (2019) 96.04 94.43
Zhou and Zhao (2019) 96.09 94.68
Ours converted (wo/dep) 95.20 93.90
Ours (w/dep) 96.15 94.85
Pre-training
Strubell et al. (2018) 96.48 94.40
Ji et al. (2019) 95.97 94.31
Zhou and Zhao (2019) 97.00 95.43
Ours converted (wo/dep) + BERT 96.77 95.72
Ours (w/dep) + BERT 96.90 95.32
Ours converted (wo/dep) + XLNet 97.21 96.25
Ours (w/dep) + XLNet 97.23 95.65

Table 3: Dependency syntactic parsing on WSJ test
set.

LR LP F1
Gaddy et al. (2018) 91.76 92.41 92.08
Stern et al. (2017) 92.57 92.56 92.56
Kitaev and Klein (2018) 93.20 93.90 93.55
Zhou and Zhao (2019) 93.64 93.92 93.78
Ours (wo/dep) 93.56 94.01 93.79
Ours (w/dep) 93.94 94.20 94.07
Pre-training
Kitaev and Klein (2018) 94.85 95.40 95.13
Kitaev et al. (2019) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.70 95.98 95.84
Ours (wo/dep) + BERT 95.27 95.76 95.51
Ours (w/dep) + BERT 95.39 95.64 95.52
Ours (wo/dep) + XLNet 96.01 96.36 96.18
Ours (w/dep) + XLNet 96.10 96.26 96.18

Table 4: Constituent syntactic parsing on WSJ test set

1 for generating constituent syntactic parsing only.
Compared to the existing state-of-the-art mod-

els without pre-training, our performance exceeds
(Zhou and Zhao, 2019) nearly 0.2 in LAS of de-
pendency and 0.3 F1 of constituent syntactic pars-
ing which are considerable improvements on such
strong baselines. Compared with (Strubell et al.,
2018) shows that our joint model setting boosts
both of syntactic parsing and SRL which are con-
sistent with (Shi et al., 2016) that syntactic parsing
and SRL benefit relatively more from each other.

We augment our parser with a larger version of
BERT and XLNet as the sole token representation
to compare with other models. Our single model
in XLNet setting achieving 96.18 F1 score of con-
stituent syntactic parsing, 97.23% UAS and 95.65%
LAS of dependency syntactic parsing.

4.5 Semantic Parsing Results
We present all results using the official evaluation
script from the CoNLL-2005 and CoNLL-2009
shared tasks, and compare our model with previous
state-of-the-art models in Table 5, 6. The upper part
of the tables presents results from end-to-end mode
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System
WSJ Brown

P R F1 P R F1

End-to-end
He et al. (2018a) 81.2 83.9 82.5 69.7 71.9 70.8
Li et al. (2019b) - - 83.0 - - -
Strubell et al. (2018) 84.07 83.16 83.61 73.32 70.56 71.91
Strubell et al. (2018)* 85.53 84.45 84.99 75.8 73.54 74.66

Ours (wo/dep) 83.65 85.48 84.56 72.02 73.08 72.55
Ours (w/dep) 83.54 85.30 84.41 71.84 72.07 71.95

+ Pre-training
He et al. (2018a) 84.8 87.2 86.0 73.9 78.4 76.1
Li et al. (2019b) 85.2 87.5 86.3 74.7 78.1 76.4
Strubell et al. (2018) 86.69 86.42 86.55 78.95 77.17 78.05
Strubell et al. (2018)* 87.13 86.67 86.90 79.02 77.49 78.25

Ours (wo/dep) + BERT 86.77 88.49 87.62 79.06 81.67 80.34
Ours (w/dep) + BERT 86.46 88.23 87.34 77.26 80.20 78.70
Ours (wo/dep) + XLNet 87.65 89.66 88.64 80.77 83.92 82.31
Ours (w/dep) + XLNet 87.48 89.51 88.48 80.46 84.15 82.26

