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Abstract

Media plays an important role in shaping pub-
lic opinion. Biased media can influence peo-
ple in undesirable directions and hence should
be unmasked as such. We observe that feature-
based and neural text classification approaches
which rely only on the distribution of low-level
lexical information fail to detect media bias.
This weakness becomes most noticeable for ar-
ticles on new events, where words appear in
new contexts and hence their “bias predictive-
ness” is unclear. In this paper, we therefore
study how second-order information about bi-
ased statements in an article helps to improve
detection effectiveness. In particular, we uti-
lize the probability distributions of the fre-
quency, positions, and sequential order of lex-
ical and informational sentence-level bias in a
Gaussian Mixture Model. On an existing me-
dia bias dataset, we find that the frequency and
positions of biased statements strongly impact
article-level bias, whereas their exact sequen-
tial order is secondary. Using a standard model
for sentence-level bias detection, we provide
empirical evidence that article-level bias detec-
tors that use second-order information clearly
outperform those without.

1 Introduction

Media bias is discussed and analyzed in journalism
research (Groseclose and Milyo, 2005; DellaVi-
gna and Kaplan, 2007; Iyengar and Hahn, 2009)
and NLP research (Gerrish and Blei, 2011; Iyyer
et al., 2014; Chen et al., 2018). According to the
study of Groseclose and Milyo (2005), bias “has
nothing to do with the honesty or accuracy”, but
it means “taste or preference”. In fact, journalists
may (1) report facts only in favor of one particular
political side and thus (2) conclude with their own
opinion. As an example, the following sentences
from allsides.com reporting on the event “Trump
asks if disinfectant, sunlight can treat coronavirus”

demonstrate media bias on the sentence level:

The activists falsely claimed that Trump “urged
Americans to inject themselves with disinfectant”
and “told people to drink bleach.”
— The Daily Wire, right-oriented

Lysol maker issues warning against injections of
disinfectant after Trump comments
— The Hill, center-oriented

“This notion of injecting or ingesting any type
of cleansing product into the body is irresponsible
and it’s dangerous,” said Gupta.
— NBC News, left-oriented

From an NLP perspective, bias in the example
sentences could be detected by capturing sentiment
words, such as “falsely” or “irresponsible”. With-
out the background knowledge of the political side
of Trump or the event itself, however, predicting
which side these sentences are slanted to is difficult.

Bias detection even becomes harder at the article
level. For illustration, Figure 1 shows two articles
and their sentence-level bias from the used dataset.
It becomes clear that the actual words in the biased
sentences are not always indicative to distinguish
biased from neutral articles, nor is the count of the
biased sentences: Bias assessments on sentence
level do not “add up”. In this regard, the position
of biased sentences appears to be a better feature.

The existing approaches to bias detection are
transferred from other, less intricate text classifi-
cation tasks. They largely model low-level lexical
information, either explicitly, e.g. by using bag-of-
words (Gerrish and Blei, 2011), or implicitly via
neural networks (Gangula et al., 2019). Such ap-
proaches tend to fail at the article level, particularly
for articles on events not covered in the training
data. The reason is that bias clues are subtle and
rare in articles, especially event-independent clues.
Altogether, modeling low-level information at the
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Republicans are challenging a host of statements made by Secretary of State 
Hillary Clinton and Democratic allies during Wednesday's heated Libya testimony 
-- claiming that complaints about a lack of funding are bogus and questioning the 
secretary's insistence she never saw urgent cables warning about the danger of an 
attack. [...] One issue that may come up is the department's funding. Assertions 
that State Department posts are left vulnerable because Congress has decided not 
to fully fund security requests pervaded Wednesday's hearings. "Shame on the 
House for ... failing to adequately fund the administration's request," Rep. 
Gregory Meeks, D-N.Y., said  
 :
Asked Wednesday about Lamb's testimony, Clinton noted that the review board 
that examined the Libya attack found budget issues have played a role. "That's 
why you have an independent group like an (Accountability Review Board); that's 
why it was created to look at everything," Clinton said. But Rep. Dana 
Rohrabacher, R-Calif., said "any suggestion that this is a budget issue is off base, 
or political." [...] That cable is seen as one of the vital warnings sent out of Libya 
in the months leading up to the attack. But, to the dismay of lawmakers, Clinton 
repeatedly said she never saw it. 
 :
The secretary tried to explain that "1.43 million cables" come through the 
department every year. They are addressed to her but in many cases do not go to 
her. Rather, they go through "the bureaucracy." Republicans argue the Aug. 16 
cable was rather high priority. As Sen. Rand Paul, R-Ky., put it, "Libya has to 
have been one of the hottest of hot spots around the world." He claimed that not 
knowing about their security requests "really, I think, cost these people their 
lives." "Had I been president at the time, and I found that you did not read the 
cables from Benghazi, you did not read the cables from Ambassador Stevens, I 
would have relieved you of your post. I think it's inexcusable," Paul said.

