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Abstract

The recently proposed ALFRED challenge
task aims for a virtual robotic agent to com-
plete complex multi-step everyday tasks in a
virtual home environment from high-level nat-
ural language directives, such as “put a hot
piece of bread on a plate”. Currently, the
best-performing models are able to complete
less than 5% of these tasks successfully. In
this work we focus on modeling the translation
problem of converting natural language direc-
tives into detailed multi-step sequences of ac-
tions that accomplish those goals in the virtual
environment. We empirically demonstrate that
it is possible to generate gold multi-step plans
from language directives alone without any vi-
sual input in 26% of unseen cases. When a
small amount of visual information is incorpo-
rated, namely the starting location in the vir-
tual environment, our best-performing GPT-2
model successfully generates gold command
sequences in 58% of cases. Our results sug-
gest that contextualized language models may
provide strong visual semantic planning mod-
ules for grounded virtual agents.

1 Introduction

Simulated virtual environments with steadily in-
creasing fidelity are allowing virtual agents to learn
to perform high-level tasks that couple language un-
derstanding, visual planning, and embodied reason-
ing through sensorimotor grounded representations
(Gordon et al., 2018; Puig et al., 2018; Wijmans
et al., 2019). The ALFRED challenge task recently
proposed by Shridhar et al. (2020) requires a virtual
robotic agent to complete everyday tasks (such as

“put cold apple slices on the table”) in one of 120 in-
teractive virtual home environments by generating
and executing complex visually-grounded seman-
tic plans that involve movable objects, irreversible
state changes, and an egocentric viewpoint. Inte-
grating natural language task directives with one

1 2 3

4 5 6

{goto, countertop} {pick up, fork} {goto, sink basin}

{clean, fork} {goto, drawer} {put, fork, drawer}

“Wash the fork and put it away”Directive

Figure 1: An example of the ALFRED grounded language
task. In this work, we focus on visual semantic planning –
from the textual directive alone (top), our model predicts a
visual semantic plan of {command, argument} tuples (cap-
tions) that matches the gold plan without requiring visual input
(images).

of the most complex interactive virtual agent envi-
ronments to date is challenging, with the current
best performing systems successfully completing
less than 5% of ALFRED tasks in unseen environ-
ments1, while common baseline models generally
complete less than 1% of tasks successfully.

In this work we explore the visual semantic plan-
ning task in ALFRED, where the high-level natu-
ral language task directive is converted into a de-
tailed sequence of actions in the AI2-THOR 2.0
virtual environment (Kolve et al., 2017) that will
accomplish that goal (see Figure 1). In contrast to
previous approaches to visual semantic planning
(e.g. Zhu et al., 2017; Fried et al., 2018; Fang et al.,
2019), we explore the performance limits of this
task solely using goals expressed in natural lan-
guage as input – that is, without visual input from
the virtual environment. The contributions of this

1https://leaderboard.allenai.org/
alfred/

https://leaderboard.allenai.org/alfred/
https://leaderboard.allenai.org/alfred/
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work are:

1. We model visual semantic planning as a
sequence-to-sequence translation problem,
and demonstrate that our best-performing
GPT-2 model can translate between natural
language directives and sequences of gold vi-
sual semantic plans in 26% of cases without
visual input.

2. We show that when a small amount of visual
input is available – namely, the starting lo-
cation in the virtual environment – our best
model can successfully predict 58% of unseen
visual semantic plans.

3. Our detailed error analysis suggests that re-
pairing predicted plans with correct locations
and fixing artifacts in the ALFRED dataset
could substantially increase performance of
this and future models.

2 Related Work

Models for completing multi-modal tasks can
achieve surprising performance using information
from only a single modality. The Room-to-Room
(R2R) visual language navigation task (Anderson
et al., 2018) requires agents to traverse a discrete
scene graph and arrive at a destination described
using natural language. In ablation studies, Thoma-
son et al. (2019) found that models using input
from a single modality (either vision or language)
often performed nearly as good as or better than
their multi-modal counterparts on R2R and other
visual QA tasks. Similarly, Hu et al. (2019) found
that two state-of-the-art multi-modal agents per-
formed significantly worse on R2R when using
both linguistic and visual input instead of a single
modality, while also showing that performance can
improve by combining separate-modality models
into mixture-of-expert ensembles.

Where R2R requires traversing a static scene
graph using locomotive actions, ALFRED is a
dynamic environment requiring object interaction
for task completion, and has a substantially richer
action sequence space that includes 8 high-level ac-
tions. This work extends these past comparisons of
unimodal vs. multimodel performance by demon-
strating that strong performance on visual seman-
tic planning is possible in a vastly more complex
virtual environment using language input alone,
through the use of generative language models.

