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Abstract

The standard neural machine translation
model can only decode with the same depth
configuration as training. Restricted by this
feature, we have to deploy models of various
sizes to maintain the same translation latency,
because the hardware conditions on different
terminal devices (e.g., mobile phones) may
vary greatly. Such individual training leads to
increased model maintenance costs and slower
model iterations, especially for the industry. In
this work, we propose to use multi-task learn-
ing to train a flexible depth model that can
adapt to different depth configurations during
inference. Experimental results show that our
approach can simultaneously support decod-
ing in 24 depth configurations and is superior
to the individual training and another flexible
depth model training method——LayerDrop.

1 Introduction

As neural machine translation models become heav-
ier and heavier (Vaswani et al., 2017), we have to re-
sort to model compress techniques (e.g., knowledge
distillation (Hinton et al., 2015; Kim and Rush,
2016)) to deploy smaller models in devices with
limited resources, such as mobile phones. How-
ever, a practical challenge is that the hardware
conditions of different devices vary greatly. To
ensure the same calculation latency, customizing
distinct model sizes (e.g., depth, width) for dif-
ferent devices is necessary, which leads to huge
model training and maintenance costs (Yu et al.,
2019). For example, we need to distill the pre-
trained large model into N individual small models.
The situation becomes worse for the industry when
considering more translation directions and more
frequent model iterations.

∗Work done during Ph.D. study at Northeastern Univer-
sity.

An ideal solution is to train a single model that
can run in different model sizes. Such attempts
have been explored in SlimNet (Yu et al., 2019)
and LayerDrop (Fan et al., 2020). SlimNet allows
running in four width configurations by joint train-
ing of these width networks, while LayerDrop can
decode with any depth configuration by applying
Dropout (Srivastava et al., 2014) on layers during
training.

In this work, we take a further step along the
line of flexible depth network like LayerDrop. As
shown in Figure 1, we first demonstrate that when
there is a large gap between the predefined layer
dropout during training and the actual pruning ratio
during inference, LayerDrop’s performance is poor.
To solve this problem, we propose to use multi-
task learning to train a flexible depth model by
treating each supported depth configuration as a
task. We reduce the supported depth space for the
aggressive model compression rate and propose
an effective deterministic sub-network assignment
method to eliminate the mismatch between training
and inference in LayerDrop. Experimental results
on deep Transformer (Wang et al., 2019) show that
our approach can simultaneously support decoding
in 24 depth configurations and is superior to the
individual training and LayerDrop.

2 Flexible depth model and LayerDrop

2.1 Flexible depth model

We first give the definition of flexible depth model
(FDM): given a neural machine translation model
MM−N whose encoder depth is M and decoder
depth is N , in addition to (M,N), ifMM−N can
also simultaneously decode with different depth
configurations (mi, ni)

k
i=1 where mi ≤ M and

ni ≤ N and obtain the comparable performance
with independently trained model Mmi−ni , we
refer to MM−N as a flexible depth model with
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Figure 1: BLEU score heatmaps of a 12-layer encoder and a 6-layer decoder model trained by LayerDrop with
different layer dropout p. p′enc and p′dec denote the layer-prunning ratio at inference on encoder and decoder,
respectively. For example, p′enc=11/12 means decoding by one encoder layer without the other 11 encoder layers.
The red star marks the training layer dropout, i.e. p′enc=p′dec=p.

a capacity of k. We notice that although a pre-
trained vanilla Transformer can force decoding
with any depth, its performance is far behind the in-
dependently trained model 1. Therefore, the vanilla
Transformer does not belong to FDM.

2.2 LayerDrop

In NMT, both encoder and decoder are generally
composed of multiple layers with residual connec-
tions, which can be formally described as:

xi+1 = xi + Layer(xi). (1)

To make the model robust to pruned layers (shal-
lower networks), LayerDrop proposed by Fan et al.
(2020), applies structured dropout over layers dur-
ing training. A Bernoulli distribution associated
with a pre-defined parameter p ∈ [0,1] controls the
drop rate. It modifies Eq. 1 as:

xi+1 = xi +Qi ∗ Layer(xi) (2)

where Pr(Qi = 0) = p and Pr(Qi = 1) = 1− p.
In this way, the l-th layer theoretically can take
any proceeding layer as input, rather than just the
previous one layer (l − 1-th layer).

At runtime, given the desired layer-pruning ratio
p′ = 1 − Dinf/D where Dinf is the number of
layers actually used in decoding and D is the total
number of layers, LayerDrop selects to remove the
d-th layer such that:

d ≡ 0(modb 1

p′
c) (3)

1BLEU score is only 0.14 if we ask the vanilla Transformer
with M=12 and N=6 to decode with M=1 and N=1 directly.
However, an individual trained model with M=1 and N=1 can
obtain 30.36.

