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Abstract

Product key memory (PKM) proposed by
Lample et al. (2019) enables to improve pre-
diction accuracy by increasing model capac-
ity efficiently with insignificant computational
overhead. However, their empirical applica-
tion is only limited to causal language model-
ing. Motivated by the recent success of pre-
trained language models (PLMs), we investi-
gate how to incorporate large PKM into PLMs
that can be finetuned for a wide variety of
downstream NLP tasks. We define a new mem-
ory usage metric, and careful observation us-
ing this metric reveals that most memory slots
remain outdated during the training of PKM-
augmented models. To train better PLMs by
tackling this issue, we propose simple but ef-
fective solutions: (1) initialization from the
model weights pretrained without memory and
(2) augmenting PKM by addition rather than
replacing a feed-forward network. We verify
that both of them are crucial for the pretraining
of PKM-augmented PLMs, enhancing mem-
ory utilization and downstream performance.
Code and pretrained weights are available at
https://github.com/clovaai/pkm-transformers.

1 Introduction

Larger model capacity has brought improvement
in accuracy by enabling better modeling of data.
However, increasing model capacity causes a sig-
nificant increase in computational cost at both train-
ing and inference time despite better accuracy. To
address this issue, Lample et al. (2019) propose
product key memory (PKM) that enables very effi-
cient and exact nearest neighbor search in a large
number of learnable memory slots. They substi-
tute a feed-forward network (FFN) in a transformer
block (Vaswani et al., 2017) with a PKM layer.
Augmenting large PKM layers to networks allows
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Inference
Model # Layers  # Params Speed

(batch/sec)
BERTgAsE 12 110M 79.8
BERTBASE +PKM 12 506M 61.4
BERTgAse +ResM 12 515M 59.3
BERTArGE 24 340M 43.1
BERTArGge +PKM 24 860M 37.2
BERT | ArGge +ResM 24 876M 36.1

Table 1: Comparison of inference speed between dif-
ferent model sizes and the memory layers. We run each
model for the classification task with batch size 1, and
measure inference speed on a single V100 GPU. We
follow the model size settings of BERT (Devlin et al.,
2018). We use two memory layers with the recom-
mended setting of PKM hyper-parameters following
Lample et al. (2019) as described in §5. As marked
bold, BERTgasg With our proposed residual memory
(ResM) is much faster than BERT| srgg, while having
more parameters.

increasing model capacity, with only a slight in-
crease in inference time. Lample et al. (2019) prove
the efficiency of PKM on causal language models
(CLMs) in terms of the superior trade-off between
perplexity and inference speed. For instance, they
achieve a PKM-augmented CLM with only 12 lay-
ers that is more accurate and twice faster than a
baseline with 24 layers.

However, usage of PKM with a pretrained lan-
guage model (PLM) such as BERT (Devlin et al.,
2018) that is helpful for downstream tasks (Wang
et al., 2018) has not been examined in the liter-
ature. In our experiments, plain PKM improves
masked language modeling (MLM) perplexity but
not downstream performance.

We measure various memory utilization metrics
to analyze how many memory slots contribute to
the model prediction. Careful examination about
memory utilization during and after the training
demonstrates that only a few memory slots are be-
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ing used importantly (§ 3.1). We attribute this phe-
nomenon, called a catastrophic drift, to the sparsely
updated memory parameters. The lower memory
utilization implies that model capacity from mem-
ory is not fully exploited. It promotes us to develop
methods that can overcome this issue.

We found that initialization from weights pre-
trained without memory is essential for pretrain-
ing PKM-augmented PLMs. Moreover, rather
than replacing an FFN to a PKM as Lample et al.
(2019) do, we show that adding PKM to a trans-
former layer (Vaswani et al., 2017) with a resid-
ual connection (He et al., 2016) without remov-
ing FFN is advantageous. Both the initialization
(§ 4.1) and our proposed residual memory (ResM,
§ 4.2) prevent a sudden change of transformer
parameters, thus allow to train memory parame-
ters better by less suffering from the catastrophic
drift. Consequently, we obtain PKM-augmented-
BERTgAsE having comparable accuracy and faster
than BERT ArGE-

As demonstrated in Table 1, a model with a large
memory is much faster than a model having twice
many transformer layers, although it has far more
weights. ResM does not slow down inference speed
much. Accuracy comparison between them will
appear in the later sections.