3 Models and Embeddings

We approach the task of converting a natural lan-
guage directive into a visual semantic plan – a
series of commands that achieve that directive in a
virtual environment – as a purely textual sequence-
to-sequence translation problem, similar to conver-
sion from Text-to-SQL (e.g. Yu et al., 2018; Guo
et al., 2019). Here we examine two embedding
methods that encode language directives and de-
code command sequences.

RNN: A baseline encoder-decoder network for
sequence-to-sequence translation tasks (e.g. Bah-
danau et al., 2015), implemented using recurrent
neural networks (RNNs). One RNN serves as an
encoder for the input sequence, here the tokens
representing the natural language directive. A de-
coder RNN network with attention uses the context
vector of the encoder network to translate into out-
put sequences of command triples representing the
visual semantic plan. Both encoder and decoder
networks are pre-initialized with 300-dimensional
GLoVE embeddings (Pennington et al., 2014).

GPT-2: The OpenAI GPT-2 transformer model
(Radford et al., 2019), used in a text genera-
tion capacity. We fine-tune the model on se-
quences of natural languge directives paired with
gold command sequences separated by delimiters
(i.e. “<Directive> [SEP] <CommandTuple1>
[CSEP] <CommandTuple2> [CSEP] ... [CSEP]
<CommandTupleN> [EOS]”). During evaluation
we provide the prompt “<Directive> [SEP]”, and
the model generates a command sequence until
producing the end-of-sequence (EOS) marker. We
make use of nucleus sampling (Holtzman et al.,
2020) to select only tokens from the set of most
likely tokens during generation, with p = 0.9,
but do not make use of top-K filtering (Fan et al.,
2018) or penalize repetitive n-grams, which are
commonly used in text generation tasks, but are
inappropriate here for converting to the often repet-
itive (at the scale of bigrams) command sequences.
For tractability we make use of the GPT-2 Medium
pre-trained model, which contains 24 layers, 16
attention heads, and 325M parameters. During
evaluation, task directives are sorted into same-
length batches to prevent generation artifacts from
padding, and maintain high generation quality.2

2Negative results not reported for space: We hypothe-
sized that separating visual semantic plans into variablized
action-sequence templates and variable-value assignments rep-
resented as separate decoders would help models learn to
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Triple Components Full Entire Visual Semantic Plans
Model Command Arg1 Arg2 Triples Full Sequence Full Minus First

Strict Scoring
RNN 89.6% 64.8% 58.4% 60.2% 17.1% 43.6%
GPT-2 90.8% 69.9% 63.8% 65.8% 22.2% 53.4%

Permissive Scoring
RNN 89.6% 70.6% 61.4% 65.9% 23.6% 26.1%
GPT-2 90.8% 73.8% 65.1% 69.4% 26.1% 58.2%

Table 1: Average prediction accuracy on the unseen test set broken down by triple components, full triples, and full visual
semantic plans. Full Sequence accuracy represents the proportion of predicted visual semantic plans that perfectly match gold
plans. Full Minus First represents the same, but omitting the first tuple, typically a {goto, location} that moves the agent to the
starting location in the virtual environment (see description in text).
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RNN 59 81 60 77 69 83 67 91 66
GPT-2 63 84 66 72 77 82 70 94 69

Table 2: Average triple prediction accuracy on the test set
broken down into each of the 8 possible ALFRED commands.
Values represent percentages. Goto has an N of 24k, Pick up
an N of 11k, and Put an N of 10k. All other commands occur
approximately 1000 times in the test dataset.

4 Experiments

Dataset: The ALFRED dataset contains 6,574
gold command sequences representing visual se-
mantic plans, each paired with 3 natural language
directives describing the goal of those command
sequences (e.g. ‘‘put a cold slice of lettuce on the
table”) authored by mechanical turkers. High-level
command sequences range from 3 to 20 commands
(average 7.5), and are divided into 7 high-level
categories (such as examine object in light, pick
two objects then place, and pick then cool then
place). Commands are represented as triples that
pair one of 8 actions (goto, pickup, put, cool, heat,
clean, slice, and toggle) with up to two arguments,
typically the object of the action (such as “slic-
ing lettuce”) and an optional receptacle (such as
“putting a spoon in a mug”). Arguments can refer-
ence 58 possible objects (e.g. butter knife, chair, or
apple) and 26 receptacles (e.g. fridge, microwave,
or bowl). To prevent knowledge of the small un-
seen test set for the full task, here we redivide the
large training set into three smaller train, develop-
ment, and test sets of 7,793, 5,661, and 7,571 gold-

separate the general formula of action sequences with spe-
cific instances of objects in action sequences, which has been
shown to help in Text-to-SQL translation (Guo et al., 2019).
Pilot experiments with both RNNs and transformer models
yielded slightly lower results than vanilla models. Language
modeling: In addition to GPT-2 we also piloted XLNET, but
perplexity remained high even after significant fine-tuning.

directive/command-sequence pairs, respectively.

