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Abstract

Data collection for natural language (NL) un-
derstanding tasks has increasingly included hu-
man explanations alongside data points, allow-
ing past works to introduce models that both
perform a task and generate NL explanations
for their outputs. Yet to date, model-generated
explanations have been evaluated on the ba-
sis of surface-level similarities to human expla-
nations, both through automatic metrics like
BLEU and human evaluations. We argue that
these evaluations are insufficient, since they
fail to indicate whether explanations support
actual model behavior (faithfulness), rather
than simply match what a human would say
(plausibility). In this work, we address the
problem of evaluating explanations from the
model simulatability perspective. Our contri-
butions are as follows: (1) We introduce a
leakage-adjusted simulatability (LAS) metric
for evaluating NL explanations, which mea-
sures how well explanations help an observer
predict a model’s output, while controlling for
how explanations can directly leak the out-
put. We use a model as a proxy for a hu-
man observer, and validate this choice with
two human subject experiments. (2) Using the
CoS-E and e-SNLI datasets, we evaluate two
existing generative graphical models and two
new approaches; one rationalizing method we
introduce achieves roughly human-level LAS
scores. (3) Lastly, we frame explanation gen-
eration as a multi-agent game and optimize
explanations for simulatability while penaliz-
ing label leakage, which can improve LAS
scores.!

1 Introduction

Deep neural models have achieved impressive suc-
cess in many areas. However, their interpretability

'"We provide code for the experiments in this
paper at  https://github.com/peterbhase/
LAS-NL-Explanations.

and explainability have remained broadly limited.
To make neural models more interpretable, previ-
ous works have proposed methods for explaining
model decisions, e.g., through various feature im-
portance estimates (Hendricks et al., 2018; Ribeiro
et al., 2016) or model-generated natural language
(NL) (Hendricks et al., 2016; Kim et al., 2018).
Early work on generating NL explanations focused
on providing explanations that were both descrip-
tive of an image and discriminative as labels (Hen-
dricks et al., 2016). Since then, a variety of datasets
have been collected with free-form human gener-
ated explanations accompanying each data point
(Camburu et al., 2018; Kim et al., 2018; Zellers
et al., 2019; Wang et al., 2019; Rajani et al., 2019).
Models have been proposed for these datasets with
two aims: (1) to teach models how to explain
their own decisions in natural language, by offering
demonstrations of humans doing this, and (2) to in-
crease model accuracy on the task, by making use
of additional information in human explanations.

Past works have proposed varying methods for
generating NL explanations, which can be repre-
sented by distinct graphical models. In our work,
we explore four graphical models, shown in Fig-
ure 1. Each model generates explanations in ei-
ther a reasoning (RE) or rationalizing (RA) mode,
where rationalizing models explicitly condition ex-
planations on a label and reasoning models condi-
tion only on the input. Approaches further differ by
whether they use explanations as inputs to a task
model (ST) or as additional supervision in a multi-
task framework (MT). Two of these models are
drawn from prior works: MT-RA (Camburu et al.,
2018) and ST-RE (Rajani et al., 2019). We intro-
duce ST-RA and also test MT-RE as the reasoning
counterpart to MT-RA. To fairly compare the ap-
proaches, we implement each graphical model with
a state-of-the-art pretrained T5 model (Raffel et al.,
2019) (details in Section 3).
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Figure 1: Graphical models representing varying roles of explanations, where the task input is denoted by z, task
output by y, and explanation by e. We introduce a new rationalizing model, ST-RA, while also testing a reasoning
multi-task model, MT-RE, and two other methods from past works (Camburu et al., 2018; Rajani et al., 2019).

Generated explanations have typically been eval-
uated by automatic measures of similarity with
human explanations. Most commonly, phrase-
matching metrics such as BLEU (Papineni et al.,
2002) are used. In a few cases, human evalua-
tions have been employed, also primarily to as-
sess the similarity of explanations to what humans
would say. On the basis of these evaluations, past
works have suggested their models produce “justi-
fications of its classification decisions” (Camburu
et al., 2018) and “explanations to justify its predic-
tions” (Rajani et al., 2019). While useful starting
points, we argue that these evaluations are insuf-
ficient, because they do not necessarily indicate
anything about a model’s true internal reasoning.
For example, suppose the ground-truth label is A,
while a model predicts B; a higher BLEU score will
be observed when the model gives an explanation
to support human label A, instead of model predic-
tion B. This point is substantiated by Jacovi and
Goldberg (2020b), who advocate for evaluations of
explanation faithfulness rather than plausibility.

To resolve this evaluation problem, we introduce
the leakage-adjusted simulatability (LAS) metric,
which is better suited for identifying when explana-
tions actually support model behavior. LAS scores
combine two key mechanisms: they measure sim-
ulatability, which reflects how well an observer
can use model explanations to predict the model’s
output, while controlling for explanation leakage,
which occurs when explanations directly leak the
output. This metric is inspired by prior work on
model interpretability (Doshi-Velez and Kim, 2017;
Hase and Bansal, 2020), but to date no simulata-
bility analysis has been carried out for NL expla-
nations. We automate our evaluation by using a
pretrained language model as the observer, serv-
ing as a proxy for a human. Using LAS scores,
we evaluate model-generated as well as human ex-
planations for COMMONSENSEQA (CQA) (Tal-
mor et al., 2019; Rajani et al., 2019) and SNLI

(Bowman et al., 2015; Camburu et al., 2018) tasks.
We provide two human evaluations to validate our
model-based approach. The first is an expert simu-
latability evaluation, where we manually play the
role of the simulator in our LAS metric computa-
tion. The second is a subjective ratings task, where
we collect data from Mechanical Turkers.

Lastly, since we propose a metric for evaluation,
the question naturally arises of whether an objec-
tive besides standard language modeling is better
suited to improving explanations under this metric.
While our formulation of LAS is not differentiable,
we present a proxy objective that involves using a
simulator during training. This training procedure
is neatly interpreted as a multi-agent game. Agents
share a common objective, which is for the simu-
lator to predict the task model’s output using the
explanation it receives, but we penalize agents for
pursuing the trivial solution, i.e., restating outputs
without giving additional information.

We summarize our key results as follows:

1. We introduce the LAS score, which captures
how explanations improve simulatability while
controlling for direct label leakage, and we use
it to evaluate four generative models.

2. We show that our LAS scores provide a deeper
understanding of explanation effectiveness than
metrics like BLEU and discuss their relationship
with our expert simulation analysis and crowd-
sourced human quality ratings.

3. We find that our ST-RA approach achieves
nearly human-level LAS scores, and that ratio-
nalizing models outperform reasoning models.

4. We observe no trade-off between interpretabil-
ity and accuracy, though this also means that
existing methods struggle to learn from human
explanations.