The main contributions of this work are summa-
rized as follows. First, we explore how to incorpo-
rate PKM to PLMs to be finetuned for downstream
tasks and find that simple application does not work
well. Secondly, we attribute this to a catastrophic
drift during the training by careful monitoring of
memory utilization. Lastly, we propose simple
yet effective solutions to tackle the observed catas-
trophic drift problem: (1) weight initialization with-
out PKM and (2) the residual memory layer. We
empirically verify that both of them are crucial to
achieve improved accuracy. In our knowledge, this
is the first work that successfully applies PKM to
PLMs.

2 Background

2.1 Transformers and Product Key Memory

A transformer encoder maps a sequence of input
tokens into a sequence of continuous representa-
tions based on a self-attention mechanism (Vaswani
et al., 2017). Transformer architecture is a stack
of sub-layers, and each sub-layer consists of a
multi-head attention layer and a feed-forward layer.
Due to the remarkable prediction accuracy, a trans-

former becomes standard architecture in natural
language processing.

On the other hand, memory architecture can also
be used to design a function that maps a contin-
uous representation to another representation as
a layer in neural networks. When a query vector
is given in a standard memory-augmented neural
network, the memory layer finds k-NN keys and
returns a weighted sum of corresponding value vec-
tors. These weights are normalized scores of the
dot product between the query vector and the key
vectors.

Lample et al. (2019) propose product key mem-
ory (PKM) that can significantly increase model
capacity based on fast and exact nearest neighbor
search. They plug a PKM layer in a transformer
architecture, especially by switching an existing
feed-forward layer to it, while keeping similar com-
putational efficiency.

We explain the mechanism of PKM here to be
self-contained. A product key is a pair of sub-keys,
meaning that there are | K| = C? different memory
slots when the codebook size of each sub-key is C'.
A given query vector is partitioned to the dimension
of half-size. The score with a product key is the
sum of the dot product between the sub-query vec-
tor and the sub-key vector. We can increase the size
of key space effectively with sufficient C'. Exact
nearest neighbor search in the product key set can
be done efficiently by first finding £-NN in each
sub-key space and then finding k-NN again from
k% combinations of sub-key pairs. In addition, a
multi-head memory attention mechanism like self-
attention in transformers is used to increase the
representation power of the memory layer.

2.2 Pretrained Language Models

Transfer learning from pretrained language mod-
els (PLMs) has brought a paradigm shift in NLP
with a remarkable improvement in a wide range
of downstream tasks. Based on a transformer ar-
chitecture (Vaswani et al., 2017), BERT (Devlin
et al., 2018) is trained with two pretraining tasks,
(1) masked language modeling (MLM) and (2) next
sentence prediction (NSP), which achieves signif-
icant improvement in performance on fine-tuning
tasks. RoBERTa (Liu et al., 2019) removes the NSP
and increases the batch size and training corpus to
train a more robust language model. It indicates
that larger batch size and training data benefit the
performance of PLM. In these trends, recently, lan-
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guage models with much larger parameters (Raffel
et al., 2019; Shoeybi et al., 2019; Brown et al.,
2020) are trained with a huge amount of text cor-
pus. Despite their remarkable performance, the
computational cost in training and inference is pro-
hibitive. Improving trade-off between accuracy and
efficiency is one of the crucial research directions.

2.3 Memory-Augmented Language Models

Memory augmented neural networks (Weston et al.,
2014; Sukhbaatar et al., 2015) have the ability to
solve complex algorithmic tasks and decouple the
memory capacity from the number of model param-
eters. Chandar et al. (2016) propose a hierarchi-
cal memory network to access from large external
memory efficiently. Rae et al. (2016) enable train-
ing a large memory in neural networks efficiently
via a sparse read and write mechanism. However, it
requires regular re-training to avoid a catastrophic
drift. REALM (Guu et al., 2020) also suffers from
a similar issue, so refresh the index asynchronously
every several hundred training steps.