Republicans challenge Clinton claims on budget cuts, Benghazi cable

[...] Hillary Rodham Clinton on Wednesday vigorously defended her handling of 
last September’s attack on the United States diplomatic compound in Benghazi, 
Libya [...]. “As I have said many times, I take responsibility, and nobody is more 
committed to getting this right,” she said, reading a statement during a day of 
testimony before Senate and House committees. “I am determined to leave the 
State Department and our country safer, stronger and more secure.” But Mrs. 
Clinton, [...] quickly departed from the script. She jousted with Republican 
lawmakers over who deserved blame for the security problems at the compound, 
and choked up as she described being at Joint Base Andrews outside Washington 
when the bodies of the Americans killed in the assault arrived from Libya.
 :
One of the sharpest exchanges of the day came when Mrs. Clinton responded [...] 
there was too much focus on how the Benghazi attack had been characterized in 
its early hours and not enough on how to prevent a recurrence. Republicans have 
repeatedly charged that Obama administration officials deliberately played down 
the attack, focusing much of their criticism on Susan E. Rice, the ambassador to 
the United Nations and once Mr. Obama’s choice to succeed Mrs. Clinton. “Was it 
because of a protest, or was it because of guys out for a walk one night who 
decided they’d go kill some Americans? What difference, at this point, does it 
make?” Mrs. Clinton said, her voice rising. 
 :
In a rare criticism of the committee by one of its members, Senator Bob Corker of 
Tennessee, the ranking Republican, complained that the panel Mr. Kerry led had 
failed to conduct proper oversight of security and other State Department issues. 
[...] Mrs. Clinton sought to put the events in Benghazi in a regional context, 
noting the presence of a group in northern Mali affiliated with Al Qaeda. [...] “We 
are in for a struggle, but it is a necessary struggle,” she said. “We cannot permit 
northern Mali to become a safe haven.”

Facing Congress, Clinton Defends Her Actions Before and After Libya Attack

Fox News article (45 sentences) labeled as biased New York Times article (42 sentences) labeled as neutral
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Figure 1: Excerpts of a biased article (left) and a neutral article (right) from the used dataset. All sentences labeled
as having lexical or informational bias are highlighted; their position can be read from the numbers next to them.

article level is insufficient to detect article-level
bias, as we will later stress in experiments.

We study article-level bias detection both with
and without allowing to learn event-specific infor-
mation. The latter scenario is more challenging,
but it is closer to the real world, because we cannot
expect that the information in future articles al-
ways relates to past events. Inspired by ideas from
modeling local and global polarities in sentiment
analysis (Wachsmuth et al., 2015), we hypothesize
that using second-order bias information in terms
of lexical and informational bias at the sentence
level is key to detecting article-level bias. To the
best of our knowledge, no bias detection approach
so far uses such information. We investigate this
hypothesis in light of three research questions:

Q1. How effective are standard classification ap-
proaches in article-level bias detection, with
and without exploiting event information?

Q2. How does sentence-level bias impact article-
level bias in general?

Q3. To what extent can sentence-level bias detec-
tion be utilized for article-level bias detection?

To study Q1–Q3, we employ the BASIL dataset,
which includes manually annotated bias labels at ar-
ticle level as well as lexical and informational bias
labels at sentence level (Fan et al., 2019). While
the dataset contains only 300 articles, it provides
the best basis for understanding the interaction of
bias at both levels available so far.

For Q1, we evaluate an n-gram-based SVM and
a BERT-based neural network in article-level bias
detection. To assess the impact of event-related
information, we split the dataset in two ways, once
with event overlap in the training set and test set,
and once without. As expected, we observe that
the effectiveness of both approaches is generally
low, especially when event information cannot be
exploited. The results indicate that the concept
of sentence-level bias is too subtle and rare to be
utilized by these approaches.

For Q2, we study multiple types of correlations
between sentence-level and article-level bias on
the ground-truth annotations, covering (a) the fre-
quency of biased sentences, (b) their position in
an article, and (c) their sequential order. For each
type, we model the bias distribution in a new way
through a Gaussian Mixture Model (GMM), in or-
der to then exploit it as features of an SVM (for
frequency), Naïve Bayes (for positions), and a first-
order Markov model (for sequential order). The re-
sults show strong correlations between the two lev-
els for frequency and position information, whereas
sequential order seems less correlated.

For Q3, finally, we propose a new approach ap-
plicable in realistic settings. In particular, we re-
train the bias detectors from the Q1 experiments
on the sentence level and then exploit the GMM as
above to predict to article level bias. In our evalu-
ation, the approach significantly outperforms the
article-level approaches analyzed for Q1. Counter-
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ing intuition, it even achieves higher effectiveness
than what we observed on the ground truth for Q2.
We explain this result by the fact that the sentence-
level detector creates more deterministic sentence
bias features, allowing our approach to learn from
them in a more robust way.