2.3 LayerDrop’s problem for flexible depth
Although LayerDrop can play a good regularization
effect when training deep Transformer (Fan et al.,
2020), we argue that this method is not suitable for
FDM. As illustrated in Figure 1, we demonstrate
that LayerDrop suffers a lot when there is a large
gap between the pre-defined layer dropout p in
training and the actual pruning ratio p′ at runtime.
We attribute it to two aspects:

1. Huge sub-network space in training. Consider
a D-layer network, because each layer can be
masked or not, up to 2D sub-networks are
accessible during training, which is a major
challenge when D is large.

2. Mismatch between training and inference. As
opposite to training, LayerDrop uses a deter-
ministic sub-network at inference when given
the layer pruning ratio p′ (See Eq. 3), which
leads to a mismatch between training and in-
ference. For example, for D=6 and Dinf=3,
there are

(
D

Dinf

)
sub-network candidates dur-

ing training, while only one of them is used in
decoding.

3 Flexible depth by multi-task learning

We propose to use multi-task learning to solve the
above problems. All tasks are trained jointly and
share the same parameters. Concretely, unlike Lay-
erDrop, which allows up to M ×N possible depth
configurations, our approach sets a smaller depth
configuration space (mi, ni)

k
i=1(k < M × N) in

advance and takes each (mi, ni) as a task. An-
other major difference from LayerDrop is that each
task’s sub-network is unique and deterministic in
our method, resulting in consistent sub-network
used between training and inference.
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Algorithm 1: Training Flexible Depth
Model by Multi-Task Learning.

1 pre-trainMM−N on training data D;
2 generate distillation data D′ byMM−N ;
3 M′M−N ←MM−N ;
4 for t in 1, 2, . . . , T do
5 B ← sample batch from D′ ;
6 gradient G ← 0;
7 for (mi, ni) in φ̂(M)⊗ φ̂(N) do
8 SNe, SNd← F(mi,M), F(ni, N);
9 Feed B into network (SNe,SNd);

10 Collect gradient g by Back-Propa.;
11 G ← G + g;
12 end
13 OptimizeM′M−N with gradient G;
14 end
15 ReturnM′M−N

Reduce depth space. For depth D, in princi-
ple, LayerDrop can be pruned to any depth of
φ(D) = {0, 1, 2, . . . , D}. However, consider the
actual situation of model compression for resource-
limited devices, it is unnecessary if the compress-
ing rate is too low, e.g., D→ D-1. Therefore, for
an aggressive compress rate, we replace the entire
space φ(D) with the set of all positive divisors of
D 2:

φ̂(D) = {d|D%d = 0, 1 ≤ d ≤ D} (4)

The physical meaning of φ̂(D) is to compress every
D/d layers into one layer, where d ∈ φ̂(D).

Guideline for deterministic sub-network assign-
ment. The use of deterministic sub-networks
is critical to maintaining the consistency between
training and inference. However, for each d ∈
φ̂(D), it is not trivial to decide which d layers
should be selected to construct the d-layer sub-
network. Here we propose two metrics to guide
the procedure. The first is task balance (TB),
whose motivation is to make every layer have as
uniform tasks as possible. We use the standard de-
viation of the number of tasks per layer to measure
it quantitatively:

TB =

√√√√∑i∈[1,D]

(
t(i)− t̄

)2
D

(5)

2For the diversity of depth configuration, we assume that
D is not a prime number in this work.

where t(i) is the number of tasks in which the i-th

layer participates and t̄ =

∑
d∈φ̂(D) d

D . The second
is average layer distance (ALD), which requires
the distance between adjacent layers in the sub-
network SN(d) = {La1 , La2 , . . . , Lad} should be
large. For example, for a 6-layer network, if we
want to build a 2-layer sub-network, it is unrea-
sonable to select {L1, L2} directly because the
features extracted by adjacent layers are seman-
tically similar (Peters et al., 2018; Raganato and
Tiedemann, 2018). Therefore, we use the average
distance between layers in all sub-networks as the
metric:

ALD =

∑
d∈φ̂(D)

∑
ai,ai+1∈SN(d)

|ai+1 − ai|

Z
(6)

where Z =
∑

d∈φ̂(D) (d− 1) is the normalization
item.