Processing Pipeline: Command sequences are
read in as sequences of {command, arg1, arg2}
triples, converted into natural language using com-
pletion heuristics (e.g. “{put, spoon, mug}” →

“put the spoon in the mug”, and augmented with
argument delimiters to aid parsing (e.g. “put
<arg1> the spoon <arg2> in the mug”). Input
directives are tokenized, but receive no other pre-
processing. Generated strings from all models are
post-processed for common errors in sequence-
to-sequence models, including token doubling,
completing missing bigrams (e.g. “pick <arg1>”
→ “pick up <arg1>”), and heuristics for adding
missing argument tags. Post-processed output se-
quences are then parsed and converted back into
{command, arg1, arg2} tuples for evaluation.

Evaluation Metrics: Performance in translating
between natural language directives and sequences
of command triples is evaluated in terms of ac-
curacy at the command-element (command, argu-
ment1, argument2), triple, and full-sequence level.
Because our generation includes only textual input
and no visual input for a given virtual environment,
commands may be generated that reference objects
that do not exist in a scene (such as generating an
action to toggle a “lamp” to examine an object,
when the environment specifically contains a “desk
lamp”). As such we include two scoring metrics: a
strict metric that requires exact matching of each
token in an argument to be counted as correct, and
a permissive metric that requires matching only a
single token within an argument to be correct.

Strict Scoring butter knife 6= knife
Permissive Scoring desk lamp = lamp

All accuracy scoring is binary. Triples receive
a score of one if all elements in a given gold
and predicted triple are identical, and zero oth-
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Prop. Error Class Description Example Errors

Incorrect Arguments Predicted wrong location:
45% Predicted wrong location (G) ... slice lettuce, put knife on countertop, put lettuce in fridge, ...
4% Predicted wrong object (P) ... slice lettuce, put knife in microwave, put lettuce in fridge, ...

Incorrect Triples Predicted extra (not harmful) action†, and introduced offset error‡

22% Offset due to extra/missing actions Instructions: Put a mug with a spoon in the sink.
22% Predicted extra (incorrect) actions (G) ... pick up mug, put mug in sink basin‡

12% Predicted missed actions (P) ... pick up mug, go to sink basin†, put mug in sink basin‡

7% Predicted extra (not harmful) actions
5% Order of actions swapped

Instruction Errors Gold Instructions Incomplete:
17% Gold Instructions Incorrect Instructions: Put a heated mug in the microwave.
13% Gold Instructions Incomplete (G) ... go to microwave, heat mug, go to cabinet, put mug in cabinet

Table 3: (left) Common classes of prediction errors in the GPT-2 model, and their proportions in 100 predictions from the
development set. (right) Example errors, where (G) and (P) represent subsets of gold and predicted visual semantic plans,
respectively.

erwise. Full-sequence scoring directly compares
<CommandTuplei> for each i in the gold and pre-
dicted sequences, and receives a score of one only
if all triples are identical and in identical locations
i, and zero otherwise.3

4.1 Results
Performance of the embedding models is reported
in Table 1, broken down by triple components, full
triples, and full sequences. Both models achieve
approximately 90% accuracy in predicting the cor-
rect commands, in the correct location i in the se-
quence. Arguments are predicted less accurately,
with the RNN model predicting 65% and 58% of
first and second arguments correctly, respectively.
The GPT-2 model increases performance on argu-
ment prediction by approximately +5%, reaching
70% and 64% under strict match scoring. Permis-
sive scoring, allowing for partial matches between
arguments (e.g. “lamp” and “desk lamp” are con-
sidered equivalent) further increases argument scor-
ing to approximately 74% and 65% in the best
model. Scoring by complete triples in the correct
location i shows a similar pattern of performance,
with the best-scoring GPT-2 model achieving 66%
accuracy using strict scoring, and 69% under per-
missive scoring, with triple accuracy broken down
by command shown in Table 2.