Altogether, the contribution of this paper is three-
fold: (1) We provide evidence that standard ap-
proaches fail in detecting article-level bias. (2) We
develop a new approach utilizing second-order bias
information, i.e., sentence-level bias. (3) We show
that second-order bias information is an effective
means to build better article-level bias classifiers.

2 Related Work

Media bias detection has been studied with com-
puters since the work of Lin et al. (2006). As of
then, media bias has been investigated in slight vari-
ations under different names, including perspective
(Lin et al., 2006), ideology (Iyyer et al., 2014),
truthfulness (Rashkin et al., 2017), and hyperparti-
sanship (Kiesel et al., 2019). To detect bias, early
approaches relied on low-level lexical information.
For example, Greene and Resnik (2009) used kill
verbs and domain-relevant verbs to detect articles
being pro Israeli or Palestinian perspectives. Re-
casens et al. (2013) relied on linguistic cues, such
as factoid verbs and implicatives, in order to assess
whether a Wikipedia sentence conveys a neutral
point of view or not. Besides the NLP community,
also researchers in journalism have approached the
measurement of media bias. E.g., Gentzkow and
Shapiro (2010) used the preferences of phrases at
each side (such as “war on terror” for Republican
but “war in Iraq” for Democratic). Groseclose and
Milyo (2005) used the counts of think-tank cita-
tions to estimate the bias.

With the rise of deep learning, NLP researchers
have also used neural-based approaches for bias de-
tection. Iyyer et al. (2014) used RNNs to aggregate
the polarity of each word to predict sentence-level
bias based on parse trees. Gangula et al. (2019)
made use of headline attention to classify article
bias. Li and Goldwasser (2019) encoded social
information in their Graph-CNN. While deep learn-
ing is believed to capture deeper relations among
its inputs, we show that extending a neural network
from sentence-level to article-level bias detection
does not “just work”.

One point of variation in media bias detection is
the level of text being analyzed, which varies from

tokens (Fan et al., 2019) and sentences (Bhatia and
Deepak, 2018) to articles (Kulkarni et al., 2018),
sources (Baly et al., 2019), and users (Preoţiuc-
Pietro et al., 2017). While the effectiveness of
machine learning models on different levels helps
understanding how media bias becomes manifest at
different levels, Lin et al. (2006) are to our knowl-
edge the only to discuss the difference between
sentence-level and article-level bias detection.

Source-level and user-level bias can be seen as
directly emerging from summing up bias in the as-
sociated texts. For example, Baly et al. (2019) av-
eraged the feature vectors of articles as the feature
vectors of a source. The relation between sentence-
level and article-level bias remains unstudied so
far. The goal of this paper is not to discuss the
difference between these levels. Rather, we ex-
amine how to aggregate the sentence-level bias to
generate second-order features, and then use these
features to predict article-level bias.

The use of low-level information to generate
second-order features was studied in the context
of product reviews by modeling patterns in the re-
views’ sentiment flow (Wachsmuth et al., 2015),
by tuning neural network to capture important sen-
tences (Xu et al., 2016), and by routing in aggre-
gating sentence embeddings into document embed-
ding (Gong et al., 2018). In particular, our usage
of low-level information is inspired by Wachsmuth
et al. (2015), where we hypothesize that such flows
exist in media bias as well. However, we do not
limit our approach to entire sequences of sentence-
level information, but we also consider frequency,
position, or only two to three continuous sentences.

3 Standard Bias Detection Approaches

Standard approaches for bias detection, on both
article and sentence level, mainly exploit the low-
level lexical features to classify the texts as biased
or not, neglecting bias-specific features. The two
main low-level lexical feature types that are em-
ployed in such approach ares: (1) n-gram features,
where n is typically one to three (i.e., unigram,
bigram, or trigram), and (2) word embeddings, es-
pecially within pre-trained language models (i.e.,
transformers) such as BERT.

We propose two classification settings to an-
swer research question Q1, which addresses the
importance of event information: In the first set-
ting, called event overlapping, we form the training
and test sets by randomly assigning examples to
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them, more specifically, without looking at event
information. The setting allows texts of the same
event to occur in both the training and the test set.
The second setting is called event non-overlapping
since the texts to be classified are first categorized
according to the main event that they address. Dur-
ing the splitting in training set and test set we then
ensure for each event that all its related texts are in
exactly one of these sets.

The difference in the effectiveness of the stan-
dard approaches on the two settings indicates
whether and to what extent standard bias detection
approaches rely on event information.