Given predicate
Tan et al. (2017) 84.5 85.2 84.8 73.5 74.6 74.1
He et al. (2018a) - - 83.9 - - 73.7
Ouchi et al. (2018) 84.7 82.3 83.5 76.0 70.4 73.1
Strubell et al. (2018) 84.72 84.57 84.64 74.77 74.32 74.55
Strubell et al. (2018)* 86.02 86.05 86.04 76.65 76.44 76.54

Ours (wo/dep) 85.93 85.76 85.84 76.92 74.55 75.72
Ours (w/dep) 85.61 85.39 85.50 73.9 73.22 73.56

+ Pre-training
He et al. (2018a) - - 87.4 - - 80.4
Ouchi et al. (2018) 88.2 87.0 87.6 79.9 77.5 78.7
Li et al. (2019b) 87.9 87.5 87.7 80.6 80.4 80.5

Ours (wo/dep) + BERT 89.04 88.79 88.91 81.89 80.98 81.43
Ours (w/dep) + BERT 88.94 88.53 88.73 81.66 80.80 81.23
Ours (wo/dep) + XLNet 89.89 89.74 89.81 85.35 84.57 84.96
Ours (w/dep) + XLNet 89.62 89.82 89.72 85.08 84.84 84.96

Table 5: Span SRL results on CoNLL-2005 test sets. *
represents injecting state-of-the-art predicted parses.

System WSJ Brown

P R F1 P R F1

End-to-end
Li et al. (2019b) - - 85.1 - - -

Ours (wo/dep) 84.24 87.55 85.86 76.46 78.52 77.47
Ours (w/dep) 83.73 86.94 85.30 76.21 77.89 77.04

+ Pre-training
He et al. (2018b) 83.9 82.7 83.3 - - -
Cai et al. (2018) 84.7 85.2 85.0 - - 72.5
Li et al. (2019b) 84.5 86.1 85.3 74.6 73.8 74.2

Ours (wo/dep) + BERT 87.40 88.96 88.17 80.32 82.89 81.58
Ours (w/dep) + BERT 86.77 89.14 87.94 79.71 82.40 81.03
Ours (wo/dep) + XLNet 86.58 90.40 88.44 80.96 85.31 83.08
Ours (w/dep) + XLNet 86.35 90.16 88.21 80.90 85.38 83.08

Given predicate
(Kasai et al., 2019) 89.0 88.2 88.6 78.0 77.2 77.6

Ours (wo/dep) 88.73 89.83 89.28 82.46 83.20 82.82
Ours (w/dep) 88.02 89.03 88.52 80.98 82.10 81.54

+ Pre-training
He et al. (2018b) 89.7 89.3 89.5 81.9 76.9 79.3
Cai et al. (2018) 89.9 89.2 89.6 79.8 78.3 79.0
Li et al. (2019b) 89.6 91.2 90.4 81.7 81.4 81.5
Kasai et al. (2019) 90.3 90.0 90.2 81.0 80.5 80.8
Lyu et al. (2019) - - 90.99 - - 82.18
Chen et al. (2019) 90.74 91.38 91.06 82.66 82.78 82.72
Cai and Lapata (2019) 91.7 90.8 91.2 83.2 81.9 82.5

Ours (wo/dep) + BERT 91.21 91.19 91.20 85.65 86.09 85.87
Ours (w/dep) + BERT 91.14 91.03 91.09 85.18 85.41 85.29
Ours (wo/dep) + XLNet 91.16 91.60 91.38 87.04 87.54 87.29
Ours (w/dep) + XLNet 90.80 91.74 91.27 86.43 87.25 86.84

Table 6: Dependency SRL results on CoNLL-2009
Propbank test sets.

