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Abstract
Task-agnostic forms of data augmentation
have proven widely effective in computer vi-
sion, even on pretrained models. In NLP simi-
lar results are reported most commonly for low
data regimes, non-pretrained models, or situa-
tionally for pretrained models. In this paper
we ask how effective these techniques really
are when applied to pretrained transformers.
Using two popular varieties of task-agnostic
data augmentation (not tailored to any partic-
ular task), Easy Data Augmentation (Wei and
Zou, 2019) and Back-Translation (Sennrich
et al., 2015), we conduct a systematic exam-
ination of their effects across 5 classification
tasks, 6 datasets, and 3 variants of modern
pretrained transformers, including BERT, XL-
NET, and ROBERTA. We observe a nega-
tive result, finding that techniques which pre-
viously reported strong improvements for non-
pretrained models fail to consistently improve
performance for pretrained transformers, even
when training data is limited. We hope this
empirical analysis helps inform practitioners
where data augmentation techniques may con-
fer improvements.

1 Introduction
“Task-agnostic” data augmentations — those which
are not tailored to a task, but are broadly applicable
across the visual or textual domain — have long
been a staple of machine learning. Task-agnostic
data augmentation techniques for computer vision,
such as image translation, rotation, shearing, and
contrast jittering, have achieved considerable suc-
cess, given their ease of use, and wide-spread appli-
cability (Cubuk et al., 2018; Perez and Wang, 2017).
In natural language processing, benefits of data aug-
mentation have usually been observed where the
augmentations are suited to the task: as with back-
translation for machine translation (Edunov et al.,
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2018; Xia et al., 2019), or negative sampling for
question answering and document retrieval (Zhang
et al., 2017; Yang et al., 2019a; Xiong et al., 2020).
Outside of application-tailored augmentations, im-
provements are primarily reported on autoregres-
sive models without unsupervised pretraining or
contextual embeddings, such as LSTMs and CNNs,
and even then in low data regimes (Zhang et al.,
2015; Coulombe, 2018; Wei and Zou, 2019; Yu
et al., 2018). Additionally, in computer vision task-
agnostic augmentations continue to report bene-
fits when applied to pretrained representations (Gu
et al., 2019). However, in NLP it is less clear
whether these general augmentations benefit mod-
ern Transformer architectures with unsupervised
pretraining at scale.

We pose the question: to what extent do mod-
ern NLP models benefit from task-agnostic data
augmentations? In this paper, we provide empir-
ical results across a variety of tasks, datasets, ar-
chitectures, and popular augmentation strategies.
Among data augmentation techniques, we select
Easy Data Augmentation (Wei and Zou, 2019) and
Back-Translation (Sennrich et al., 2015); EDA and
BT respectively. Both are popular task-agnostic
options, and report significant gains for LSTMs on
a wide variety of datasets. We apply these tech-
niques to 6 classification-oriented datasets, span-
ning 5 tasks with varying linguistic objectives and
complexity. For fair comparison, we tune each
of BERT, XLNET, and ROBERTA extensively,
allocating an equal budget of trial runs to mod-
els trained with and without augmentations. As a
separate dimension, we also vary the availability
of training data to understand under what specific
conditions data augmentation is beneficial.

Our findings demonstrate that these popular task-
agnostic data augmentations provide only sparse
and inconsistent improvements for modern pre-
trained transformers on many simple classification
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Dataset c l |Dtrain|

SST-2 (Socher et al., 2013) 2 19 7.6k
SUBJ (Pang and Lee, 2004) 2 23 8k
RT (Pang and Lee, 2005) 2 21 8.7k
MNLI (Williams et al., 2017) 3 2x17 8k
STS-B (Baudiš et al., 2016) 5 2x12 6.6k
TREC (Li and Roth, 2002) 6 10 3.9k

Table 1: Summary statistics for each dataset. c: The
number of classes. l: The average sequence length in
word tokens. Dtrain: The training set size after random
sampling up to 10k unique examples (if available), and
subtracting 2k for dev and test sets.

tasks. They further lend empirical evidence to the
hypothesis that task-agnostic data augmentations
may be significantly less effective on pretrained
transformers for other classification and NLP tasks.
Observed patterns suggest that the scale of pretrain-
ing may be the critical factor replacing the need for
linguistic variety that augmentations confer. We
hope our work provides guidance to ML practition-
ers in deciding when to use data augmentation and
encourages further examination of its relationship
to unsupervised pretraining.