5. In a multi-agent game, we show that optimizing
explanations for simulatability and penalizing
trivial explanations can improve LAS scores in
some settings.
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2 Related Work

Generating Natural Language Explanations.
Early work on this topic proposes to generate ex-
planations for images that are descriptive as cap-
tions and discriminative as labels (Hendricks et al.,
2016). However, they seek to explain the image’s
label rather than a classifier’s output. Ling et al.
(2017) introduce induction approaches for solv-
ing math problems and generating explanations
of solutions. Two works focus on multi-modal
problems, explaining visual question answering
(Park et al., 2018) and self-driving car decisions
(Kim et al., 2018). A few recent works focus
on explanations for language understanding tasks.
Camburu et al. (2018) introduce e-SNLI, extend-
ing the SNLI dataset (Bowman et al., 2015) with
free-form human explanations, and they provide
an LSTM-based model that jointly predicts labels
and generates explanations, shown by MT-RA in
Figure 1. Rajani et al. (2019) propose the CoS-E
dataset, collecting human explanations for COM-
MONSENSEQA (Talmor et al., 2019), and they in-
troduce the CAGE model, depicted as ST-RE in
Figure 1. We build on these works by evaluating
both ST-RE and MT-RA as well as models we in-
troduce, ST-RA and MT-RE. We implement each
graphical model with strong pretrained-T5 models,
and for completeness, we also test methods with
GPT2 and BERT (results in Appendix C) (Radford
et al., 2019; Devlin et al., 2019).

Evaluating Explanations. There is now a wealth
of work on evaluating explanations of machine
learning models (Ribeiro et al., 2016; Doshi-Velez
and Kim, 2017; Hooker et al., 2019; Jacovi and
Goldberg, 2020b). For NLP tasks, past works fo-
cused on extractive rather than generative explana-
tions (Nguyen, 2018; DeYoung et al., 2020). Such
methods extract parts of the model input that are
important to the output according to some crite-
rion. However, they are not suited to evaluate NL
explanations that are not part of the input, which
motivates our new simulatability metric.

Measures of similarity between model-generated
and human explanations are used to evaluate nearly
every method introduced above, with BLEU being
the most common (Hendricks et al., 2016; Ling
et al., 2017; Park et al., 2018; Kim et al., 2018;
Camburu et al., 2018; Rajani et al., 2019). In a few
cases, human evaluations are employed for similar
purposes (Hendricks et al., 2016; Park et al., 2018;
Kim et al., 2018). While these evaluations provide

a good starting point, they do not support previ-
ous claims that explanations show the reasons for
model behavior because they evaluate plausibility
rather than faithfulness. We introduce a leakage-
adjusted simulatability metric (LAS) in response
to this issue. As observed by Jacovi and Goldberg
(2020a), faithfulness and simulatability are closely
related, but simulatability primarily captures causal
attribution of explanations and not necessarily so-
cial attribution. Simulatability-based evaluations
have been conducted before (Ribeiro et al., 2018;
Hase and Bansal, 2020), but we are the first to con-
sider NL explanations and employ model-based
controls for label leakage. Two contemporaneous
works also explore relevant topics. Narang et al.
(2020) train a TS model to generate explanations
in a set-up analogous to our MT-RA setting. They
also notice the shortcomings of BLEU and collect
binary human ratings of whether explanations “sup-
port” model outputs. Kumar and Talukdar (2020)
introduce label-specific versions of the method in
Rajani et al. (2019), one of which shares the graph-
ical structure of our ST-RA model. However, their
evaluation focuses on whether humans can recover
ground truth labels from generated explanations
alone, which they term “explanation accuracy.”
Given these interesting concurrent works, our con-
tributions are still distinguished by our joint focus
on (1) simulatability-based evaluation, (2) controls
for explanation label leakage, and (3) comparison
of several distinct graphical models.

Multi-Agent Communication. The most relevant
work to our multi-agent game concerns discrete
communication policies with natural language or
artificial protocols grounded in NL. Lazaridou et al.
(2017) ground a communication protocol in natu-
ral language via an auxiliary image classification
task. In concurrent work, Lazaridou et al. (2020)
learn NL protocols for an image-based reference
game by pretraining with image captions. While
our approach shares the premise that language use
is goal-oriented, we optimize full explanations of
model outputs rather than descriptions of images in
reference games. Another contemporaneous work
optimizes for simulatability in a multi-agent set-
ting, but they use extractive rather than generative
explanations (Treviso and Martins, 2020).

3 Modeling With Explanations

In this section, we delineate our baseline model
and the four graphical models we study. The graph-
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task: Where would | not want a fox? The choices are
hen house, England, and mountains.

MurLTI-TASK

explain: Where would | not want a fox? The choices are
hen house, England, and mountains.

The answer is: hen house

My commonsense tells me that the fox would eat the hens j

REASON

~ %
Context for reasoning Human explanation

The answer is: hen house
ML)

y
The answer is hen house because the fox would eat the hens

RATIONALIZE

Y RS
Context for rationalizing Human explanation

Figure 2: Inputs and outputs for the TS5 Multi-task framework. In the reasoning mode, explanations are not condi-
tioned on the model’s prediction, whereas in the rationalizing mode they are dependent on the model output.

ical models are depicted in Figure 1. We also
summarize the key features of each approach in
Table 1. We show examples of task inputs and
outputs along with explanations in Table 2. In gen-
eral, we initialize models from T5-Base, which is
a Transformer-based sequence-to-sequence model,
pretrained with a large-scale English corpus.

Baseline. The baseline model simply predicts y
given x. We adopt the approach of Raffel et al.
(2019) for fine-tuning to multiple-choice problems,
which is to maximize the likelihood of correct an-
swer tokens conditioned on the task inputs. To
produce predictions, however, we compute a like-
lihood for each answer choice and select the most
likely choice, rather than sampling text. SNLI also
fits into this framework by taking the three relations
as answer choices.

ST-RE. Rajani et al. (2019) proposed a Com-
monsense Auto-Generated Explanation (CAGE)
framework for CQA, with a two-phase training
procedure: first, with human explanations as super-
vision, a model is trained to generate explanations
given task inputs; then generated explanations are
supplied with task inputs to a classifier that per-
forms the task. We represent this framework in
Figure 1, where we term it ST-RE to fit within
our data-agnostic model taxonomy. ST stands for
serial-task (from the separate training phases) and
RE for the reasoning explanation generation. While
originally composed of GPT and BERT, we imple-
ment this approach with two separate T5 models.

ST-RA. We extend the ST-RE approach to op-
erate in a rationalizing mode (shown in Figure 5
in Appendix). Instead of generating one explana-
tion per example, we propose to generate explana-
tions for each possible task output, conditioned on
that output. Then, we give each answer choice its
own input sequence, which includes the task input
and an explanation supporting that answer choice.

Method Task Set Conditioning
T5-Base Single-task -

ST-RE Serial-task  e|x

ST-RA Serial-task  e|z,y
MT-RE Multi-task  e|z

MT-RA Multi-task ez, y

Table 1: The graphical models and baseline we eval-
uate. MT and ST refer to multi-task and serial-task,
while RE and RA refer to reasoning and rationalizing.

Finally, a classifier scores each input and output
sequence.

Instead of maximizing the likelihood of correct
answer tokens, we find that a new learning objec-
tive is necessary for training the task model. We
renormalize the decoder likelihoods of each answer
choice a; given the encoder input s;. With the set
of encoder sequences S and answer choices A, we
define the probability of each answer choice as:

p(ailsi)
ZaieA,SiGS p(aZ ’81)

p(ailA, S) =

Then we maximize the likelihood of the correct
answer choice.