In addition to Lample et al. (2019), augment-
ing memory architecture to a language model is a
promising research direction. For example, EaE
(Févry et al., 2020) and FaE (Verga et al., 2020)
jointly train a memory that is interleaved in a trans-
former and dedicated to entities (or facts) with
sparse updates, and access to only a small portion
of the memory in inference time. On the other hand,
each memory slot in Lample et al. (2019) and ours
does not have explicit meaning.

Sukhbaatar et al. (2019) augments the self-
attention layers with persistent memory vectors and
removes the feed-forward layers. Khandelwal et al.
(2019) augments a pretrained language model with
the nearest neighbor language model that retrieves
k-nearest neighbors from the datastore consisting
of the key-value pairs of a context vector and the tar-
get word built from training data. Khandelwal et al.
(2019) also only considers causal language mod-
eling, and applying the same approach to masked
language modeling widely used for PLMs is non-
trivial.

3 Memory Utilization Analysis

As shown in our experiment (Table 2), large PKM
provides a significant gain in masked language
modeling in terms of perplexity. However, surpris-
ingly, downstream task performance finetuned from
PKM-augmented PLMs is similar to or sometimes

worse than that without PKM in our experiments.
Nevertheless, it is challenging to investigate what
is going on under the hood. We presume that this
frustrating outcome come from the catastrophic
drift which will be explained later (§ 3.1) and it
fosters us to scrutinize memory utilization (§ 3.2)
thoroughly.

3.1 Catastrophic Drift

PKM is jointly trained with other transformer pa-
rameters. In every training step, only a small por-
tion (chosen as k-NN) of memory parameters are
sparsely updated. Even if a memory slot is selected
as top-k, the frequency is low or it is only selected
as low-rank in top-k, the update of memory param-
eters relevant to this slot might be marginal.

If memory parameters (especially value vectors)
are not updated (or rarely updated) for a while, they
became stale. Stale parameters are unlikely to be
matched with newly updated model parameters so
that they will get remain unused. We call this situ-
ation a catastrophic drift. Moreover, catastrophic
drift will be more severe in finetuning because it
relies on a small number of data and training steps.

We hypothesize this catastrophic drift occurs dur-
ing the training of a PKM-augmented LM, and it
is one plausible cause of poor performance. This
problem is overlooked by Lample et al. (2019) be-
cause it is concealed by increasing the number of
memory slots | K|, heads H, or k-NN. With a suf-
ficient size of memory hyper-parameters, memory
usage (see § 3.2 for the definition) becomes close
to 100%. For example, in Lample et al. (2019) and
our experiments, memory usage is almost 100%
when using 4 memory heads, selecting 32 keys per
head, and using 512% memory slots. Considering
only top-k memory usage, memory parameters are
seemingly regarded as used effectively to their full
extent.

3.2 Memory Utilization Metrics

Following Lample et al. (2019), we measure the
memory utilization of trained PKM-augmented
models in terms of (1) memory usage and (2) KL
divergence with the uniform distribution using held-
out data. Besides standard memory usage, we pro-
pose to measure top-1 memory usage that only
counts memory slots as used when selected as top-
1 rather than top-k and use it to monitor the degree
of catastrophic drift.

For every memory slot, we count the num-
ber of selection as k-NN (or top-1) and sum the
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weights throughout all memory accesses: u, =
S, S(w(a)i > 0). ) = ¥, 8(arg max; w(z); =
i), and w; = > w(x);, where w(z); is the weight
of the key 7 accessed in the memory when an input
x is given to the language model with the memory.
Memory usage (MU) is the fraction of values that
are accessed at least once. Top-1 memory usage
(MU) is the fraction of values that are accessed as
top-1 at least once. KL divergence with the uni-
form distribution is calculated for normalized aver-
age counts (K L,,) and normalized average weights
(K L,,). Formally, we can calculate those values

by
MU = 5" 6(u; > 0)
|K’ ’L T )
— 1
MU = — 5(t1 > 0),
] 2=
KL, =log(|K]) + Zuilog(ui),

KL, =log(|K|)+ Zwilog(wi)

7

where | K| is the number of memory slots, and u,
t, and w are the normalized value of v/, ¢/, and v/,
respectively, as sum to 1.