2 Experimental Methodology
2.1 Datasets
Following Wei and Zou (2019) and Wu et al.
(2019) we adopt 4 classification datasets on which
general data augmentation techniques demon-
strated strong performance gains, and include 2
more from the GLUE benchmark (Wang et al.,
2018). As shown in Table 1, a variety of classi-
fication sizes, sequence lengths, and vocabulary
sizes are represented. Included tasks are senti-
ment analysis (SST-2, RT), subjectivity detection
(SUBJ), question type classification (TREC), se-
mantic similarity (STS-B) and natural language
inference (MNLI).

2.2 Augmentation Techniques
Among the many variations of data augmentation
two families are widely used in NLP: back transla-
tion and text editing.

Back Translation (BT): We use an English
to German machine translation model (Ott et al.,
2018) and a German to English model (Ng et al.,
2019).1 We selected German due to its strong re-
sults as a pairing with English for back transla-
tion, as reported in Yu et al. (2018); Sennrich et al.

1Adapted from https://ai.facebook.com/
tools/fairseq/.

(2015). We translate each English sentence to one
German sentence and back to six candidate English
sentences. From these sentence candidates we ob-
tain the best results sampling the most distant sen-
tence from the original English sentence, measured
by word edit distance. From manual inspection this
approach produced the most diverse paraphrases,
though this strategy needs to be tailored to the ma-
chine translation systems employed. The overall
aim of this strategy is to maximize linguistic variety
while retaining sentence coherency.

Easy Data Augmentation (EDA): Following
Wei and Zou (2019) we employ a combination of
popular text editing techniques that have shown
strong performance on LSTMs.2 Text edits include
synonym replacement, random swap, random inser-
tion, and random deletion. To improve upon EDA
further, we enforce part-of-speech consistency for
synonym selection. As an example, the verb “back”
in the phrase “to back the government” will not be
replaced by “rear”, which is a synonym of the noun
“back”.

2.3 Experimental Setup
To conduct a fair assessment of each data augmen-
tation technique, we ensure three properties of our
experimental setup: (I) our tuning procedure mim-
ics that of a machine learning practitioner; (II) the
selected hyperparameters cannot be significantly
improved as to change our conclusions; and (III)
each strategy is evaluated with an equal number of
trial runs.3

We experiment with 3 types of Transformers
(Vaswani et al., 2017): BERT-BASE (Devlin et al.,
2019), XLNET-BASE (Yang et al., 2019b), and
ROBERTA-BASE (Liu et al., 2019). These mod-
els each use slightly different pretraining strate-
gies. BERT and ROBERTA are both pretrained
with Masked Language Modeling, but with dif-
ferent auxiliary objectives and number of training
steps. XLNET is pretrained with its own “Per-
mutation Language Modeling”. For each model
and dataset 1k examples are randomly selected for
each of the validation and test sets. Separately from
these fixed sets, we iterate over five training data
sizes N ∈ {500, 1000, 2000, 3000,Full} to simu-
late data scarcity.

2We use the implementation at https://github.
com/jasonwei20/eda_nlp.

3We verify property (II), that the tuning budget is sufficient,
by doubling the allocated trials and observing the magnitude
of changes (see Appendix B).

https://ai.facebook.com/tools/fairseq/
https://ai.facebook.com/tools/fairseq/
https://github.com/jasonwei20/eda_nlp
https://github.com/jasonwei20/eda_nlp
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Algorithm 1 EXPERIMENTAL DESIGN

Input: Model M , Dataset D, Train size N
Output: Mean and standard deviation for test accuracies

(µNoDA, σNoDA), (µBT , σBT ), (µEDA, σEDA)
1: T1, T2,K ← 3, 20, 30
2: Dtrain← sample(shuffle(D), N )
3: for each Augmentation α in [NoDA,BT,EDA] do
4: // Find best hyperparameters Hα for augmentation α
5: Hα ← RANDOMSEARCH(M , Dtrain, K, T1)
6: Mα ←M.USE(Hα)
7: // Compute validation scores for augmentation α
8: for s = 1 to T2 do
9: SCORES← TRAIN(Mα, Dtrain, seed=s)

10: end for
11: // Select test scores using best validation scores
12: µα, σα ← SELECTBEST(Scores, 10)
13: end for
14: return (µNoDA, σNoDA), (µBT , σBT ), (µEDA,

σEDA)

Given a model M , dataset D, and training set
size N , we allocate an equal number of training
runs to No Augmentation (NO DA), EDA, and BT.
For each setting, we define continuous ranges for
the learning rate, dropout, and number of epochs.
EDA and BT settings also tune a “dosage” param-
eter governing augmentation τ ∈ {0.5, 1, 1.5, 2}.
N×τ is the quantity of augmented examples added
to the original training set.