MT-RE. The alternative to using explanations as
task model inputs is to use them as supervision in
a multi-task framework. As a counterpart to ST-
RE, we test a reasoning multi-task model, where
explanations are conditioned only on the task input
(shown in Figure 2). We use a single task-specific
word prepended to the input sequence so that the
encoder hidden states will be tailored to either the
task or explanation generation. For this model, the
multi-task learning objective mixes a label predic-
tion loss Ly, (for the task itself), and a language
modeling loss £ 3 (for explanation generation):

Ly = aﬁtask’ + (1 - a)ﬁLMa

where « is the mixing ratio to be tuned on devel-
opment set. We reach a value of & = .5 on both
datasets when tuning for task accuracy.
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Input, Output, and Explanation

Human

Leaking? LAS

Model
Leaking? LAS

Question: Marathoners feel fatigued after running twenty six miles, but some that

have pushed them self too hard might be prone to what?

Choices: A. passing out; B. death; C. exhaustion Yes ! Yes !
STRA explanation: if you are running too hard, you are likely to be exhausted.

Question: When are people buying products more?

Choices: A. economic boom; B. disagreements; C. being able to use No 1 No 1

HUMAN explanation: being able to use.

Table 2: Two example data points from CQA with HUMAN or STRA label (bold in text) and explanation. We give
leakage indicators and example-level LAS scores from both model-based (T5) and human simulators (see Section

4). More examples can be found in Table 7.

MT-RA. Represented in Figure 2, MT-RA is a
multi-task model where explanations are condi-
tioned on the model output. This approach origi-
nates in Camburu et al. (2018), where it is intro-
duced as an LSTM-based model. As above, we use
a task mixing weight of a = .5 for both datasets.

4 LAS: Leakage-Adjusted Simulatability

While many motivations drive humans’ explana-
tions for their behavior, we consider one central
purpose to be helping others understand one’s in-
ternal reasoning. This notion is captured by the
concept of simulatability (Doshi-Velez and Kim,
2017). A model is simulatable to the extent that
an observer, or simulator, can predict its outputs.
The simulator can be either a human or a learned
model; we will consider both settings. From this
perspective, one might use the simulator’s accu-
racy to measure explanation quality. With task
inputs X = {x;}, model outputs ¥ = {§;}, model
explanations E = {é;}, simulator correctness as
1[9;] 2, ;],% the accuracy is defined as:

N
S 1 X X
Acc(jlz,€) = + > gl &)
=1

However, this measure fails to distinguish between
different ways in which the simulator can success-
fully predict the task model output, as shown in
the causal diagram in Figure 3. We suggest that
the simulator’s success does not reflect explanation
quality when (1) the simulator can guess behavior
correctly from the input z alone, or (2) the explana-
tion é directly restates the task model output, i.e.,
leaking the label to the simulator. What we are truly
looking for in explanations is that they provide se-
mantic content that informs the simulator of the

2For the remainder of the paper, we use the indicator func-

tion in this way to describe the correctness of predictions,
which is a slight abuse of notation for the sake of brevity.

Simulator
Correctness

Semantics Path
Leakage Path

Figure 3: Causal diagram of model simulation. The
simulator prediction’s correctness, 1[gj|z, €], is influ-
enced by three variables: (1) the task model input, (2)
the model explanation’s semantic content, é,, and (3)
whether the explanation leaks the model output, é;

task model’s output in the context of its input. Note
that we do not think label leakage means an expla-
nation is bad. Explanations will leak more often
than not, as human explanations leak about 85% of
the time for CoS-E and about 97% of the time for
e-SNLI (estimated by T5 simulator). Instead, we
think the more important aspect is to evaluate the
explanation’s semantic content. For examples of
leaking and nonleaking explanations, see Table 2.

To deal with issue (1) above, we introduce an
input-only baseline and measure the effect of an
explanation on simulatability as 1[g|z, €] — 1[g|z].
To resolve the issue (2), we propose to control for
a label leaking variable, which has the effect of
blocking that causal pathway (Pearl, 2009). We
do so by using a proxy variable for label leakage,
which is an indicator variable for if the simulator
can predict § solely from é. The correctness of
this prediction suggests that the explanation gives
away the answer directly. With this approach, we
can estimate explanations’ leakage-controlled ef-
fect on simulatability by (1) grouping data by the
level of explanation label leakage, (2) computing
the average difference 1[y|z, é] — 1[y|z] within
each leakage group, and (3) taking the raw aver-
age of the effect across groups (to avoid favoring
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simulate: Where would | not want a fox? The choices are hen house,
England, and mountains. My commonsense tells me that . The answer is: hen house
a fox is a common animal in England. _—
S— g — S I m u Iato r Task model output

~F
Task model explanation

Figure 4: A simulator model predicts a task model output, given its input and a model-generated explanation.

the larger subset). Note that there are only two
levels of label leakage, 1[y|¢] = 1 (leaking) and
1[g|é] = 0 (nonleaking), and we use model correct-
ness rather than probabilities since TS probabilities
are uncalibrated.

Now with simulator correctness as 1[g;|x;, &]
or 1[g;|z;], and our leakage indicator as k; =
1[gi|é;], we write our Leakage-Adjusted Simulata-
bility (LAS) metric as:

1 . . A
LAS) = — (L[gil i, &) — Llgali])
o ik, =
1 N . A
LAS; = - (L[gilas, ] — Llgalai])
ik, =

1
LAS = (LAS) + LAS))

where ng and n; are the number of examples in
nonleaking and leaking groups respectively. We
use a pretrained T5-Base model as a proxy for a
human simulator (depicted in Figure 4). This ap-
proach has the advantage of scaling across large
datasets with uniform quality in predictions, and,
as described in Section 35, it enables directly opti-
mizing explanations for simulatability. We validate
this choice of proxy with two human subject ex-
periments (see Section 6.2). Simulator models are
trained with task model outputs as labels and x and
€ combined into input sequences. In order to make
sure the simulator makes good use of both x and
é, we randomly dropout either = or € from the in-
put during training. When testing, the simulator’s
correctness on each example is 1[y;|z;, &, and we
obtain 1[g;|x;] and 1[g;|é;] by dropping é; or x;
from the input.

We will compare LAS and Acc(g|x, é) for expla-
nations from the models introduced above as well
as human explanations. We discuss the relationship
with human experiments for both metrics in Sec-
tion 6.2. In analysis to follow, we will also refer
to example-level LAS scores, which are given as
1[y|z, é]— 1[g|x] and take values -1, 0, or 1 (see Ta-
ble 2 for examples). Lastly, while we use a binary
proxy for label leakage, a continuous measure can
be obtained from p(y|é). After calibrating the sim-
ulator probabilities via Platt scaling (Platt, 2000),
we perform a sensitivity analysis of our results for

bin counts between 2 and 100: LAS estimates typ-
ically vary by less than 1 point across bin counts.
For further details, see Appendix B.1.

5 Multi-Agent Explanation Optimization

In this section, we explore an approach to optimiz-
ing explanations for LAS, rather than just relying
on a standard language modeling loss to produce
explanations. The approach is naturally framed as
a multi-agent game. Note that we do not aim to
improve model accuracy or explanations’ BLEU
scores in these experiments.