Proposed method. Guided by these two met-
rics, we design an effective sub-network assign-
ment method Optimal. We record the usage state
si of each layer to ensure not to put too many tasks
on the same layer. At initialization, we set si as
Alive. For d ∈ φ̂(D), Optimal prioritizes to pro-
cess large depth. Optimal uniformly assigns one
layer for every c = D/d layers to make ALD
high. In each chunk, we pick the middle layer
of ceil(c/2)− 1 (called MiddleLeft). Note that,
LayerDrop uses the leftmost layer in each chunk
(called Left), as shown in Eq. 3. Although Left
and MiddleLeft have the same ALD, we found
that there is a large gap in TB. For example, when
D=12, Left’s TB is 1.5, which is much higher
than MiddleLeft’s 0.78 (lower is better). Then,
Optimal records which layers are used and picks
the less used layers as much as possible. Each used
layer is marked as Dead. If current alive layers
cannot accommodate the picked depth d, we pass
it and choose a smaller d until the alive layers are
sufficient, or reset all layers as Alive.

Training. Algorithm 1 describes the training
process of our method. During training, com-
pared with individual training and LayerDrop from
scratch, our FDM finetunes on the individually pre-
trained MM−N and uses sequence-level knowl-
edge distillation (Seq-KD) (Kim and Rush, 2016)
to help shallower networks training. We note that
in conventional Seq-KD, the student model cannot
finetune on the teacher model directly because the
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M
N 1 2 3 6

Base ∆LD ∆MT Base ∆LD ∆MT Base ∆LD ∆MT Base ∆LD ∆MT

1 31.54 -3.04 -0.09 33.38 -2.37 +2.67 33.87 -1.99 +0.64 34.77 -2.27 -0.03
2 32.80 -0.98 +0.31 34.15 -0.53 +0.48 34.58 -0.22 +0.55 34.95 -0.15 +0.49
3 33.38 -0.40 +0.26 34.40 +0.15 +0.65 34.74 +0.40 +0.75 35.29 +0.25 +0.52
4 33.92 -0.27 +0.44 34.77 +0.38 +0.59 35.01 +0.50 +0.86 35.37 +0.41 +0.68
6 34.28 -0.29 +0.07 35.06 +0.20 +0.42 35.23 +0.41 +0.61 35.51 0.34 +0.51
12 34.72 -0.05 +0.06 35.26 +0.49 +0.53 35.52 +0.53 +0.44 35.74 +0.49 +0.48

Table 1: BLEU scores of Baseline/LayerDrop/MT in all tasks (6×4). ∆LD/∆MT represents the BLEU score
difference between LayerDrop/MT and Baseline, respectively. All the three methods have the same training
cost. Boldface denotes the winner.

System w/o Seq-KD w/ Seq-KD
Baseline 33.92 34.51

LayerDrop 32.80 34.18
MT 34.07 34.95

Table 2: Average BLEU scores of 24 tasks on test set
w.r.t. Seq-KD.

two models have different sizes. However, FDM
allows models with different depths to share the
same parameters, and finetuning on the pre-trained
teacher model also promotes model convergence.

4 Experiments

4.1 Setup

We conducted experiments on IWSLT’14
German→English (De→En, 160k) following the
same setup as Wu et al. (2019). To verify FDM’s
efficiency, we train all models with a deep encoder
to contain more tasks. Specifically, we train a
PreNorm Transformer (Wang et al., 2019) with
M=12 and N=6. See Appendix A for the details.

We mainly compare our method MT with the
two baselines: Baseline and LayerDrop.
Baseline denotes individually training the stan-
dard Transformer from scratch with different
depths. For fair comparisons, both Baseline
and LayerDrop use Seq-KD during training and
have the same training costs 3.

4.2 Results and Analysis

Main results. As shown in Table 1, we compared
Baseline, LayerDrop and our MT in all tasks.
Although LayerDrop outperforms our method

3Original LayerDrop in Fan et al. (2020) samples a batch
to update the model, while we modify it by accumulating
6×4=24 batches to keep the training cost comparable with
Baseline and MT. Also, more samples improve Layer-
Drop’s performance. For example, the average BLEU score
in 24 tasks with one batch and 24 batches is 32.31 and 34.18,
respectively.

Strategy TB↓ ALD↑ BLEU6×4
Head 1.78 1.0 34.37
Seq 0.49 1.0 34.53
Left 1.50 2.0 34.59

MiddleLeft 0.78 2.0 34.90
Optimal 0.49 2.05 34.95

Table 3: Average BLEU scores of 24 tasks on test set
w.r.t. sub-network strategy. We report TB and ALD on
encoder side. ↓ denotes the lower the better, while ↑ is
on contrary. Note that, unlike the standard BLEU score,
BLEU6×4 is more difficult to change significantly be-
cause it is scaled of the number of tasks.

when a few layers pruned, we can see that MT is the
winner in most tasks (20/24). It indicates that our
method is superior to LayerDrop for FDM training
and demonstrates the potential to substitute a dozen
models with different depths to just one model. Be-
sides, in line with Fan et al. (2020), it is interesting
to see the FDM without any pruning outperforms
the individually trained model (see M=12, N=6),
which is obvious evidence that jointly training of
various depth models has a good regularization ef-
fect.