First, we conduct a RANDOMSEARCH for K =
30 parameter choices, each repeated for T1 = 3 tri-
als with differing random training seed. As shown
in Algorithm 1 this stage returns the optimal hyper-
parameter choices Hα for each augmentation type
α ∈ {NoDA, BT, EDA}. The best hyperparame-
ters are selected by mean validation accuracy over
random seed trials. In the second stage, a model
with these best hyperparameters (Algorithm 1 line
6) is trained over T2 = 20 random seed trials.4

Finally, the 10 best trials by validation accuracy are
selected for each per setting (line 12). We report the
mean and 95% confidence intervals of their test re-
sults. The bottom 10 trials are discarded to account
for the high accuracy variance of pretrained lan-
guage models with respect to weight initialization,
and data order (Dodge et al., 2020). This procedure
closely mimics that of an ML practitioner looking
to select the best model.5

3 Empirical Results
Figure 1 shows both the baseline NO DA test ac-
curacies as a reference point, and the mean relative

4Note that we cache the top performing trials from T1 to
reduce total trial runs.

5Further details for our model tuning procedure are avail-
able in Appendix A.

improvement from applying EDA and BT. Empir-
ically, improvements are marginal for 5 of the 6
datasets, only exceeding 1% for BERT-B in a cou-
ple of instances where N ≤ 1000. XLNET-B and
ROBERTA-B see no discernible improvements at
almost any data level and just as frequently observe
regressions in mean accuracy from EDA or BT.
MNLI presents a clear outlier, with augmentations
yielding relative improvements in excess of 2%, but
only for BERT. In contrast, the other pretrained
transformers experience unpredictable, and mostly
negative results.

In terms of augmentation preferences for BERT,
BT confers superior results to EDA in 60%
of cases, averaging 0.18% absolute difference.
This advantage is muted for both XLNET and
ROBERTA, with only 53% of cases preferring BT,
and at smaller margins.

Table 2 shows the improvement of either EDA
or BT over NO DA, averaged across all 6 datasets.
We compare against Wei and Zou (2019)’s exper-
iments, measuring the impact of EDA on LSTM
and CNN models over 5 classification datasets. 6

They observe consistent improvements for non-
pretrained models. LSTMs and CNNs improve
3.8% and 2.1% on average at N = 500 training
points, and 0.9% and 0.5% on average with full
data (approximately equivalent to our own FULL

setting). As compared to these, BERT observes
muted benefits. To exclude MNLI from this aver-
age (not present in Wei and Zou (2019)’s experi-
ments) would reduce all of BERT’s improvements
well below 1%. ROBERTA and XLNET again
show no signs of improvement, frequently yielding
worse results than the baseline, even with the best
data augmentation.

Finally, we examine the claim that data augmen-
tation confers an advantage with any statistical sig-
nificance. We use a one-sided t-test with null hy-
pothesis that data augmentation confers a greater
mean performance than without, using p-value of
.05. Examining BT and EDA vs NO DA over all
dataset and data sizes we reject the null hypothesis
in 43%, 85%, and 87% of cases for BERT, XL-
NET, and ROBERTA respectively. Moreover, for
ROBERTA, the inverse hypothesis (that NO DA is
statistically better than DA) is true in 28% of cases.

We believe these results are surprising due to two
advantages given to data augmentation in this ex-

6Their experimental setup is directly comparable to our
own, comprising similar training sizes, datasets, and tuning
procedures.
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Figure 1: The upper row plots the mean test accuracies, with 95% confidence intervals, across model types, datasets,
and training sizes for the NO DA baseline setting (displayed with triangle points). The lower row plots the mean
relative improvement in test accuracy over the No DA setting, for each augmentation type.