In our game, there are two agents. The first is
a task model that predicts labels and generates
explanations jointly. Here, we use MT-RE or MT-
RA. The second agent is a simulator model that
predicts the task model’s output ¢; given its expla-
nation é; and the model input x;, matching the pre-
vious simulation format shown in Figure 4. These
two agents are jointly trained during the multi-
agent training procedure. The objective of the
simulator is the same as discussed in the above
section, which is to predict ¢j; given x; and é;, and
we randomly dropout x; or é; to ensure they are
both being used. As in Section 3, the task model
learns to perform the task (minimizing L) and
generate explanations (minimizing L1, ) via super-
vision from ground-truth labels and human expla-
nations. Here, the task model also tries to minimize
the simulator’s loss through its explanations. The
chief computational challenge with this approach is
that explanations are sampled by greedy decoding,
and thus the loss is not differentiable with respect
to the task model. We explore two optimization
methods circumventing this issue: Approximate
SGD via argmax relaxation (Maddison et al., 2017)
and REINFORCE (Williams, 1992). Our aim is
for explanations to better communicate the task
model’s reasoning process, without adopting the
trivial solution, i.e., directly stating its output. Thus
while we optimize explanations for simulatability,
we also penalize label leakage, which we formalize
below. Note that the task model’s predictions are
not optimized to agree with the simulator; only its
explanations are optimized.

Approximate SGD. With a simulator model py,
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SNLI CQA

Explanations LAS Score (CI) Acc(y | z, €) BLEU LAS Score (CI) Acc(y | x, €) BLEU
HUMAN 4.31(1.97) 98.36 . 14.73 (3.84) 90.11 -
MT-RE -15.83 (1.81) 93.72 19.54 -7.07 (3.59) 81.05 6.33
MT-RA 4.34 (4.12) 99.97 19.41 -1.31 (4.04) 92.31 5.43
ST-RE 0.55 (0.87) 93.87 19.96 3.76 (1.83) 82.21 7.12
ST-RA 6.74 (4.53) 99.84 20.94 10.32 (3.39) 88.53 7.14
MULTI-AGENT

MT-RE (SGD) -10.08 (1.72) 94.14 16.74 -6.32 (3.27) 76.63 4.44

MT-RA (SGD) 3.03 (4.72) 99.89 16.61 3.08 (3.79) 87.68 4.43

MT-RE (RL) -10.80 (1.51) 93.45 15.41 -5.04 (3.55) 84.00 2.15

MT-RA (RL) -0.61 (0.45) 93.05 9.83 -9.15 (2.95) 77.47 3.54

Table 3: Evaluations of human and model-generated explanations by LAS score, overall simulator accuracy, and
BLEU. 95% confidence intervals as calculated by bootstrap are shown in parentheses (Efron and Tibshirani, 1994).

the simulatability loss term for explanations is

N
1 N A
‘Cexp = - N Z (a 1ng¢(yi|xi7 62')
i=1
— (1 — @) log py(iilé:))

where o is a mixing weight between terms. To
differentiate through the greedy decoding for ex-
planation sampling, we use one half of the Gumbel-
Softmax trick (Maddison et al., 2017). During the
forward pass in training, the argmax is used as
normal, while during the backward pass, we relax
the argmax to a softmax with temperature 1 for
purposes of computing gradients.

Reinforce. Our second approach is to use the RE-
INFORCE RL algorithm proposed by Williams
(1992). Here we take the simulator’s output proba-
bilities as a reward for the task model. Now with
the same goals as above, we define the reward for
Tr;asr; = ozp¢(@i\:ci, él) — (1 —a)p¢(g]¢\éi). Then,
the L, for task model py is defined as:

N
1 . N
»Cemp = N Z —Ty logpe(ei|xi, yl)

=1

Finally, with either method, the full learning objec-
tive of the task model is L7uskrroder = M Liask +

XLy 4 A3Leyp. The tuning procedure and val-
ues for mixing weights are given in Appendix A.5.

6 Experimental Results

Here, we discuss experiments conducted with each
method using two (English) datasets: The first is
the COMMONSENSEQA (CQA) dataset of Talmor
et al. (2019), with explanations collected by Rajani
et al. (2019) to make a combined CoS-E dataset
(examples in Table 2). We use the Version 1.0 of

this dataset, since it has higher quality explana-
tions than Version 1.1.> CQA has approximately
8k/1k/1k train/dev/test data points, while NLI has
roughly 549k/10k/10k train/dev/test points. Note
that, in the main paper, we report results using 10%
of the SNLI training data, due to computational
demands of tuning multi-task models (1 week for
convergence with 100% data), and we report CQA
dev results since human explanations are not avail-
able for test data. See Tables 12 and 14 in the
Appendix for results for CQA test data and SNLI
with full training data, where we confirm the results
discussed here. For the model selection procedure
and further training details, see Appendix A.3, and
for robustness checks of LAS scores across seeds
and simulator architectures, see Appendix B.2.

6.1 Automatic Explanation Evaluation

Below we describe key conclusions from our eval-
uation of leakage-adjusted simulatability (LAS),
and we show results alongside overall simulator
accuracy Acc(g|z, €) and BLEU in Table 3.

Humans vs. Models. Some models do achieve
roughly human-level LAS scores for CQA and NLI.
First, we find that human explanations are helpful
to models: we estimate that explanations improve
humans’ simulatability by 4.31 percentage points
for SNLI and by 14.73 points for CQA. Our ST-
RA method performs similarly to humans on both
datasets. On SNLI, MT-RA also achieves about
human performance. We emphasize that this does
not mean these models match human explanations
in every respect. Rather, the semantics of the expla-
nations have a similar effect on simulator accuracy
as human explanations in our experimental settings.

*In Version 1.1, about 20% of explanations belong to a
small set of duplicates unrelated to the data point. See https:
//github.com/salesforce/cos—e/issues/2.
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Leakage Human LAS Human
Model 0 1 Model -1 0 1
0 127 87 -1 23 56 6
1 45 341 0 29 278 49

1 5 104 50

Table 4: Correlation between model-based and human
variables resulting from the expert simulation analysis.
For the leakage variable, Spearman’s rank correlation
is p = 0.53 (p < le—15). For the example-level LAS,
the rank correlation is p = 0.29 (p < 1le—12).

Additionally, we note that scores across datasets
are not directly comparable since they depend on
the underlying difficulty of the task.

RE vs. RA. Rationalizing models outperform their
reasoning counterparts on both datasets. For MT-
RE, the drop in LAS stems from non-leaking ex-
planations — these explanations tend to mislead the
simulator, meaning p(7|z, é) is inaccurate. For ST-
RE, explanations tend to leak for examples where
it is already easy to guess model behavior from z,
i.e. p(y|z) sets a high baseline.

BLEU vs. Simulatability. BLEU is not correlated
with our LAS metric, which supports our conjec-
ture that BLEU does not reflect the effect of ex-
planations on simulatability. LAS also does not
correlate with the simulator accuracy, Acc(g|x, €),
which is expected given how the simulator accuracy
is heavily influenced by explanation leakage.

6.2 Human Validation of LAS

We validate our model proxy variables with two hu-
man evaluations, an expert simulation experiment,
and a crowdsourced subjective rating test.