while the lower part shows the results of given
predicate mode to compare to more previous works
with pre-identified predicates. In given predicate
mode, we simply replace predicate candidates with
the gold predicates without other modification on
the input or encoder.
Span SRL Results Table 5 shows results on
CoNLL-2005 in-domain (WSJ) and out-domain
(Brown) test sets. It is worth noting that (Strubell
et al., 2018) injects state-of-the-art predicted parses
in terms of setting of (Dozat and Manning, 2017)
at test time and aims to use syntactic information
to help SRL. While our model not only excludes
other auxiliary information during test time but
also benefits both syntax and semantics. We ob-
tain comparable results with the state-of-the-art
method (Strubell et al., 2018) and outperform all
recent models without additional information in
test time. After incorporating with pre-training
contextual representations, our model achieves new
state-of-the-art both of end-to-end and given predi-
cate mode and both of in-domain and out-domain.
Dependency SRL Results Table 6 presents the
results on CoNLL-2009. We obtain new state-
of-the-art both of end-to-end and given predicate
mode and both of in-domain and out-domain text.
These results demonstrate that our improved uni-
form SRL representation can be adapted to perform
dependency SRL and achieves impressive perfor-
mance gains.

5 Related Work

In the early work of SRL, most of the researchers
focus on feature engineering based on training cor-
pus. The traditional approaches to SRL focused
on developing rich sets of linguistic features tem-
plates and then employ linear classifiers such as
SVM (Zhao et al., 2009a). With the impressive suc-
cess of deep neural networks in various NLP tasks
(Luo and Zhao, 2020; Li et al., 2020; He et al.,
2019; Luo et al., 2020b; Zhang et al., 2018a; Li
et al., 2018a; Zhang et al., 2018b; Luo et al., 2020a;
Zhang et al., 2019; Li et al., 2019a; Zhao and Kit,
2008; Zhao et al., 2009b, 2013), considerable at-
tention has been paid to syntactic features (Strubell
et al., 2018; Kasai et al., 2019; He et al., 2018b).

(Lewis et al., 2015; Strubell et al., 2018; Kasai
et al., 2019; He et al., 2018b; Li et al., 2018b)
modeled syntactic parsing and SRL jointly, (Lewis
et al., 2015) jointly modeled SRL and CCG parsing,
and (Kasai et al., 2019) combined the supertags
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extracted from dependency parses with SRL .
There are a few studies on joint learning of syn-

tactic and semantic parsing which only focus on
dependency structure (Swayamdipta et al., 2016;
Henderson et al., 2013; Shi et al., 2016). Such as
(Henderson et al., 2013) based on dependency struc-
ture only focus on shared representation without
explicitly analyzing whether syntactic and seman-
tic parsing can benefit each other. The ablation
studies results show joint learning can benefit se-
mantic parsing while the single syntactic parsing
model was insignificantly worse (0.2%) than the
joint model. (Shi et al., 2016) only made a brief
attempt on Chinese Semantic Treebank to show
the mutual benefits between dependency syntax
and semantic roles. Instead, our work focuses on
whether syntactic and semantic parsing can benefit
each other both on span and dependency in a more
general way.

Besides, both span and dependency are effec-
tive formal representations for both semantics and
syntax. On one hand, researchers are interested in
two forms of SRL models that may benefit from
each other rather than their separated development,
which has been roughly discussed in (Johansson
and Nugues, 2008). (He et al., 2018a) is the first
to apply span-graph structure based on contextu-
alized span representations to span SRL and (Li
et al., 2019b) built on these span representations
achieves state-of-art results on both span and de-
pendency SRL using the same model but training
individually. On the other hand, researchers have
discussed how to encode lexical dependencies in
phrase structures, like lexicalized tree adjoining
grammar (LTAG) (Schabes et al., 1988) and head-
driven phrase structure grammar (HPSG) (Pollard
and Sag, 1994).

6 Conclusions

This paper presents the first joint learning model
which is evaluated on four tasks: span and depen-
dency SRL, constituent and dependency syntac-
tic parsing. We exploit the relationship between
semantics and syntax and conclude that not only
syntax can help semantics but also semantics can
improve syntax performance. Besides, we propose
two structure representations, uniform SRL and
joint span of syntactic structure, to combine the
span and dependency forms. From experiments on
these four parsing tasks, our single model achieves
state-of-the-art or competitive results.

References
Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.

A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 2753–2765, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Rui Cai and Mirella Lapata. 2019. Semi-Supervised
Semantic Role Labeling with Cross-View Training.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-
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