Fully-correct predicted sequences of commands
that perfectly match gold visual semantic plans us-
ing only the text directives as input, – i.e. without

3Tuning and Computational Resources: RNN models re-
quired approximately 100k epochs of training to reach con-
vergence over 12 hours, requiring 8GB of GPU RAM. GPT-2
models asymptoted performance at 25 epochs, requiring 6
hours of training and 16GB of GPU RAM. All experiments
were conducted using an NVIDIA Titan RTX.

visual input from the virtual environment – occur
in 17% of unseen test cases with the RNN model,
and 22% of cases with the GPT-2 model, highlight-
ing how detailed and accurate visual plans can be
constructed from text input alone in a large subset
of cases. In analyzing the visual semantic plans,
the first command is typically to move the virtual
agent to a starting location that contains the first
object it must interact with (for example, moving
to the countertop, where a potato is resting in the
initialized virtual environment, to begin a direc-
tive about slicing, washing, and heating a potato
slice). If we supply the model with this single piece
of visual information from the environment, full-
sequence prediction accuracy for all models more
than doubles, increasing to 53% in the strict con-
dition, and 58% with permissive scoring, for the
best-performing GPT-2 model.

4.2 Error Analysis
Table 3 shows an analysis of common categories of
errors in 100 directive/visual semantic plan pairs
randomly drawn from the development set that
were not answered correctly by the best-performing
GPT-2 model that includes the starting location for
the first step. As expected, a primary source of error
is the lack of visual input in generating the visual
plans, with the most common error, predicting the
wrong location in an argument, occuring in 45%
of errors.4 Conversely, predicting the wrong ob-
ject to interact with occurred in only 4% of errors,

4An unexpected source of error is that our GPT-2 planner
frequently prefers to store used cutlery in either the fridge or
microwave – creating a moderate fire hazard. Interestingly,
this behavior appears learned from the training data, which
frequently stores cutlery in unusual locations. Disagreements
on discarded cutlery locations occurred in 15% of all errors.
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as this information is often implicitly or explicitly
supplied in the text directive. This suggests aug-
menting the model with object locations from the
environment could mend prediction errors in nearly
half of all errorful plans.

The GPT-2 model predicted additional (incor-
rect) actions in 22% of errorful predictions, while
missing key actions in 12% of errors, causing offset
errors in sequence matching that reduced overall
performance in nearly a quarter of cases. In a small
number of cases, the model predicted extra actions
that were not harmful to completing the goal, or
switched the order of sets of actions that could be
completed independently (such as picking up and
moving two different objects to a single location).
In both cases the virtual agent would likely have
been successful in completing the directive if fol-
lowing these plans.

A final significant source of error includes in-
consistencies in the crowdsourced text directives
or gold visual semantic plans themselves. In 17%
of errors, the gold task directive had a mismatch
with the objects referenced in the gold commands
(e.g. the directive referenced a watering can, where
the gold annotation references a tea pot), and au-
tomated scoring marked the predicted sequence
as incorrect. Similarly, in 13% of cases, the task
directive failed to mention one or more subtasks
(e.g. the directive is “turn on a light”, but the gold
command sequence also includes first retrieving a
specific object to examine in the light). This sug-
gests that nearly one-third of errors may be due
to issues in the evaluation data, and that overall
visual semantic plan generation performance may
be significantly higher.

5 Data Dependence and Few-Shot
Learning

To examine how performance varies with the
amount of training data available, we randomly
downsampled the amount of training data to 25%,
10%, and 1% of its original size. This analysis,
shown in Figure 2, demonstrates that relatively high
performance on the visual semantic prediction task
is still possible with comparatively little training
data. When only 10% of the original training data is
used, average prediction accuracy reduces by 24%,
but still reaches 44%. In the few-shot case (1%
downsampling), where each of the 7 ALFRED
tasks observes only 4 gold command sequences
each (for a total of 12 natural language directives
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Figure 2: Average prediction accuracy as a function of train-
ing set size (100%, 25%, 10%, or 1% of the full training set)
for the GPT-2 model on the test set. Even with a large re-
diction in training data, the model is still able to accurrately
predict a large number of visual semantic plans. Performance
represents the permissive scoring metric in the “full minus
first” condition in Table 1.

per task) during training, the GPT-2 model is still
able to generate an accurate visual semantic plan
in 8% of cases. Given that large pre-trained lan-
guage models have been shown to encode a variety
of commonsense knowledge as-is, without fine-
tuning (Petroni et al., 2019), it is possible that some
of the model’s few-shot performance on ALFRED
may be due to an existing knowledge of similar
common everyday tasks.

6 Conclusion

We empirically demonstrate that detailed gold vi-
sual semantic plans can be generated for 26% of
unseen task directives in the ALFRED challenge
using a large pre-trained language model with-
out visual input from the simulated environment,
where 58% can be generated if starting locations
are known. We envision these plans may be used
either as-is, or as an initial “hypothetical” plan of
how the model believes the task might be solved in
a generic environment, that is then modified based
on visual or other input from a specific environment
to further increase overall accuracy.

We release our planner code, data, predictions,
and analyses for incorporation into end-to-end sys-
tems at: http://github.com/cognitiveailab/

alfred-gpt2/ .
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