Model Train Size (N )

500 1000 2000 3000 Full

LSTM † +3.8 - +0.7 - +0.9
CNN † +2.1 - +0.8 - +0.5
BERT-B +1.13 +1.23 +0.82 +0.78 +0.61
XLNET-B +0.56 +0.02 +0.22 -0.02 -0.01
ROBERTA-B -0.14 -0.04 +0.02 +0.27 +0.03

Table 2: The absolute improvement in test accuracy (%)
by either data augmentation technique over NO DA.
Results are averaged over all 6 datasets.
† We include Wei and Zou (2019)’s results for compar-
ison, though their setup differs slightly: they show the
improvement only for EDA (not the best of EDA and
BT), and they average over 5 classification datasets, of
which we have SST-2, SUBJ, and TREC in common.

perimental setup: (A) these are relatively low data
regimes compared to what is available for most
tasks, and (B) in total, the data augmentation tech-
niques receive twice the number of tuning trials as
the NO DA baseline. Even if EDA and BT confer
no advantage over NO DA, we would expect to see
a minor positive increase from tuning over twice as
many trials. 7

4 Discussion & Limitations
Our empirical results verify that popular data aug-
mentation techniques fail to consistently improve
performance for modern pretrained transformers —
even when training data is limited. A single excep-

7Per dataset metrics, with confidence intervals, are avail-
able in Appendix C.

tion (BERT-B on MNLI) sees significant benefits
from data augmentation. We speculate the out-
lier results could pertain to the inherent difficulty
of natural language inference in low data regimes.
Alternatively, Gururangan et al. (2018) discuss “an-
notation artifacts” in MNLI that lead models to
rely on simple heuristics, such as the presence of
the word “not” in order to make classifications.
EDA or BT could mitigate these spurious cues by
distributing artifacts more evenly across labels.

4.1 Why can Data Augmentation be
ineffective?

Our results consistently demonstrate that augmen-
tation provides more benefits to BERT than to
ROBERTA and XLNET. The key distinguishing
factor between these models is the scale of unsuper-
vised pretraining; therefore, we hypothesize that
pretraining provides the same benefits targeted by
common augmentation techniques. Arora et al.
(2020) characterize the benefits of contextual em-
beddings, showing a boost on tasks containing com-
plex linguistic structures, ambiguous word usage,
and unseen words. Text editing and translation
techniques vary linguistic structure and word usage
to address these same issues. Under this hypothe-
sis, we would expect new data augmentation tech-
niques to help only when they provide linguistic
patterns that are relevant to the task but not seen
during pretraining.

Manually inspecting RT examples for which an
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LSTM requires augmentation to classify correctly,
but ROBERTA does not, we observe rare word
choice, atypical sentence structure and generally
off-beat reviews. This set contains reviews such
as “suffers from over-familiarity since hit-hungry
british filmmakers have strip-mined the monty for-
mula mercilessly since 1997”, “wishy-washy”, or
“wanker goths are on the loose! run for your lives!”,
as compared to “exceptionally well acted by diane
lane and richard gere”, more representative of ex-
amples outside this set. We verify this quantita-
tively: for 100 examples in this set there are 206
(rare) words which only appear in this set, whereas
for 100 random samples we see an average of 116
rare words. Interestingly, we also notice label skew
in this set (34% of examples are positive instead of
the overall mean of 50%). While we leave deeper
analysis to future work, we believe these results
suggest data augmentation and pretraining both im-
prove a model’s ability to handle complex linguis-
tic structure, ambiguous word usage, and unseen
words within a category of label.

4.2 When can Data Augmentation be useful?

Given these observations, where might task-
agnostic data augmentation be useful (with pre-
trained models)? One candidate application is out-
of-domain generalization. However, we believe
the target domain must not be well represented
in the pretraining corpus. For instance, Longpre
et al. (2019) did not find standard BT useful for im-
proving generalization of question answering mod-
els. While their training domains are diverse, they
are mostly based in Wikipedia and other common
sources well represented in the BERT pretraining
corpus. Additionally, we suspect it is not enough to
vary/modify examples in ways already seen in pre-
training. Our results motivate more sophisticated
(read: targeted) augmentation techniques rather
than generic, task (and domain)-agnostic strategies
which unsupervised pretraining may capture more
effectively.

Another candidate application of task-agnostic
data augmentation is semi-supervised learning. Xie
et al. (2019) illustrate a use for generic data aug-
mentations as a noising agent for their consistency
training method, assuming large quantities of un-
labeled, in-domain data are available. While task-
agnostic data augmentations are effective in this
particular task setup, they are not the critical fac-
tor in the success of the method, nor is it clear

that more tailored or alternative noising techniques
might not achieve even greater success.

To our knowledge, our experiments provide the
most extensive examination of task-agnostic data
augmentation for pretrained transformers. Nonethe-
less, our scope has been limited to classification
tasks, and to the more common models and aug-
mentations techniques.