4 Second-Order Bias Information

For research question Q2, we study the correla-
tion between sentence-level and article-level bias.
Specifically, we examine whether article-level bias
correlates with (a) the frequency of biased sen-
tences, (b) their position in an article, and (c) their
sequential order. For each correlation, we ex-
tract features and then train a respective machine
learning model. The code is available at https:
//github.com/webis-de/EMNLP-20.

4.1 Bias Frequency
A straightforward way of leveraging sentence-level
bias information is counting. Let an article with
sentence-level bias labels {b1, b2, ..., bn} be given,
where n is the number of sentences in the article
and bi the label of the i-th sentence. Assuming that
bi is binary with bi = 1 being bias, the absolute
bias frequency, fabs, is defined as:

fabs =
n∑

i=1

bi (1)

Accordingly, the relative bias frequency, frel, is
defined based on the length of the article as:

frel =

∑n
i=1 bi
n

(2)

4.2 Bias Position
We consider the positions of biased sentences as
second-order features. Given a target number of po-
sitions, k, we first normalize the sentence-level bias
annotations {b1, b2, ..., bn} into {b̄1, b̄2, ..., b̄k},
with b̄i ∈ [0, 1]. The higher b̄i, the more likely
position i is biased. In detail, we first normalize
{b1, b2, ..., bn} to {b′1, b′2, ..., b′m} by linear interpo-
lation, where m (here set to 100) is larger than the

largest n (and also larger than k). After the inter-
polation, b′i is in the range of [0, 1]. Secondly, we
“sample” from the b′i to make the final sentence-
level bias having length k. There are three “sam-
pling” methods we explore: (1) average (take the
average of the datapoints, (2) maximum (take the
maximum value in the range, and (3) last (take the
last datapoints). We treat this as a hyperparameter
and find the best one by the validation set. We
use this two-step normalization (upsampling and
then downsampling) to avoid the instability during
sampling when n/k is not an integer.

Our goal is to predict the most likely article-
level bias label, a∗, given the sentence-level bias.
Formally, assuming that an article can be seen as a
combination of its sentences, we have

a∗ = arg max
a

p(a | b̄1, b̄2, ..., b̄k), (3)

where a is any possible bias label (0 for neutral
and 1 for bias), and p(a | ·) is the conditional
probability of a, given a sentence-level bias se-
quence. According to Bayes’ rule and given that
p(b̄1, b̄2, ..., b̄k) is irrelevant to the arg max, we can
rewrite it as:

a∗ = arg max
a

p(b̄1, b̄2, ..., b̄k | a) · p(a) (4)

Assuming that each b̄i is independent from other
positions, we further simplify this as

a∗ = arg max
a

k∏
i=1

p(b̄i | a) · p(a), (5)

which is a Naïve Bayes classifier, and each p(b̄i | a)
is the bias position feature we are interested in.

In the remainder, we simplify the notation p(b̄i |
a) to p(b̄ | a). Estimating p(b̄ | a) in each position
for each a is difficult, since b̄ ∈ [0, 1] and we cannot
observe enough data points in that range on realistic
text corpora. Instead, we therefore estimate p(a |
b̄)/p(a), where p(a) can be properly estimated by
the distribution of the labels, and p(a | b̄) can be
estimated well using a Gaussian Mixture Model.

Gaussian Mixture Model Given a set of m arti-
cles along with their bias labels, {a1, a2, ..., am},
we first retrieve the interpolated bias value in each
position bi,j where i is the index of the position
and j is the index of the article. bi,j , 1 ≤ j ≤ m
can be seen as a distribution of the bias strength
in one position i. For example, the distribution in

https://github.com/webis-de/EMNLP-20
https://github.com/webis-de/EMNLP-20
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Figure 2: Bias strength in one position and the fitted
Gaussian mixtures of it. The bias strength is the value
of b̄i. Note that the y-axis is the probability density,
i.e., the sum of all area in bins or sum of all area under
Gaussian mixtures is one.

Figure 2 shows the bias in the second position if
we normalize the articles into 10 positions.

To model the distribution, we employ a Gaus-
sian mixture model (GMM) (Reynolds, 2009). The
assumption behind GMMs is that a distribution can
be seen as a combination of Gaussian distributions,
where each distribution is represented by its mean
µ, its variance σ2, and a weight w, the sum of all
weights being 1. Modeling a GMM is unsuper-
vised; we only need to set the number of mixtures
we would like to have.

After applying GMM on bi,j , 1 ≤ j ≤ m, the
distribution of a bias position i is represented by a
set of Gaussian mixtures, Nl(µl, σ

2
l , wl), where l

is the index of mixtures. For each mixture, we can
then learn its bias distribution by:

p(a = 1 | Nl) =
occur(b̄i,j ∈ Nl, aj = 1)

occur(bi,j ∈ Nl)
(6)

To avoid zero probability in some mixtures, we
also apply add-one smoothing. Then, the bias prob-
ability p(b̄ | a = 1) in one position is:

p(b̄ | a = 1) ∝ p(a = 1|b̄)
p(a = 1)

∼ p(a = 1|Nb̄)

p(a = 1)
, (7)

where Nb̄ is the mixture most likely generating b̄.