4 Pretraining PKM-augmented PLMs

Lample et al. (2019) propose PKM and show its
advantage in causal language modeling. We in-
vestigate how to extend the usage of large PKM
to PLMs such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) that can be used as
a good initialization point for downstream tasks,
resulting in a great performance.

By monitoring top-1 memory usage, we observe
that catastrophic drift really occurs. Low memory
utilization PKM-augmented PLMs means that the
model does not fully exploit its increased capacity
of the memory and thus is likely not to get accu-
racy gain much. To resolve the catastrophic drift,
we introduce additional modifications for better
pretraining: initialization from pretrained weights
(§ 4.1) and residual memory layer (§ 4.2).

4.1 Initialization from Pretrained Weights

Learning transformer parameters and memory pa-
rameters together from scratch is difficult due to
the discrepancy between them as described in § 3.1.
To remedy this issue, we first pretrain a language
model without memory layers, and then pretrain

again a model with memory layers initialized from
the already pretrained language model. Trans-
former parameters will be gradually changed since
they are initialized from a well-trained language
model. We expect that staleness would be miti-
gated as a result. Despite requiring two stages of
training, a trained language model with initializa-
tion performs much better and has higher memory
usage than that with the same amount of training
steps from the scratch, as shown in Table 2.

4.2 Residual Memory Layer

He et al. (2016) propose ResNet to train very deep
convolution networks. A residual connection en-
ables easier optimization and gains accuracy from
increased depth. We borrow this idea by introduc-
ing a residual connection in augmenting a PKM to
alleviate the catastrophic drift.

When we replace an FFN layer of pretrained
networks with the PKM layer, it struggles to fit
data in an early stage because the function of this
layer suddenly changed to random function from
a well-trained one (see a green line of Figure 3).
We hope to prevent this undesirable circumstance
while keeping strong representation power of prod-
uct key memory. To this end, we propose residual
memory (ResM) layer, adding the memory layer to
a transformer block in the form of residual connec-
tion (He et al., 2016) instead of replacing the FFN
layer. Due to the residual connection, the function
of the layer does not deviate severely from that of
the original pretrained weights, and it helps to start
at a stable point.

Figure 1 displays how the residual memory layer
is different from the previous models. To be more
precise, we can formulate these layers to

x/:LN(CC+OZFFN(CU)+BPKM($))7

where LN indicates layer normalization (Ba et al.,
2016). («, ) = (1,0),(0,1),(1,1) corresponds
to FEN layer, PKM layer, and ResM layer, respec-
tively.

S Experiment Setup
5.1 Product Key Memory

Our implementation is based on HuggingFace’s
Transformers library1 (Wolf et al., 2019), and the
PKM part is borrowed from the XLM repository.”

"https://github.com/huggingface/transformers
*https://github.com/facebookresearch/XLM
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(a) FFN layer (b) PKM layer

Feed-Forward Memory Layer
Layer (FFN) (PKM)

[ |

Feed-Forward Memory Layer
Layer (FFN) (PKM)
t i)
(c) ResM layer

Figure 1: Illustration of the layers for the comparison. (a) displays feed-forward layer (FFN) in vanilla Transformer
architecture (Vaswani et al., 2017). (b) is the original version of product-key memory (PKM) layer (Lample et al.,
2019) that replaces FFN. (c) is our proposed ResM layer. Instead of replacing FFN to PKM, ResM adds PKM in

addition to FFN as a residual connection.

Memory MLM

Model MU KL, KL, WT-2 WT-103 PG-19
(4L/8L) (%) (4L/8L) (4L/8L) (ppD) (ppD) (ppD)

(a) BERTgasg - - - 3.49 3.86 6.18
(b) +500k steps - - - 3.40 3.72 5.88
(¢) +PKM 2.2/84.1 1.62/0.89 1.99/1.13 3.26 3.39 5.53
(d) +ResM 75.0/81.0 1.50/0.71 1.80/0.92 3.26 3.36 5.45
(e) +Init +PKM 97.4/95.7 0.53/0.69 0.68/0.88 3.14 3.26 5.22
(f) +Init +ResM 98.2/97.3 0.45/0.46 0.58/0.60 3.10 3.20 5.14

Table 2: Experimental results of pre-training PKM-augmented PLMs. Because standard memory usage is almost
100%, we omit it in the table. Top-1 memory usage and KL divergence are calculated at the 4th and 8th layers. :

we pre-train BERTgasg by ourself.