5 Conclusion
We examine the effect of task-agnostic data aug-
mentation in modern pretrained transformers. Iso-
lating low data regimes (< 10k training data points)
across a range of factors, we observe a negative
result: popular augmentation techniques fail to
consistently improve performance for modern pre-
trained transformers. Further, we provide empiri-
cal evidence that suggests the scale of pretraining
may be the primary factor in the diminished effi-
cacy of textual augmentations. We hope our work
provides guidance to ML practitioners in deciding
when to use data augmentation and encourages fur-
ther examination of its relationship to unsupervised
pretraining.
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A Reproducibility

A.1 Transformer Models and Training

We share the details of our hyper-parameter selec-
tion, for easy reproducibility. For each of BERT,
XLNET, and ROBERTA we use configurations
mostly consistent with their original releases’ rec-
ommendations.

In all cases code is adapted with minimal
changes from open source repositories. The major-
ity of changes to each repository pertain to support-
ing all 6 datasets, their augmentations, as well as
better metrics reporting. All models were trained
on 1 NVIDIA Tesla V100 GPU.

For each model we tune over 4 hyperparameters
to which the final performance was particularly sen-
sitive. The “augmentation dose” parameter, as de-
scribed in the paper, only applies to models trained
with either EDA or BT. We verify in Appendix
Section B that the addition of this tuning dimen-
sion did not alter our conclusions with respect to
the impact of data augmentation when fully tuned.
Lastly, we would note that the final model size
varies slightly depending on the size of the classifi-
cation head — dictated by the number of classes in
the task.

A.2 Bert-Base

For BERT (Devlin et al., 2019) we use the orig-
inal implementation in TensorFlow (Abadi et al.,
2015).8 See Table 3 for details in our training setup
and hyperparameter tuning ranges.

A.3 XLNet-Base

For XLNET (Yang et al., 2019b) we also use the
original implementation in TensorFlow.9 See Ta-
ble 4 for details in our training setup and hyperpa-
rameter tuning ranges.

A.4 RoBERTa-Base

For ROBERTA (Liu et al., 2019) we use a standard
PyTorch (Paszke et al., 2019) implementation as
provided by HuggingFace.10 See Table 5 for details
in our training setup and hyperparameter tuning
ranges.

8Code adapted from https://github.com/
google-research/bert.

9Code adapted from https://github.com/
zihangdai/xlnet.

10Code adapted from https://github.com/
huggingface/transformers.

MODEL PARAMETERS VALUE/RANGE

Fixed Parameters

Batch Size 50
Optimizer Adam
Learning Rate Schedule Exponential Decay
Lower Case True
Max Sequence Length 100

Tuned Parameters

Num Epochs [2, 100]
Dropout [0.05, 0.15]
Learning Rate [1e− 5, 5e− 5]
Augmentation Dose [0.5, 2.0]

Extra Info

Model Size (# params) 108.3M
Vocab Size 30, 522
Avg. Runtime (Full data) 46m

Table 3: Hyperparameter selection and tuning ranges
for BERT-BASE.

MODEL PARAMETERS VALUE/RANGE

Fixed Parameters

Batch Size 12
Optimizer Adam
Learning Rate Schedule Exponential Decay
Lower Case True
Max Sequence Length 100

Tuned Parameters

Num Epochs [2, 20]
Dropout [0.05, 0.15]
Learning Rate [1e− 5, 5e− 5]
Augmentation Dose [0.5, 2.0]

Extra Info

Model Size (# params) 117.3M
Vocab Size 32, 000
Avg. Runtime (Full data) 37m

Table 4: Hyperparameter selection and tuning ranges
for XLNET-BASE.

A.5 Datasets

We experiemnt with 6 classification datasets. These
are SST-2 (Socher et al., 2013)11 and RT (Pang
and Lee, 2005)12 for sentiment analysis, SUBJ
(Pang and Lee, 2004)13 for subjectivity detection,
TREC (Li and Roth, 2002)14 for question type

11Available at https://nlp.stanford.edu/
sentiment/

12Available at http://www.cs.cornell.edu/
people/pabo/movie-review-data/

13Available at http://www.cs.cornell.edu/
people/pabo/movie-review-data/

14Available at https://cogcomp.seas.upenn.
edu/Data/QA/QC/

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/zihangdai/xlnet
https://github.com/zihangdai/xlnet
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://cogcomp.seas.upenn.edu/Data/QA/QC/
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MODEL PARAMETERS VALUE/RANGE

Fixed Parameters

Batch Size 50
Optimizer Adam
Learning Rate Schedule Exponential Decay
Lower Case False
Max Sequence Length 100