4.3 Bias Sequence
The Naïve Bayes classifier in Equation 5 assumes
that each position is independent from other posi-
tions. We can also consider a position to depend

on the previous positions. For example, under the
assumption that each position depends on the one
before, we can rewrite Equation 5 as:

a = arg max
a

k∏
i=1

p(b̄i | b̄i−1, a) · p(a) (8)

Then, we can further rewrite p(b̄i | b̄i−1, a) as:

p(b̄i | b̄i−1, a) =
p(a | b̄i, b̄i−1)

p(b̄i−1 | a) · p(a)
(9)

In this equation, p(b̄i−1 | a) can be approached
by the GMM as described, and the numerator of the
equation can be seen as the transition probability
in a Markov process. In particular, after finding the
mixtures most likely generating b̄i, and b̄i−1, we
estimate the transition probability p(a|b̄i, b̄i−1) as:

p(a | b̄i, b̄i−1) ∼ p(a | Ni,Ni−1), (10)

where Ni and Ni−1 are the mixtures most likely
generating b̄i and b̄i−1 respectively. Again, we
apply add-one smoothing when estimating the tran-
sition probabilities.

The previous equations can be easily extended
to the case that each position is dependent on more
than one position. However, longer dependencies
imply fewer observations of each possible transi-
tion. As a result, we only test the first and the
second-order Markov process below (i.e., depen-
dence on the previous one or two positions).

5 Experiments

This section presents the experiments that we de-
signed to study research questions Q1–Q3 based
on the media bias dataset BASIL.

5.1 Dataset
To test the hypothesis that sentence-level bias is
an important feature for article-level bias detection,
we need data that is annotated for both bias levels.
Recently, Fan et al. (2019) released a dataset on
media bias, Bias Annotation Spans on the Infor-
mational Level (BASIL). The dataset contains 300
news articles on 100 events, three each per event.
These three articles were taken from Fox News,
New York Times, and Huffington Post, which have
been selected as a representative of right-oriented,
neutral, and left-oriented portals respectively.

On the article level, the dataset comes with man-
ually annotated media bias labels (right, center, or
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Training Validation Test
Neutral Bias Neutral Bias Neutral Bias

w/ Event 85 95 26 34 33 27
w/o Event 84 96 31 29 29 31

Table 1: Bias distribution of articles in the two experi-
ment settings for research question Q1: w/ event indi-
cates that there is event overlap in the training, valida-
tion, and test set (random split), while w/o event refers
to an event-controlled split.

left). While we noticed that more Fox news articles
are right (50) than Huffingtion post articles (10),
the labels do not only rely on the source of the arti-
cles. Since we target bias in general rather than a
specific orientation, we merged right and left to the
label bias, and see center as neutral. Because both
bias and unbiased articles include all three portals,
we can be confident that the task is not detecting
the source, but detecting the bias.

On the sentence level, each sentence has been
manually labeled as having lexical bias, informa-
tional bias, or none. According to Fan et al. (2019),
lexical bias refers to “how things are said”, i.e.,
the author used polarized or otherwise sentimental
words showing bias. On the other hand, sentences
with informational bias “convey information tan-
gential or speculative”. In our experiments, we
considers both settings where we separate the two
types of bias and settings where we merge them.

5.2 Experiment Settings

In light of our three research questions, we consider
the following experiments:

Q1. To study Q1, we compare two experiment
settings of article-level bias detection: (1) with
event information being available, and (2) with
event information not being available. In both set-
tings, the size of the training set (180 articles), vali-
dation set (60 articles) and test set (60 articles) are
identical. The distribution of labels in each set and
setting can be found in Table 1. As can be seen, the
article-level labels are almost balanced, with some
more biased than neutral articles. According to the
distribution in the training set, we choose all-bias
as the majority baseline in the later experiments.

As standard feature-based approaches, we em-
ploy an SVM and a logistic regression classifier
based on word n-grams with n ∈ {1, 2, 3}. The
considered n-grams are learned on the training set
and lowercased. Hyperparameters such as cost and
class balance are optimized on the validation set.

As a standard neural approach, we employ a pre-
trained uncased BERT model using word embed-
dings as “features”.1 We fine-tuned the approach
and optimize the number of epochs for fine-tuning
on the training and validation set. Only the first
256 and the last 256 words of an article are used for
bias prediction, because the maximum sequence
length of the BERT model is 512 tokens.