We add two memory layers in the intermediate lay-
ers at regular intervals: i.e., {4,8} in 12 layer mod-
els, and {2,4} in 6 layer models. We will explore
the effect of changing the number of the position of
memory layers in the future. We use 5122 (= 262k)
memory slots with 4 memory heads and select 32
keys per head for each memory layer for all exper-
iments. We set the dimension of key vectors and
value vectors to 256 and 768, respectively. We use
query batch normalization to increase key coverage
during training. We measure the top-1 memory us-
age and the KL divergence to measure how much
the model effectively uses memory capacity.

5.2 Pretraining

We use 12 layer BERTgasg models with and
without PKM. For pretraining, we use English
Wikipedia and BookCorpus (Zhu et al., 2015) as a
training corpus like BERT (Devlin et al., 2018), in
total 17GB. We use the same vocabulary and tok-
enizer with Devlin et al. (2018). We train models
with batch size of 1024 sequences for 500,000 steps.
We use Adam optimizer (Kingma and Ba, 2014)

with learning rate of le-4 and linear warmup sched-
uler over the first 10,000 steps. The memory values
are learned with a sparse update of learning rate
le-3, following Lample et al. (2019). With half-
precision training® on 32 NVIDIA V100 GPUs,
pretraining took 2.8 days without PKM and 5.1
days with PKM (or with ResM).

To evaluate pretrained models themselves, we
measure the perplexity of masked language mod-
eling on the test set of WikiText-2, WikiText-103,
and PG-19 (Rae et al., 2019). Since the pretrain-
ing corpus covers WikiText-2 and WikiText-103,
perplexity on them is a proxy to the training per-
plexity. Meanwhile, because the PG-19 dataset
came from different sources, perplexity on PG-19
can be regarded as the test perplexity.

5.3 Finetuning

For fine-tuning, we use SQuAD 1.1 (Rajpurkar
et al., 2016) and GLUE (Wang et al., 2018) bench-
mark as downstream tasks. Following other PLM
literature, including RoBERTa (Liu et al., 2019),

*https://github.com/NVIDIA/apex
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warmup weight max seq

Dataset Ir bsz #epoch ratio  decay length
SQuAD 1.1 5e-5 32 3 0.06 0.01 384
GLUE 2e-5 32 10 0.06 0.1 128

Table 3: Fine-tuning hyper-parameters for downstream
tasks, SQuAD 1.1 and GLUE. We use 128 doc stride
for SQuAD 1.1 dataset.

we report dev set results instead of the test set to
compare our variants. We report a median of 5 runs
with different random seeds for each fine-tuning
task. We measure exact match (EM) and F1 scores
on SQuUAD 1.1. For QQP, which is the binary clas-
sification task, the F1 score is used for the GLUE
leaderboard. However, we use the accuracy as the
metric for development set because the F1 score
varies a lot depending on random seeds. Finetuning
details appear in Table 3.

6 Pretraining Results

Table 2 shows the experimental results of pre-
training. We compare models with/without the
initialization and PKM vs. ResM. We use
BERTgasE architecture of 12 transformer layers
without next sentence prediction following Liu
et al. (2019) for our pretraining experiments. For
the fair comparison between BERTgssg and PKM-
augmented-BERTggE after the initialization, we
train BERTgasg with longer steps, but the improve-
ment was marginal.

Memory Utilization Surprisingly, the top-1 mem-
ory usage of the PKM-augmented PLM at the 4th
layer is about 2%, which is remarkably low, though
top-32 memory usage at this layer is almost 100%.
In other words, the model does not take advantage
of the lower memory layer effectively.

With a residual connection, the top-1 memory
usage of all layers become reasonably high. Similar
to He et al. (2016), the residual connection helps to
learn deep networks with memory, resulting in im-
proved accuracy. Moreover, with the initialization
from pretrained weights, top-1 memory usage is
more than 95%. With the initialization and ResM,
top-1 memory usage increases, and KL divergence
decreases significantly, implying better exploita-
tion of the memory layers. It becomes possible by
preventing memory parameters not to suffer from
the catastrophic drift.