Tuned Parameters

Num Epochs [2, 20]
Dropout [0.05, 0.15]
Learning Rate [1e− 5, 5e− 5]
Augmentation Dose [0.5, 2.0]

Extra Info

Model Size (# params) 125.2M
Vocab Size 50, 265
Avg. Runtime (Full data) 32m

Table 5: Hyperparameter selection and tuning ranges
for ROBERTA-BASE.

classification, STS-B (Baudiš et al., 2016)15 for
semantic similarity, and MNLI (Williams et al.,
2017)16 for natural language inference. For each of
these we randomly sample up to 10k data points (if
available) from the training sets, and separate out
1k for each of validation and testing. Additional
statistics are available in the main paper.

B Verifying Tuning Sufficiency

To ensure our conclusions are reliable we must ver-
ify that our tuning is sufficient to capture all the
benefits of data augmentation. Accordingly, we
double the number of hyperparameter configura-
tions (K) and see if any of the conclusions change.
As this experiment is computationally expensive,
we benchmark the results only for BERT on SST-
2. Full results are shown in Table 6.

We observe that on average, doubling the num-
ber of configuration trials from KA = 30 to KB =
60 results in minor accuracy improvements at lower
training set sizes (e.g. +0.38 atN = 500), and neg-
ligible variations at higher training set sizes (e.g.
−0.04 at N = Full). We also measure the result-
ing change in the difference between using and not
using any data augmentation (4(DA − No DA)).
While improvements are reported in favour of data
augmentation over NO DA, they are all < 0.15%,
indicating at K = 30 our conclusions are robust.

15Available at https://gluebenchmark.com/
tasks

16Available at https://www.nyu.edu/projects/
bowman/multinli/

C Empirical Results

Detailed results are provided for analysis. In each
results table we include the mean accuracy and 95%
confidence interval, for every dataset, augmenta-
tion type, and training data size. These are the out-
puts of the second stage of tuning “SELECTBEST”
that use the best hyperparameters per setting in
the first RANDOMSEARCH stage. We select only
the top 10 trials of 20 (by validation accuracy) to
compute these test statistics, due to the observed
volatility in fine-tuning Transformers with different
seeds (Dodge et al., 2020).

The full results are shown below for BERT-BASE

(Table 7), for XLNET-BASE (see Table 8), and for
ROBERTA-BASE (see Table 9).

https://gluebenchmark.com/tasks
https://gluebenchmark.com/tasks
https://www.nyu.edu/projects/bowman/multinli/
https://www.nyu.edu/projects/bowman/multinli/
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DATASET D. AUG. N=500 N=1000 N=2000 N=3000 FULL

KA = 30
NO DA. 84.29 ± 0.02 85.50 ± 0.00 87.46 ± 0.01 88.40 ± 0.01 89.79 ± 0.00
BT 85.38 ± 0.01 87.35 ± 0.02 87.37 ± 0.02 89.29 ± 0.01 90.36 ± 0.00
EDA 85.06 ± 0.01 86.70 ± 0.02 87.83 ± 0.01 88.55 ± 0.01 90.57 ± 0.01

KB = 60
NO DA. 84.64 ± 0.02 85.72 ± 0.01 87.80 ± 0.01 88.66 ± 0.01 89.77 ± 0.01
BT 85.30 ± 0.01 86.78 ± 0.01 87.69 ± 0.01 89.36 ± 0.01 90.25 ± 0.00
EDA 85.90 ± 0.01 87.22 ± 0.00 87.48 ± 0.01 88.52 ± 0.01 90.25 ± 0.01

KB −KA

NO DA. +0.38 +0.08 +0.03 +0.11 -0.06
BT +0.25 -0.12 +0.20 +0.18 +0.01
EDA +0.51 +0.20 +0.17 +0.03 -0.06

MEAN (KB −KA) +0.38 +0.05 +0.13 +0.11 -0.04

4(DA− No DA) +0.13 -0.15 +0.17 +0.06 +0.07

Table 6: Here we verify that K = 30 hyperparameter trials is sufficient to accurately estimate the benefit of data
augmentation with full tuning. For BERT-B on SST-2 we compare the results of KA = 30 (used in the paper) and
KB = 60. MEAN KB −KA compares the average difference in mean performances by doubling the number of
trials. 4(DA − No DA) measures the difference between the accuracies of the best data augmentation technique
and NO DA.