Q2. To study Q2, we use the same splitting of ar-
ticles as used for the w/o event setting above. In the
experiments of this research question, we use the
ground-truth sentence-level bias from the dataset.
Thereby, we investigate the ideal case where the
sentence-level bias can be detected perfectly (as-
suming the manual annotations are correct). The
different types of sentence-level bias are also tested
to understand if article-level bias is more correlated
to a certain type.

We prepare three types of sentence-level bias
features, according to the descriptions in Section 4:
For bias frequency, we consider a single feature
SVM. We use linear kernel and optimize its cost
hyperparameter on the validation set. For bias po-
sitions, we compute the bias probability in each
position and then apply either Naïve Bayes, in line
with Equation 5, or an SVM. For bias sequences,
we use the Markov process from Equation 8 to
predict an article-level bias label. Besides, we use
the probabilities p(b̄i | b̄i−1, a) as features for an
SVM. Finally, we also test stacking models. To test
the effectiveness of each feature, we stack all three
SVMs of each bias feature, as well as any two of
the three SVMs as an ablation test.

Q3. To study Q3, we test our approach in a real-
world scenario. We first employ the same features
and models as in Q1 for sentence-level bias classi-
fication. The only difference between article-level
and sentence-level setting is that we do not trim
sentences for the BERT model. The best classifier
is later used in subsequent experiments. The split-
ting of sentences follows the w/o event splitting in
the article-level bias detection, i.e., the sentences
in the training set represent are used for training,
and accordingly for validation and test. The distri-
bution of the different types of sentence-level bias
in each set can be found in Table 2.

Given the predicted sentence-level bias from Q1,
we test our approaches as in Q2. Also, we test a
scenario where the event information is available.

1Cased and uncased BERT performed similarly in tests.
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Training Validation Test
Neutral Bias Neutral Bias Neutral Bias

Lexical bias 4 611 263 1 558 85 1 382 78
Informational bias 4 102 772 1 404 239 1 272 188
Any bias 3 839 1035 1 319 324 1 194 266

Table 2: Distribution of the different types of sentence-
level bias in the settings for research question Q1. In
the Any bias setting, a sentence is considered biased if
it contains lexical and/or informational bias.

Feature Classifier Accuracy
– All-bias baseline 0.45
n-grams (1–3) SVM 0.55 (+0.10)
n-grams (1–3) Logistic Regression 0.46 (+0.01)
Word embeddings BERT 0.52 (+0.07)

Table 3: Accuracy of the three standard approaches and
the all-bias baseline in article-level bias deteciotn on
the dataset split w/ event. The numbers in parentheses
indicate the difference compared to the baseline.

Similar to the setting in Q1, we randomly split
the articles and then split the sentences according
to their article-level splitting. We then train the
sentence-level bias classifiers and use the best one
for our approach.

6 Results and Discussion

To answer the three research questions of this paper,
we report and discuss the results of the experiments
described in Section 5.

6.1 Standard Approaches to Bias Detection

Tables 3 and 4 show the results of the experiments
for Q1, which address the effectiveness of standard
classification approaches in article-level bias detec-
tion. With a maximum of 0.55, the accuracy of all
classifiers is generally low for a two-class classifi-
cation task. When event information is available,
accuracy improves at least up to 10 percentage
points over the baseline, though. When not avail-
able, the classifiers seem to learn almost nothing:
In the absence of event features, the classifiers are
more forced to learn style or structural features.
Yet, they turn out not to be able to do so without a
proper design of such features. These results sug-
gest that standard approaches are insufficient for
article-level bias detection.

6.2 Impact of Sentence-Level Bias in General

As regards Q2, the column Acc(GT) of Table 5
shows the accuracy of employing ground-truth

Feature Classifier Accuracy
– All-bias baseline 0.52
n-grams (1–3) SVM 0.52 (+0.00)
n-grams (1–3) Logistic Regression 0.53 (+0.01)
Word embeddings BERT 0.53 (+0.01)

Table 4: Accuracy of the three standard approaches and
the all-bias baseline in article-level bias detection on
the dataset split w/o event. The numbers in parentheses
indicate the difference compared to the baseline.