We check when each memory slot is used at last
among saved checkpoints. Then, we count the num-

250K mm PKM

N ResM

#5/ Init+PKM

200K B |nit+ResM

60K]
40K

A |
1|

6K

Count

4K

2K

0K 100K 200K 300K 400K 500K
Training Step

(a) 4th Layer

250K = PKM
200K N ResM

#5/ Init+PKM
m |nit+ResM

60K]
40K]
6K

w |
M

Count

4K

2K

oK 100K 200K 300K 400K 500K
Training Step

(b) 8th Layer

Figure 2: Histogram for staleness evaluation of PKM-
augmented PLMs. We save model checkpoints ev-
ery 100k step during the entire 500k pre-training steps.
This histogram illustrates how many memory slots are
used at last for each saved checkpoint. For example, if
a key is used at 200k model checkpoint and never used
after that, then it is likely to keep its state as stale af-
ter 200k. Because the total number of memory slots is
fixed to 5122, the model having boxes toward the right
in the graph is better.

ber of slots depending on the last used checkpoint.
Figure 2 indirectly indicates how many memory
slots are kept not selected as top-1. This figure pro-
vides evidence that a model with the initialization
and residual memory prevents staleness compared
to a model with plain PKM.

Masked Language Modeling Augmenting large
PKM always improves masked language modeling
compared to a model without memory. Figure 3
shows the training curve of the models after the
initialization. It proves that the residual connection
prevents a deviation of the PKM at the beginning
(bigger initial perplexity) even with the initializa-
tion from the pretrained weight. Although they are
converged to a similar perplexity after very long
training steps, the initial perplexity of PKM is much
bigger than that of ResM. In sum, both the initial-
ization from pretrained PLM and the residual mem-
ory layer are beneficial for PLM with a memory to
perform better in masked language modeling.
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QA GLUE
Model SQuAD 1.1 MNLI-(m/mm) QQP QNLI SST-2 CoLA Avg
(EM/F1) (Acc) (Acc) (Acc) (Acc) (Matt) -
(a) BERTgAsg ' 82.7/89.8 84.3/84.5 91.0 89.3 92.8 60.8 83.8
(b) +500k steps  83.3/90.1 84.8/84.9 91.2 89.2 924 61.4 84.0
(¢) +PKM 81.9/89.1 84.4/85.0 91.1 89.0 93.6 59.7 83.8
(d) +ResM 81.5/89.4 84.6/84.8 91.0 88.2 93.2 62.8 84.1
(e) +Init+PKM 83.8/90.6 85.8/85.6 91.2 90.0 93.6 63.6 85.0
(f) +Init +ResM  83.9/90.8 86.0/85.8 914 90.4 94.0 64.1 85.3
(g) BERTgase™® 81.1/88.5 83.9/84.4 91.0 88.4 92.9 59.8 83.4
(h) BERTLarce™  83.3/90.6 86.2/86.1 914 90.4 93.8 64.1 85.3

Table 4: Experimental results of fine-tunining PKM-augmented PLMs. Model (a)-(f) are the same one from Table
2. *: we borrow pretrained weights of BERTgasg and BERT argg from (Devlin et al., 2018). We fine-tune these
models on SQuUAD 1.1 (Rajpurkar et al., 2016) and GLUE tasks (Wang et al., 2018).

29.4
202} 1
4.6 —— Init+PKM
4.4 —#~— |nit+ResM'
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3 42
2
& 40
o
£
£ 38
o
=
3.6
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Trainining Step
Figure 3: Training curves of MLM perplexity ver-

sus training steps during the pre-training of PKM-
augmented MLMs. Y-axis is zoomed in the low per-
plexity region. Initialized from the pre-trained BERT,
PKM (green) replaces FFN to PKM, ResM (blue) add
PKM as a residual connection. ResM’ (red) is the same
with ResM but randomly re-initialize FFN.

7 Finetuning Results

Table 4 shows the experimental results of finetun-
ing using our pretrained models.