DATASET D. AUG. N=500 N=1000 N=2000 N=3000 FULL

RT
NO DA. 81.82 ± 0.02 83.23 ± 0.01 84.44 ± 0.01 85.08 ± 0.01 86.98 ± 0.00
BT 82.84 ± 0.01 83.43 ± 0.01 85.15 ± 0.01 85.64 ± 0.01 87.62 ± 0.01
EDA 81.26 ± 0.01 83.52 ± 0.01 85.17 ± 0.01 85.41 ± 0.01 87.57 ± 0.00

SUBJ
NO DA. 94.07 ± 0.00 95.16 ± 0.01 96.34 ± 0.00 96.41 ± 0.01 97.40 ± 0.00
BT 95.09 ± 0.01 95.27 ± 0.01 96.28 ± 0.00 96.43 ± 0.00 98.04 ± 0.00
EDA 94.81 ± 0.01 95.68 ± 0.01 96.13 ± 0.00 96.77 ± 0.00 98.05 ± 0.00

SST-2
NO DA. 84.29 ± 0.02 85.50 ± 0.00 87.46 ± 0.01 88.40 ± 0.01 89.79 ± 0.00
BT 85.38 ± 0.01 87.35 ± 0.02 87.37 ± 0.02 89.29 ± 0.01 90.36 ± 0.00
EDA 85.06 ± 0.01 86.70 ± 0.02 87.83 ± 0.01 88.55 ± 0.01 90.57 ± 0.01

TREC
NO DA. 87.51 ± 0.01 91.25 ± 0.01 93.00 ± 0.00 94.23 ± 0.00 94.67 ± 0.00
BT 88.95 ± 0.01 91.24 ± 0.01 93.42 ± 0.01 94.31 ± 0.00 94.59 ± 0.00
EDA 88.75 ± 0.01 92.25 ± 0.01 93.76 ± 0.00 94.31 ± 0.00 94.51 ± 0.00

MNLI
NO DA. 47.29 ± 0.04 54.18 ± 0.07 62.50 ± 0.03 65.92 ± 0.03 72.90 ± 0.01
BT 49.23 ± 0.02 58.15 ± 0.03 66.46 ± 0.03 68.84 ± 0.03 74.25 ± 0.02
EDA 50.03 ± 0.03 56.92 ± 0.03 64.88 ± 0.02 67.04 ± 0.03 73.85 ± 0.02

STS-B
NO DA. 77.93 ± 0.04 84.61 ± 0.01 87.26 ± 0.00 87.73 ± 0.01 88.40 ± 0.01
BT 77.94 ± 0.05 84.97 ± 0.01 86.62 ± 0.01 88.13 ± 0.01 88.35 ± 0.01
EDA 78.27 ± 0.06 84.83 ± 0.02 86.89 ± 0.00 88.09 ± 0.00 88.56 ± 0.00

Table 7: BERT-BASE mean test accuracy and the 95% confidence interval for each task, augmentation, and data
size, computed over the top 10 best trials, by validation score.
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DATASET D. AUG. N=500 N=1000 N=2000 N=3000 FULL

RT
NO DA. 83.85 ± 0.01 86.58 ± 0.01 87.69 ± 0.01 88.59 ± 0.00 89.97 ± 0.01
BT 86.34 ± 0.01 86.77 ± 0.01 88.23 ± 0.00 88.80 ± 0.00 89.97 ± 0.01
EDA 84.71 ± 0.01 86.68 ± 0.01 87.54 ± 0.00 88.61 ± 0.00 89.94 ± 0.00

SUBJ
NO DA. 94.88 ± 0.00 95.65 ± 0.00 95.99 ± 0.00 96.29 ± 0.00 97.28 ± 0.00
BT 95.23 ± 0.00 96.07 ± 0.00 96.52 ± 0.00 96.65 ± 0.00 97.40 ± 0.00
EDA 94.69 ± 0.01 95.75 ± 0.01 96.41 ± 0.00 96.62 ± 0.00 97.5 ± 0.00

SST-2
NO DA. 89.44 ± 0.01 90.10 ± 0.00 91.20 ± 0.01 91.87 ± 0.01 92.98 ± 0.00
BT 89.43 ± 0.01 90.36 ± 0.01 91.39 ± 0.00 92.00 ± 0.00 92.88 ± 0.00
EDA 89.07 ± 0.01 90.45 ± 0.00 91.59 ± 0.00 91.49 ± 0.00 92.5 ± 0.00