Expert Simulation. We (meaning the first three
authors as expert annotators) validate our use of
models as simulators of both model-generated and
human explanations by manually playing the role
of the simulator for 600 data points. With effec-
tively the same design as our automatic metric
computation, we simulate humans and our ST-RA
model with both datasets, only with no training
period in this case. Each annotator is randomly
assigned a role for each data point (whether they
see the input, explanation, or both), and points are
sampled such that an annotator never sees the same
point in different roles. The sample is roughly
balanced across the strata of our model’s proxy
variables. We note that ideally, we would use only
expert human simulators instead of proxies, though
even annotating less than 1% of the data across

conditions required 1800 individual responses.

The correlations between proxy variables and
our own are shown in Table 4. We group the
data across subsets (e.g., explanation source and
dataset) since the trends were similar between them.
We find a strong correlation between the leakage
proxy variable and the human leakage variable,
with a Spearman rank correlation of p = 0.53 (p <
le—15), and we observe a moderate correlation be-
tween the model-based and human example-level
LAS, p =0.29 (p < 1le—12) (Cohen, 1988).

The disagreements are concentrated in false neg-
atives for leakage, where we identify leaking ex-
planations when the model does not. With LAS,
model scores of -1 and 1 often end up as a hu-
man 0, meaning that an explanation confuses the
model but not the human rater (for -1), or the hu-
man can predict based on the input alone when the
model cannot (for 1). Because of this tendency
toward O, human LAS will shrink slightly toward
0 in expectation, relative to the model LAS (see
row-normalized Table 13 in Appendix). We also ob-
serve a degree of pragmatic drift between models
and humans. Lazaridou et al. (2020) operational-
ize this as the difference in performance between
human and model listeners in a reference game.
Similarly, we can use simulator accuracy given the
input and explanations. We find that humans are
better simulators of humans, and models are better
at predicting model outputs. Across datasets and
simulators, the difference in accuracies is 12.83
percentage points on average.

Lastly, one may notice from Table 4 that our pre-
dictions of the human label are sometimes wrong.
In fact, our own task accuracy is 70% (+7.33) for
SNLI and 72% for CQA (£7.19). These accura-
cies are similar to those obtained by Pavlick and
Kwiatkowski (2019) when re-annotating the SNLI
dataset. Interestingly, they find that tasks such as
these can have distributions over labels under hu-
man annotation, rather than consensus.

Human Subjective Quality Ratings. We collect
human ratings from Mechanical Turkers for 200
test examples for both CQA and SNLI. Each ex-
ample includes shuffled, unlabeled explanations
(one from each model, plus humans, for a total of
five), which we ask workers to separately rate on a
5-point Likert scale. After collecting 3 responses
per item, we apply a worker quality filter, obtain-
ing 902 ratings total. Further collection details are
provided in Appendix D.
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Example-Level LAS Score

Simulator Correctness  Regression Coef.

Data & Leakage -1 0 1 Prediction 0 1 I3 P
CQA: Leaking 2.39(36) 2.65(.08) 2.58(.15) CQA: jlz,é 234(11) 2.60(06) .14 07
Non-leaking  2.31(.21) 2.40(.10) 2.28 (.34) J|z 2.38(.09) 2.63(07) .09 .20

SNLI: Leaking 2.96 (45) 3.25(.06) 3.18(.15) gle 244100 238(07) .21 <.001
Non-leaking  2.78 (31) 2.94(.12) 2.61 (.46) SNLL: jj|z,é 2.85(14) 322(05) .20 03
Jlx 290 (11) 3.24(06) .10 15

Table 5: Human explanation ratings grouped by dataset, gle 3.02(.11) 3.21(.08) .27 <.001

label leakage. 95% confidence intervals in parentheses.

We investigate whether LAS and simulator accu-
racy are correlated with human explanation ratings.
For each example, we obtain human ratings, the
example’s LAS score 1[j|x, é] — 1[g;|z;] (taking
values -1,0,1), and simulator prediction accuracies,
1[g|z, €], 1[g|x], and 1[g|é] (taking values O or 1).

Human rating trends across example-level LAS
scores are shown in Tables 5. A first observation is
that LAS scores do not correlate well with human
ratings. Curiously, though, simulator accuracies
correlate with human ratings. We show these trends
in Table 6, along with regression coefficients for
predicting ratings from simulator accuracies. For
both datasets, 1[g|é] best correlates with human
ratings and the association with 1[g|x, €] is only
significant for SNLI. Since good explanations tend
to leak the label, it is not surprising that ratings cor-
relate with label leakage. However, it is surprising
that this association is stronger than the relationship
with overall accuracy, 1[y|z, €]. Together, these re-
sults help explain why models may struggle to learn
from human explanations, since models may focus
on label leakage in human explanations at the ex-
pense of other information. They may also suggest
that to collect human ratings that do not correlate
with label leakage, a highly controlled environment
for human ratings may be required.

6.3 Accuracy-Interpretability Trade-off

Past works on model interpretability have observed
trade-offs between accuracy and model constraints
for interpretation purposes (Bastings et al., 2019;
Jain et al., 2020). Yet, Rudin (2018) and Jacovi
and Goldberg (2020a) argue that we need not al-
ways face such a trade-off. Our findings provide
quantitative evidence supporting these prior qual-
itative arguments. We observe consistently small
changes in accuracy for our four models, and the
largest changes, -.47 (p = .3124) for SNLI and
-2.10 for CQA (p = .3272), are not statistically
significant. We also test methods using human
explanations purely for improving accuracy, e.g.,
through Masked Language Modeling objectives

Table 6: Human ratings broken down by dataset and
simulator prediction, shown alongside regression re-
sults. 95% confidence intervals in parentheses.

that have been successful for pretraining models.
We find that this objective does not lead to statisti-
cally significant accuracy improvements, suggest-
ing models still struggle to truly learn from human
explanations (results are shown in Table 14).

6.4 Multi-Agent Game

Multi-agent game results appear in Table 3, though
we note that RL results should be cautiously in-
terpreted as we observe unstable training behavior
from this method. We find that optimization with
SGD can reduce label leakage (from, e.g., 85.58%
to 75.21% for CQA MT-RA) while slightly improv-
ing LAS scores, but only one of four changes in
LAS scores is statistically significant, for MT-RE
on SNLI. This approach does pull BLEU scores
down. No statistically significant differences in
accuracy are found; the largest change, a 3.37 point
drop on CQA, has a p-value of .1287. We note that
this kind of optimization may have the effect of
increasing pragmatic drift, as is found for jointly
optimized agents in (Lazaridou et al., 2020).