Bias Feature Classifier Acc (GT) Acc (Pr)
Lex. fabs SVM 0.65 0.52

frel SVM 0.63 0.48
Bias Position Naïve Bayes 0.55 0.48

SVM 0.57 0.48
Bias Sequence Markov Process 0.50 0.50

SVM 0.53 0.50

F + P SVM Stacking 0.65 0.52
F + S SVM Stacking 0.65 0.52
P + S SVM Stacking 0.52 0.52
F + P + S SVM Stacking 0.65 0.52

Info. fabs SVM 0.57 0.52
frel SVM 0.52 0.52
Bias Position Naïve Bayes 0.55 0.50

SVM 0.55 0.50
Bias Sequence Markov Process 0.48 0.48

SVM 0.47 0.48

F + P SVM Stacking 0.55 0.52
F + S SVM Stacking 0.58 0.52
P + S SVM Stacking 0.58 0.52
F + P + S SVM Stacking 0.58 0.57

Any fabs SVM 0.65 *0.67
frel SVM 0.65 0.65
Bias Position Naïve Bayes 0.57 0.58

SVM 0.52 0.52
Bias Sequence Markov Process 0.58 0.58

SVM 0.42 0.42

F + P SVM Stacking 0.63 0.65
F + S SVM Stacking *0.67 0.62
P + S SVM Stacking 0.50 0.50
F + P + S SVM Stacking *0.67 0.62

Table 5: Accuracy of all evaluated combinations of fea-
tures and classifiers in article-level bias detection based
on ground-truth (GT) and predicted (Pr) sentence-level
bias. F combines absolute (fabs) and relative (frel) bias
frequency, P stands for for bias position, and S for bias
sequence. The best value for each bias type is marked
bold. The best values overall are marked with *.

sentence-level bias features in predicting article-
level bias. The SVM stacking classifier with bias
frequency and sequence (F+S) performs best with
an accuracy of 0.67. Stacking all features (F+P+S)
achieves the same accuracy. In general, all fea-
ture and classifier combinations outperform all ap-
proaches found in Table 4.
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Among the features for sentence-level bias, bias
frequency and bias position can be exploited best
by the SVM. While bias sequence does not perform
as well as the others, the stacking classifier using it
yields the highest effectiveness. The bias sequence
appears to be weakest and sometimes brings neg-
ative impact to the performance. However, there
may be several reasons behind it. For example, the
sequential features may be too subtle, such that our
models (SVM and Markov process) are too sensi-
tive to the tiny changes in the features. But, it may
also be that a smarter combination strategy for the
three different types of feature is required; to keep
the models simple, we tested only stacking. On the
single features, the results show that an SVM is not
always the best choice to utilize the features. In
particular, Naïve Bayes and Markov process work
better when dealing with informational bias and
any bias.

Next, we take a closer look at the stacking part
of Table 5, to analyze the feature’s effectiveness.
While using lexically biased sentences as features,
the frequency features contribute more (combina-
tions in stacking with F achieve the best results).
On the other hand, while using informationally bi-
ased sentences as features, the sequential features
are more important. In other words, to detect article
bias, it is important to know the number of lexically
biased sentences as well as the order of informa-
tionally biased sentences. Our interpretation is that,
the existence of lexical bias is already a strong clue
for presenting bias, whereas informational bias has
to be conveyed in a certain order or writing strategy
(and thus is more difficult to be captured).

Regarding the two types of sentence-level bias,
the best results are observed for any bias. Using
only informational bias leads to the lowest effec-
tiveness. While there is more informational than
lexical bias, as shown in Table 2, the classifiers
seem to rely more on lexical bias. The reason could
be that lexical bias is easier to capture (by the word
usage), while informational bias clues, if any, are
subtle. Still, including both types of bias (but not
distinguishing them) works best.

6.3 Impact of Predicted Sentence-Level Bias

Regarding Q3, we first present the results of apply-
ing the standard approaches to sentence-level bias
detection in Table 6. Besides accuracy, we also
show precision, since a high precision boosts the
confidence in predicting sentence-level bias. We

Bias Feature Classifier Acc. Prec.
Lex. – All-bias baseline 0.05 0.05

n-grams (1–3) SVM 0.13 0.13
n-grams (1–3) Logistic Regression 0.07 0.05
Word embeddings BERT 0.95 0.38

Info. – All-bias baseline 0.13 0.13
n-grams (1–3) SVM 0.13 0.13
n-grams (1–3) Logistic Regression 0.47 0.14
Word embeddings BERT 0.86 0.37

Any – All-bias baseline 0.18 0.18
n-grams (1–3) SVM 0.38 0.18
n-grams (1–3) Logistic Regression 0.69 0.23
Word embeddings BERT 0.79 0.58

Table 6: Accuracy (Acc.) and precision (Prec.) of the
three standard approaches and the all-bias baseline in
sentence-level bias detection. The highest accuracy and
precision values for each bias type are marked bold.

Bias Classifier Precision Recall F1

Lex. Fan et al. (2019) 29.13 38.57 31.49
Reimplementation 37.50 13.64 20.00

Info. Fan et al. (2019) 43.87 42.19 43.27
Reimplementation 58.62 32.08 41.46

Table 7: Classification results of Fan et al. (2019) and
our reimplementation. Both use pre-trained BERT, but
the exact dataset split of Fan et al. (2019) is unclear.

expect precision to be more important than recall,
since we use the predicted bias for computing the
article-level bias features. We find that fine-tuned
BERT is strongest in effectiveness. Matching in-
tuition, predicting lexical bias seems much easier
than predicting informational bias.