Knowledge distillation. Table 2 shows average
BLEU scores of 24 tasks when training a flexible
depth model with/without Seq-KD. It is clear that
using distillation data helps FDM training in all
systems, which is in line with the previous single-
model compression study (Kim and Rush, 2016).
According to Zhou et al. (2020), Seq-KD makes the
training data distribution smoother, so we suspect
that FDM benefits from Seq-KD because of the
difficulty of multi-task learning.

Sub-layer assigiment strategy. Besides the pro-
posed Optimal and Left used by LayerDrop
and its improved version MiddleLeft, we also
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System # task BLEUN=6 BLEUM=12

Baseline 1 35.27 35.31
MT (only encoder) 6 35.79 N/A
MT (only decoder) 4 N/A 35.80

MT (both) 24 35.71 35.68

Table 4: Average BLEU scores when reducing the num-
ber of tasks.

compared with the other two strategies: Head and
Seq, to check the consistency between BLEU and
the proposed guidelines (TB and ALD). Head is
the simplest method, which always picks the first
d layers as the sub-network. However, it causes
the bottom layers heavier than the top layers. Seq
avoids this problem by sequentially skipping pre-
viously used layers. For example, for D=6, d=1,
Seq first uses L1 as the sub-network. Next, when
d = 2, Seq selects L2 and L3. This method en-
sures that the minimal burden on all layers, but
it violates the ALD metrics. Table 3 shows the
average BLEU scores on all tasks by several sub-
network strategies. While MiddleLeft already
has good TB and ADL, we argue that it is not the
best. This is because MiddleLeft treats each d
independently regardless of which layers are used
in the previous d′. We can see the proposed policy
with lower TB and higher ALD obtains the best
result, which indicates that our proposed metrics
are helpful to determine which strategy is sound.

Reduce the number of tasks. Intuitively, the
number of tasks demines the learning difficulty
of our method. To verify this assumption, we
tested the other two baselines: (1) only training
the flexible-depth encoder (depth from {1, 2, 3, 4,
6, 12}) but the decoder depth is the constant 6, de-
noted by MT (only encoder); (2) only training the
flexible-depth decoder (depth from {1, 2, 3, 6}) but
the encoder depth is the constant 12, denoted by
MT (only decoder). Then we compared the average
BLEU scores under fixing the decoder depth as
6 (BLEUN=6) and fixing the encoder depth as 12
(BLEUM=12). As shown in Table 4, when we re-
duce the number of tasks, we can generally obtain
better performance. It indicates that if removing
some unnecessary tasks, our FDM has the potential
for further improvement.

Training efficiency. Our multi-task learning
needs to accumulate gradients on all tasks, and
its cost is linearly related to the number of tasks.
Actually, we can sample fewer tasks instead of
enumerating them all. For example, randomly sam-

Burden Batch #Enc. #Dec. BLEU6×4
100% B 6 4 34.95

50%
B 6 2 34.79
B 3 4 34.74

0.5B 6 4 34.77

25%

B 6 1 34.67
B 3 2 34.58

0.5B 6 2 34.51
0.5B 3 4 34.54

0.25B 6 4 34.52

Table 5: BLEU scores against training efficiency. B
denotes the full token-level batch size of 8k. BLEU6×4
represents the average BLEU scores on 24 tasks.

pling 3 tasks from 6 depth candidates (denoted by
#Enc.=3). Another way to reduce training costs
is to use smaller batches. We compared different
strategies at {100%, 50%, 25%} training costs, as
shown in Table 5. First of all, we can see that more
training costs can obtain better performance. Com-
pared with reducing tasks and reducing batches,
we found that the former is a better choice. In par-
ticular, sampling more depths on the encoder side
is more important than the decoder side, which is
consistent with the recent observation in Wang et al.
(2019) that encoder is more important than decoder
in terms of translation performance.

5 Conclusion

We demonstrated LayerDrop is not suitable for
FDM training because of (1) the huge sub-network
space in training and (2) the mismatch between
training and inference. Then we proposed to use
multi-task learning to mitigate it. Experimental
results show that our approach can decode with up
to 24 depth configurations and obtain comparable
or better performance than individual training and
LayerDrop. In the future, we plan to explore more
effective FDM training methods, and combining
flexible depth and width is also one of the attractive
directions.
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