7 Conclusion

We introduce a leakage-adjusted simulatability met-
ric to evaluate the influence of natural language
explanations on model simulatability while con-
trolling for explanations leaking the model outputs.
We validate our metric with two human subject
experiments, and find that: (1) our ST-RA model
attains similar LAS scores to human explanations,
(2) rationalizing methods do better than reasoning
methods, (3) no statistically significant relationship
emerges between simulatability and accuracy, (4)
our automatic metric correlates with expert simu-
lation results, (5) the strongest predictor of crowd-
sourced explanation ratings is whether explanations
leak the answer choice, and (6) optimizing expla-
nations for simulatability can improve LAS scores.
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A Experimental Details

A.1 Datasets and Examples

We conduct experiments with each method using
two datasets. The first is the COMMONSENSEQA*
dataset of Talmor et al. (2019), with explanations
collected by Rajani et al. (2019) to make a com-
bined CoS-E dataset.> We opt for the Version 1.0 of
this dataset since it has higher-quality explanations
than Version 1.1.% The dataset split sizes are 7610,
950, and 940 for the train, dev, and test, respec-
tively. Next, we use the e-SNLI dataset of Cam-
buru et al. (2018),” which includes explanations for
the SNLI benchmark (Bowman et al., 2015).% The
split sizes are 549,339, 9842, and 9824, for train,
dev, and test. Three explanations per data point are
available for the test data in e-SNLI; to compute
BLEU, we use the first explanation in the data for
each data point; we use the sacrebleu Python
package (Post, 2018).°

Note that explanations for the CQA test split
were not collected for the CoS-E dataset, as the
CQA test split itself is withheld as a leaderboard
test set. Meanwhile, we report results using 10% of
the SNLI training data, since training our multi-task
TS5 models with the full e-SNLI dataset can take
over 24 hours per epoch on a single T4 GPU. These
accuracy results are shown in Table 8. We report
test set statistics here for simulation-related experi-
ments for CQA, shown in Table 3, along with dev
statistics for SNLI. Trends across models remain
the same as with the data split statistics reported
in the main paper. In Table 12, we confirm trends
observed with the SNLI training data subset using

“https://www.tau-nlp.org/commonsenseqa

Shttps://github.com/nazneenrajani/CoS-E

®In Version 1.1, 20% of explanations were found to be-
long to a small set of duplicates that are unrelated to the
data point. See https://github.com/salesforce/
cos—e/issues/2.

"https://github.com/OanaMariaCamburu/e-SNLI

8https://nlp.stanford.edu/projects/snli/

*https://github.com/mjpost/sacreBLEU
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models trained with the entire dataset. Finally, Ta-
ble 7 shows additional examples from CQA and
SNLI plus model-generated explanations.

A.2 Hypothesis Testing

We describe results as statistically significant when
p-values are below .05, where p-values are cal-
culated by bootstrap for LAS, a difference in the
binomial means test for model accuracies, and by
linear regression with i.i.d. normal noise for as-
sociations between human ratings and simulator
correctness. Note that confidence intervals for LAS
vary in width based on how many data points are
in each leakage bin. With the expert evaluation,
we compute Spearman’s rank correlation between
proxy and human simulation variables (with a cor-
responding p-value). For our data, the results are
nearly identical to Pearson’s linear correlation and
Kendall’s Tau.

A.3 Model Selection and Training Details

Our model selection procedure is to train each task
model five times with differing seeds, then select
the model with the best development performance.
We train one simulator model per condition. Since
the two-agent experiments have far increased com-
putational load, we run one seed using a T5-Small
during training, selecting the best task model ac-
cording to its LAS with this weaker simulator. Af-
terward, we retrain with a T5-Base simulator.

Our training procedures result in the following
(approximate) experimental times for each model
when training on a single NVIDIA T4 GPU. With
a T5-Base model and CQA data, our baseline takes
about 10 hours for 20 epochs; ST-RE about 10
hours for 20 epochs; ST-RA about 20 hours for 20
epochs; MT-RE about 12 hours for 20 epochs; MT-
RA about 12 hours for 20 epochs. Multi-agent RL
optimization with a T5-Small simulator takes about
16 hours for 10 epochs, and SGD takes 24 hours for
10 epochs. Now with a T5-Base model and SNLI
data (using 10% of the training data), our baseline
takes about 24 hours for 10 epochs; ST-RE about
24 hours for 10 epochs; ST-RA about 48 hours for
10 epochs; MT-RE about 30 hours for 10 epochs;
MT-RA about 30 hours for 10 epochs. Multi-agent
RL optimization with a T5-Small simulator takes
about 3 days for 5 epochs, and SGD takes 5 days
for 5 epochs. Using the full SNLI dataset, the
baseline took four days to train five epochs, and
either MT model took 5 days for 5 epochs. We train
generators for the ST conditions for 5 epochs on the

10% subset, which takes under 6 hours. Note that to
follow our model selection procedure, experimental
times should be multiplied by five here, and further
extended to include training simulators.

Lastly, we note that T5-Base has 220 million pa-
rameters, while T5-Small as 60 million parameters
(Raffel et al., 2019). In general, this means our
model sizes are 220 million parameters, although,
for multi-agent training, our effective model size is
280 million parameters.

A.4 Training Simulator Models

When training simulators, it is critical that the
model can approximate the three distributions used
in LAS computation: pe(9i|x, €;), ps(s|s), and
Ps(ié;). This is achieved by applying dropout
at the input token level to either (1) the entire =
subsequence, or (2) the entire é subsequence. The
same proportion of inputs in each batch are affected
by the dropout, with the subset being chosen ran-
domly. Without this technique, simulator models
rely too heavily on explanations, and when con-
ditioned only on z, they underperform baseline
models that are trained only with z. In our multi-
agent experiments, we take a nearly identical ap-
proach, but we make use of the fact that each of the
three simulator predictions is made for each batch
(g (Jilzi, €), pg(Dilzi), and py(Pilé;)). That is,
we weight these terms in the simulator objective
by ratios implied by our dropout technique, rather
than using dropout directly. See the Section A.5
for the relevant hyperparameters.

A.5 Hyperparameter Tuning

For baselines, we tune hyperparameters such as
the learning rate and batch size for accuracy, se-
lecting from [le — 5,1e — 4, 1e — 3] for LR and
[4,6,12,24, 36] for batch size, finally using le — 4,
with CQA batch size 12 and SNLI batch size 36.
For multi-task models, we tune the mixing
weight o based on task performance, searching
over values in [.3, .4, .5, .6,.7, .8], settling on .5.
For simulator models, we tune mixing weights
(or dropout proportions) by selecting based on each
of the three predictions’ accuracies, relative to base-
line models trained on one input type only. Specif-
ically, we select based on the max accuracy of
the subsequence (x and e) predictions (with accu-
racies added together), under the constraint that
models must achieve within 1 percentage point ac-
curacy of the overall pg(9;|z;, é;) accuracy. Now
taking Az ¢, Az, and A, as loss function weights for
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Input, Output, and Explanation

Model
Leaking? LAS

Human

Leaking? LAS

Question: Marathoners feel fatigued after running twenty six miles, but some that

have pushed them self too hard might be prone to what?
Choices: A. passing out; B. death; C. exhaustion

Yes 1 Yes 1

STRA explanation: if you are running too hard, you are likely to be exhausted.

Question: Where is likely to not just have a kosher restaurant?
Choices: A. new york city; B. jewish neighborhoods; C. jerusalem
HUMAN explanation: kosher restaurant is not in new york city.

Yes 0 No 0

Question: When are people buying products more?

Choices: A. economic boom; B. disagreements; C. being able to use

HUMAN explanation: being able to use.

Question: John bought a new water hose. But he found his old one near his car.

Where did he find the old one?
Choices: A. garden shed; B. hardware store; C. garage

Yes 1 Yes 0

STRA explanation: garage is the only place where you can find old water hoses.

Premise: A man of the cloth puts a black substance on a man ’s forehead.

Hypothesis: The men are at church.
Choices: A. entailment; B. neutral; C. contradiction
HUMAN explanation: You can not infer they are at church .