TREC
NO DA. 90.36 ± 0.00 92.46 ± 0.01 93.94 ± 0.00 95.07 ± 0.00 94.85 ± 0.00
BT 90.03 ± 0.01 92.16 ± 0.00 93.14 ± 0.00 94.56 ± 0.00 94.74 ± 0.00
EDA 90.11 ± 0.01 92.51 ± 0.00 94.14 ± 0.00 94.64 ± 0.00 95.16 ± 0.00

MNLI
NO DA. 57.32 ± 0.02 65.80 ± 0.01 72.07 ± 0.01 74.97 ± 0.01 78.75 ± 0.01
BT 58.88 ± 0.02 65.49 ± 0.02 71.67 ± 0.01 74.16 ± 0.02 79.08 ± 0.01
EDA 56.90 ± 0.02 64.65 ± 0.02 72.48 ± 0.01 74.81 ± 0.00 78.87 ± 0.01

STS-B
NO DA. 73.76 ± 0.02 82.88 ± 0.00 86.29 ± 0.00 87.52 ± 0.00 88.35 ± 0.00
BT 74.82 ± 0.01 82.17 ± 0.01 85.73 ± 0.00 86.96 ± 0.00 87.52 ± 0.00
EDA 73.18 ± 0.01 82.87 ± 0.00 85.90 ± 0.00 87.05 ± 0.00 87.98 ± 0.00

Table 8: XLNET-BASE mean test accuracy and the 95% confidence interval for each task, augmentation, and data
size, computed over the top 10 best trials, by validation score.

DATASET D. AUG. N=500 N=1000 N=2000 N=3000 FULL

RT
NO DA. 84.84 ± 0.01 86.71 ± 0.00 87.05 ± 0.01 87.99 ± 0.01 90.10 ± 0.00
BT 84.66 ± 0.01 86.00 ± 0.01 87.48 ± 0.01 88.44 ± 0.01 90.08 ± 0.00
EDA 84.26 ± 0.01 86.53 ± 0.01 87.89 ± 0.01 88.40 ± 0.00 90.19 ± 0.01

SUBJ
NO DA. 94.27 ± 0.00 95.50 ± 0.01 96.22 ± 0.00 96.48 ± 0.00 97.36 ± 0.00
BT 95.14 ± 0.00 95.74 ± 0.00 96.11 ± 0.00 96.28 ± 0.00 97.05 ± 0.00
EDA 94.55 ± 0.00 95.42 ± 0.01 95.87 ± 0.00 96.50 ± 0.00 97.31 ± 0.00

SST-2
NO DA. 90.80 ± 0.00 91.51 ± 0.00 91.95 ± 0.01 92.28 ± 0.01 93.52 ± 0.00
BT 90.13 ± 0.01 91.64 ± 0.00 92.75 ± 0.00 92.45 ± 0.00 93.96 ± 0.00
EDA 90.16 ± 0.01 91.58 ± 0.00 92.55 ± 0.00 92.92 ± 0.01 93.85 ± 0.00

TREC
NO DA. 90.77 ± 0.00 93.41 ± 0.00 94.80 ± 0.01 95.03 ± 0.01 95.66 ± 0.00
BT 90.65 ± 0.00 93.04 ± 0.00 94.66 ± 0.00 94.99 ± 0.00 95.46 ± 0.00
EDA 90.97 ± 0.01 93.44 ± 0.00 94.70 ± 0.00 94.80 ± 0.00 95.14 ± 0.00

MNLI
NO DA. 63.3 ± 0.04 73.18 ± 0.02 77.94 ± 0.01 77.69 ± 0.07 83.04 ± 0.00
BT 60.9 ± 0.17 72.04 ± 0.03 77.42 ± 0.01 79.14 ± 0.01 82.28 ± 0.01
EDA 61.15 ± 0.08 71.09 ± 0.03 72.59 ± 0.23 78.6 ± 0.02 83.5 ± 0.00

STS-B
NO DA. 79.49 ± 0.02 85.77 ± 0.01 89.32 ± 0.00 89.94 ± 0.00 90.29 ± 0.00
BT 79.24 ± 0.01 85.76 ± 0.01 88.80 ± 0.00 89.80 ± 0.00 89.79 ± 0.00
EDA 78.87 ± 0.01 84.95 ± 0.02 88.82 ± 0.00 89.92 ± 0.00 90.15 ± 0.00

Table 9: ROBERTA-BASE mean test accuracy and the 95% confidence interval for each task, augmentation, and
data size, computed over the top 10 best trials, by validation score.