Since Fan et al. (2019) provide their results of
using BERT on sentence-level bias classification,
we also used BERT for comparison. To this end,
we split the dataset into sets of the same size as Fan
et al. (randomly with 6819 training, 758 validation,
and 400 test instances). However, the actual distri-
bution of labels is not provided by the authors. As
shown in Table 7, the results of our reimplementa-
tion for predicting informational bias is comparable
to their results (in terms of F1-score), but it is much
worse for predicting lexical bias. Note that lexical
bias in the dataset is rather rare (478/7984 ≈ 6%).
We thus assume that the difference between our
and the original test set caused the difference.

We used the predictions of the best sentence-
level bias classifier (i.e., BERT) to compute the
bias features. The resulting effectiveness in article-
level bias detection can be found in column Acc(Pr)
of Table 5. Comparing these results to those ob-
tained for Q2, we see a clear drop in the effec-
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tiveness, when using only lexical bias or only in-
formational bias. Interestingly, however, the best
configuration—with absolute bias frequency (fabs)
and SVM on any bias—is as good as the best one
for Q2. This means that using the predicted bias
can sometimes be better than using ground-truth
bias. We explain this by the fact that sentence-level
bias classifiers are deterministic while human anno-
tators may be not, which can help our approaches
to learn more stable patterns in the features.

Overall, our approaches with sentence-level bias
information clearly outperform the standard ap-
proaches, underlining the impact of our approach.
With an accuracy of 0.67, we outperform the stan-
dard approaches (0.53) by 14 points and the all-bias
baseline (0.52) by 15 points. Regarding the differ-
ent types of bias, the bias frequency is still the
best feature, while the bias position and the bias
sequence are weaker. The stacking model is the
most effective in general.

Finally, we also considered the case where event
information is available, as in Table 3. We followed
the same process by selecting the best sentence-
level bias classifier, which is again BERT with 0.83
accuracy and 0.58 precision, and use it to gener-
ate the article-level bias features. Similar to the
results in Table 5, the best classifier is an SVM on
absolute bias frequency. We achieve 0.60 accuracy
outperforming the baseline (0.45), which is again
around 15 points higher in accuracy. These results
demonstrate that our approach can achieve high
effectiveness robustly, regardless of whether it can
exploit event information or not.

6.4 Hyperparameters
To deepen insights and to simplify reproducibility,
this section discusses important hyperparameters
used in the experiments.

Bias Normalization In the bias position and bias
sequence features, the first step is to normalize the
length of the bias annotations. Interestingly, the
best sampling methods vary in different settings.
Specifically, last is best for bias position with Naïve
Bayes, average for bias position with SVM, maxi-
mum for bias sequence with Markov process; and
last for bias sequence with Naïve Bayes.

Number of Normalized Positions We tested the
number of positions needed in the bias position and
bias sequence features. This number of positions
roughly refers to how many bias clues are in an
article. We find that the best value according to

the validation set is different in each setting. In
summary we determine 10 for bias position with
Naïve Bayes, 3 for bias position with SVM, 10 for
bias position with Markov process, and 8 for bias
position with SVM.

Number of Gaussian Mixtures The number of
Gaussian mixtures indicates the variability of the
bias distribution in a single position. We find that
the best number of mixtures is 3 for bias position
with SVM, and 5 for other settings. While this
value depends also on the number of datapoints, it
shows that setting it to 5 mixtures is reasonable in
general.

Number of Markov’s Order We tested the or-
der of the Markov process in Equation 8. We
find that first-order Markov (a position depends on
the previous position only) is best. As discussed,
longer dependencies require more datapoints to es-
timate a better transition probability. Due to the
size of our dataset (300 articles with 180 of them
as the training set), the second or higher order of
Markov does not make sense in our case.

7 Conclusion

In this paper we have given evidence that the ex-
ploitation of low-level lexical information is insuffi-
cient to detect article-level bias — especially, if the
dataset is small. To provide a complete picture, we
have formulated three research questions related to
article-level bias detection, in order (1) to assess
the state of the art of event-dependent and event-
independent bias prediction, (2) to learn about the
relation between sentence-level and article-level
bias, and (3) to study whether sentence-level bias
can be leveraged to predict article-level bias.

To tackle the detection of article-level bias, we
have proposed and analyzed derived (second-order)
bias features, including bias frequency, bias posi-
tion, and bias sequence. As a main result of our
research, we have shown that this new approach
clearly outperforms the best approaches existing so
far.

If bias detection can be done sufficiently robust
on article level, we envisage, as a line of future re-
search, the development of “reformulation” strate-
gies and algorithms for the task of neutralizing
biased articles (Pryzant et al., 2020).
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