Yes 1 Yes 1

Premise: One tan girl with a wool hat is running and leaning over an object , while

another person in a wool hat is sitting on the ground.
Hypothesis: A boy runs into a wall.

Choices: A. entailment; B. neutral; C. contradiction
STRA explanation: A girl is not a boy.

Yes 0 Yes 0

Premise: A man dressed in a light blue shirt dumping items from a bin into another

bin , while standing in a room full of food donations.
Hypothesis: Foods are not stored in room by a man.
Choices: A. entailment; B. neutral; C. contradiction
STRA explanation: Food donations are not stored.

Yes -1 Yes -1

Premise: Taking a break to watch some TV
Hypothesis: Taking a neverending break
Choices: A. entailment; B. neutral; C. contradiction

HUMAN explanation: Some TV is not enough to be on a neverending break.

Table 7: Example data points from both CQA and SNLI with HUMAN or STRA label (bold in text) and explanation.
Leakage predictions and example-level LAS scores from both model-based (T5) and human simulators are given.

predictions conditioned on their subscripts, the ef-
fective loss function weights for CoS-E data are:
Aze = -5, Ay = .5, and A\, = 0; and for NLI, we
use A\pe = 4, A = 4, A = .2

The most complex set-up for tuning is our multi-
agent method. Here, we must tune mixing weights
for the task, LM, and explanation objectives, as
well as the weight for penalizing leaking explana-
tions. First, we tune the task, LM, and simulatabil-
ity weights directly for overall simulator accuracy,
without applying a penalty for leaking. We search
each parameter over the range [.2, .5] spaced by .05,
with constraints that the three terms must add to 1,
task weight must be as high as LM weight, and sim
weight must be as high as task weight). Lastly, we
tune the « trading off between explanation rewards
and penalties by selecting directly for LAS scores;
we search the unit interval spaces by .1. For SGD,
« 1s set to .8 for CQA and .9 for SNLI; the task

loss is .35, LM loss is .15, explanation loss is .5,
and the simulator model objective adopts the same
weights as described above. For RL, this mixing
weight « is set to .8 for both datasets; the task loss
is .025, LM loss is .025, explanation loss is .95,
and the simulator model objective also adopts the
same weights as described above.

B LAS Robustness Checks

B.1 Continuous Leakage Scores and LAS
Metric

While we binarize our proxy for label leakage
based on prediction correctness and take the raw
average of explanation effects across two leakage
bins, a continuous measure of leakage can be ob-
tained directly from p(g|é). Then, an arbitrary
number of bins can be used. Interestingly, for a TS
model fine-tuned by decoder sequence likelihood
maximization, these probabilities are tightly con-
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Generator

x3 po(ai]S; A)

The answer is 'neutral' because: just because two

children are embracing does not mean they are hugging J—> The answer is: neutral N

premise: Two children, both wearing tan coats,
are embracing one another.

hypothesis: Two kids are hugging.

The answer is 'entailment' because: hugging is a
rephrasing of embracing.

j—» The answer is: entailment 87

Ids.

) —

S
Encoder Sequences

The answer is 'contradiction’ because: children are not . -
Kid J—» The answer is: contradiction 02
J
~+

Decoder Sequences

Figure 5: Inputs and outputs for the sequence to sequence ST-Ra framework. One explanation is generated for each
answer choice, conditioned on the choice. The sequences and answers are supplied to a sequence-to-sequence task
model for scoring. We use separate TS5 models for the generator and task model.

SNLI CQA

Method Dev Acc Test Acc Dev Acc
T5-BASE 88.58 88.14 (.63) 68.84 (2.95)
MT-RE 88.91 88.44 (.62) 69.26 (2.93)
MT-RA 88.95 87.98 (.63) 68.95(2.94)
ST-RE 87.67 87.67 (.64) 66.74 (3.00)
ST-RA 87.69 87.69 (.64) 68.84 (2.95)
MULTI-AGENT

MT-RE (SGD) 88.24 87.94 (.64) 68.00(2.97)

MT-RA (SGD) 88.04 87.68 (.64) 65.58 (3.02)

MT-RE (RL) 88.31 87.91 (.64) 68.31(2.96)

MT-RA (RL) 87.99 87.72 (.65) 67.47 (2.98)

Table 8: Model accuracies for the CQA and SNLI tasks.
Generative models perform as well as non-generative
baselines. CQA results are for dev data and SNLI are
dfor test.

centrated around values just above random chance
performance (.33 for both CQA v1.0 and SNLI),
taking a roughly normal distribution. As a result,
they are easily calibrated via Platt scaling (Platt,
2000). To check for our results’ robustness, we per-
form sensitivity analysis with respect to the number
of evenly spaced leakage bins chosen to subset, af-
ter calibrating our leakage probabilities. Across bin
counts between 2 and 100, LAS estimates typically
vary by less than 1 point, and as a result, method
ranking is almost always preserved. In the limit of
the number of bins, our metric becomes the inte-
gral of the explanation effect as a function of leak-
age probability. To ensure the robustness of LAS
scores, this type of sensitivity analysis should be
performed whenever possible, but especially when
explanation effectiveness is not linearly related to
the leakage probability.

B.2 Robustness to Seed and Model Choice

We check LAS scores across three random seeds
since random seeds tend to have a large influence
on all statistics derived from pretrained neural lan-

guage models (Dodge et al., 2020). Results are
shown in Table 10. The rank ordering of scores
is typically preserved, and in most cases, scores
display relatively low variance, although there are
some outlying values.

We also check the effect of using a differ-
ent simulator model, shown in Table 11. We
compare between our primary choice of T5-Base
and RoBERTa-Large models for SNLI data. For
ST models, the task model and simulator are of
the same architecture, but we do not evaluate
MT conditions since RoOBERTa is not generative.
RoBERTa produces lower LAS scores than T3,
and their rank ordering is not necessarily the same,
though ST-RA is the highest on average in both
cases. The differences between them could result
from their pretraining procedures, architectural dif-
ferences, finetuning sample efficiency, or another
cause.

C Alternative Computational Models
and Language Modeling Objectives

Our generative models neither gained nor lost accu-
racy relative to their baselines when implemented
with T5 models. Since learning from explanations
to improve accuracy is another goal in collecting
human explanations as data, we seek to assess
this trend with alternative computational models
and language modeling objectives. Hence, we test
our MT models with Masked Language Modeling
(MLM) objectives in place of the Causal objectives
used for the generation, and wherever a generator
or task model appears in current experiments, we
test the effect of substituting GPT2 and BERT in
their place. We show results for these models in
Table 14; GPT2+BERT methods are tagged as ENC
methods. Just as with our generative approaches,
we observe no differences in accuracies between
baselines and other methods.
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Dev. SNLI Test CQA

Explanations LAS Score (CI) Acc(y | z, €) BLEU LAS Score (CI) Acc(y | x, €) BLEU
HUMAN 4.36 (2.10) 98.40 - - - -
MT-RE -14.08 (1.78) 94.05 - -5.40 (3.73) 80.00 -
MT-RA 2.70 (8.59) 99.92 - 2.25 (4.60) 91.91 -
ST-RE 1.52 (0.90) 94.44 - 2.78 (2.10) 82.23 -
ST-RA 7.26 (3.20) 99.90 - 10.33 (3.34) 86.70 -
MULTI-AGENT

MT-RE (SGD) -9.56 (1.64) 94.44 - -2.16 (3.56) 77.23 -

MT-RA (SGD) 5.06 (5.97) 99.90 - 4.53 (3.51) 84.79 -

MT-RE (RL) -12.08 (1.51) 93.52 - -6.55 (3.38) 80.95 -

MT-RA (RL) -0.52 (0.45) 93.18 - -9.59 (2.93) 70.31 -

Table 9: Evaluations of human and model-generated explanations by LAS score, overall simulator accuracy, and
BLEU. We show the opposite data split relative to the main paper, for reproducibility. 95% confidence intervals
as calculated by bootstrap are shown in parentheses. Confidence intervals are wider when the nonleaking subset is
very small, and smaller when leaking and nonleaking subsets are both large.

Seed
Method Seedl Seed2 Seed3
SNLI
HuUMAN 4.31 1.68 5.34
MT-RE -15.83 -5.55 -4.66
MT-RA 4.34 2.12 2.21
ST-RE 0.55 1.19 1.35
ST-RaA 6.74 4.93 5.14
CQA
HuMAN 14.73 15.46 16.16
MT-RE -7.07 -5.38 -3.53
MT-RA -1.31 0.32 6.33
ST-RE 3.76 1.82 2.46
ST-RA 10.32 7.24 13.43

Table 10: We check LAS scores across three random
seeds, since random seeds tend to have a large influ-
ence on all statistics derived from pretrained neural lan-
guage models (Dodge et al., 2020). Seed 1 is the re-
sult reported in the main body. We test two additional
seeds for our primary experiments, retraining all mod-
els involved in the LAS score (including task model,
simulator, and ST generators).

D Human Quality Rating Collection

We collected the human ratings of explanation qual-
ity from Amazon Mechanical Turk. For CQA or
SNLI, we sample 200 examples from the devel-
opment or testing set (CQA’s testing set does not
contain human explanations). Each example has
five explanations that are generated by the four
models we introduced in the main paper as well
as humans. We anonymously shuffle the five ex-
planations and ask turkers to rate them separately
on a 5-point Likert scale. Meanwhile, we give
them some instructions about “rate explanations by
how they support the answer choice, rather than
whether they are literally true” and “explanations in
which cases should be rated low”. Figure 6 shows

Model
Method T5-Base RoBERTa-Large
HuMAN  4.31(1.97) -1.09 (2.69)
ST-RE 0.55 (0.87) -0.44 (0.95)
ST-RA 6.74 (4.53) 4.74 (9.68)

Table 11: LAS score comparison between T5-Base and
RoBERTa-Large models with SNLI data (95% confi-
dence intervals obtained by bootstrap). For ST mod-
els, the task model and simulator are of the same ar-
chitecture. ROBERTa produces lower LAS scores than
TS, and their rank ordering is not necessarily the same.
The differences between them could result from their
pretraining procedures, architectural differences, fine-
tuning sample efficiency, or another cause.

SNLI
Method Dev. Acc (CI)  Test Acc (CI)
T5-BASE 91.31 (.56) 91.01 (.57)
MT-RE 91.62 (.55) 91.14 (.56)
MT-RA 91.56 (.55) 91.20 (.56)

Table 12: NLI results using the full training dataset.
Generative models of explanations can maintain task
accuracy.

the full instructions we used for collecting expla-
nation ratings for CQA, and Figure 7 shows one
CQA question and its answer choices plus the first
model’s choice and its explanation. SNLI has a
similar GUIs. Turkers will be required to rate five
(choice, explanation) pairs on one page.

We collected 3 responses for each example, so
there are 600 responses in total for each dataset. We
apply a simply quality filter to filter the responses
from bad turkers. We first manually picked 10
explanations from both CQA and SNLI that contra-
dict their corresponding model outputs (choices).

4365



LAS Human
Model -1 0 1
-1 0.271 0.659 0.071
0 0.082 0.781 0.138
1 0.031 0.654 0315

Table 13: Row-normalized contingency table between
model-based and human variables resulting from the
expert simulation analysis. Model scores of -1 and 1
tend to shrink toward human ratings of 0.

e-SNLI CQA
Method Test Acc (CI) Dev Acc (CI)
BERT-BASE 87.01 (0.66) 67.89 (2.97)
ST-RE-ENC 85.67 (0.69) 63.16 (3.07)
ST-RA-ENC 85.62 (0.69) 64.84 (3.04)
MT-RE-ENC 87.25 (0.66) 70.74 (2.89)
MT-RA-ENC 87.23 (0.66) 69.79 (2.92)
T5-BASE 88.14 (0.63) 68.84 (2.95)
MT-RE-MLM 88.26 (0.63) 69.05 (2.94)
MT-RA-MLM  88.43 (0.63) 70.11 (2.91)

Table 14: Task results table with alternative computa-
tional models and language modeling objectives.

As we know, these explanations are sure to be bad.
So, we filter the responses from those turkers who
rated high (> 2 for CQA, > 3 for SNLI, since
SNLI has a higher average rating) for these bad ex-
planations. After filtering, we finally obtained 466
responses for CQA and 436 responses for SNLI.
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Instructions (Please read carefully to ensure that your work gets approved as quickly as possible!)

Welcome!
We need your help in rating the quality of explanations.

For each assignment, you will be prompted with a general-knowledge multiple choice question and five
answers given by other people, along with an explanation they gave for why they picked their answer
. Your task is to rate each explanation on a scale of 1 to 5 for "Does this explanation tell me why they
picked their answer?". Here are some important criteria you must keep in mind:

1. 1 is the worst, which means the explanation either contradicts the answer choice or is meaningless.
5 is the best, which means the explanation explains the answer choice very well with meaningful
content.

2. Try to rate explanations by how they support the answer choice, rather than whether they are
literally true. Sometimes an answer choice may not be the same as what you would pick, but the
explanation may still show you what the person was thinking -- this kind of explanation is good.

3. Explanations in following cases should be rated low:

1. contradict the answer choice, or support a different answer choice;

. meaningless or irrelevant, e.g., "this is the only/best choice";

. only repeat the question;

. only repeat the answer choice without any other content;

. internally contradictory, e.g., "choice A is right because choice B is right".

o~ wWwN

An example showing what are good and bad explanations:

Question: How could you have fun by yourself with no one around you?
Choices: A. watching television; B. friend's house; C. fairgrounds

Answer Choice: friend's house

Bad explanation: watching television is a fun activity when on your own. (this explanation is bad
because it doesn't support the "friend's house" choice)

Good explanation: friend's house is where you can have fun by yourself. (this explanation is good
because if someone believed it, they would pick "friend's house")

Figure 6: The instruction shown on Amazon Mechanical Turk page for human rating collection on CQA.

Multiple Choice Question & Answer Choices:

Question: John needed a straight wire. Unfortunately, this one had endured some abuse and had
become what?

Choices: A: curved, B: bent, C: crooked

Answer Choice & Explanation 1:

Answer1: bent
Explanation1: past and past participle of bend1

Rate: 1 2 3 4 5

Figure 7: A part of the questions for human rating collection on CQA.
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