Downstream Performance Although large PKM
helps masked language modeling, the downstream
performance of several tasks with plain PKM is
worse than the baseline without memory. We think
this is because the catastrophic drift problem is es-
pecially severe in the fine-tuning step. Downstream
dataset size and the number of training steps are
too small to fit memory parameters accordingly.
Better memory utilization coming from the ini-
tialization and the residual connection also leads
to better downstream accuracy in most of the
datasets. We report the fine-tuning results using
the weights of pretrained BERT argg from De-

Memor: QA GLUE
Model M SQuAD 1.1 MNLI-m SST-2 CoLA
Update
(EM/F1) (Acc) (Acc) (Matt)
Y  81.9/89.1 844 936 597
(c) +PKM N 820890 841 930 565
Y  81.5/894 846 932 628
(d) +ResM N 822/805 843 927 599
. Y 838906 858 93.6 63.6
@ +Init+PKM 0 g37/004 855 933 588
. Y  839/908 860 940 64.1
(O +Init+ResM 1 ¢45008 858 933 616

Table 5: Ablation study on fixing memory parameters
during fine-tuning.

vlin et al. (2018) in Table 4.* We believe that our
best PKM-augmented-BERTgsg would have com-
parable performance with BERT srgg even after
pretraining it by ourselves, while much faster as
described in Table 1.

On the assumption that updating memory pa-
rameters sparsely using a limited number of data
and training steps might be vulnerable to the catas-
trophic drift, we try to fix memory parameters dur-
ing fine-tuning as in Table 5. However, it degrades
the downstream performance.

Memory Utilization Table 6 shows the memory
usage and KL divergence of fine-tuned PKM-
augmented models. Comparison of fine-tuned
PKM-augmented models in terms of the mem-
ory usage has similar trends with that of pretrain-

4Unf0rtunately, we could not pretrain BERT arge, S0 we
will prepare it after the submission. In our pretraining experi-
ments, we use almost same settings but larger batch size (256
vs 1024) than Devlin et al. (2018). The difference between our
pretrained BERTgase (a) and Google BERTgasE (g) and the
difference between our ResM-augmented BERTgasg with the
initialization (f) and Google BERT} arce (h) are insignificant.
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Memor MNLI-m SST-2 CoLA

Model Positior})/ MU KL, KL, MU MU KL, KL, MU MU KL, KL,
(%) (%) (%) (%) (%) (%)

() +PKM 4 994 12 214 236 790 0.6 3.23 349 60.5 04 4.62 4.89
8 99.7 68.2 2.30 247 83.7 35.8 2.59 2.76 61.8 22.2 551 5.67
(d) +ResM 4 98.9 64.5 246 2.71 79.3 35.6 3.84 4.08 61.5 24.1 4.01 4.20
8 999 66.7 1.87 2.02 84.6 32.5 2.34 2.51 73.3 22.7 2.05 2.21
(e) +Init +PKM 4 100.0 81.8 1.33 1.46 91.2 42.3 3.52 3.76 72.7 263 4.11 4.29
8 99.9 785 1.76 195 86.3 358 2.81 3.05 65.5 21.9 472 4.93
(f) +Init +ResM 4 100.0 85.6 0.94 1.06 92.0 42.8 298 3.18 75.5 28.6 3.99 4.15
) 8 100.0 85.6 1.52 1.66 89.9 41.6 2.39 2.63 73.6 27.4 3.88 4.06

Table 6: Memory utilization of PKM-augmented models after fine-tuning. We measure memory utilization metrics
(MU, MU, KL,, and K L,,) at 4th and 8th layer after fine-tuning using MNLI-m (Williams et al., 2017), SST-2
(Socher et al., 2013), and CoLA (Warstadt et al., 2019) datasets as an example. We use the same fine-tuned models

that appeared in Table 2.
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Figure 4: Difference in memory usage between posi-
tive examples and negative examples in SST-2 (Socher
et al., 2013). KL divergence (left) and IOU (right) be-
tween two distributions (positive vs. negative) are vi-
sualized. We measure those values from weights pre-
trained without fine-tuning and after fine-tuning.

ing. The initialization and the residual memory
improve memory usage, meaning better exploita-
tion of model capacity for downstream tasks. Es-
pecially in a large dataset like MNLI (Williams
et al., 2017), the memory usage of the fine-tuned
model reaches to almost 100% similar to pretrained
models due to the sufficient training steps to update
memory parameters. On the other hand, interest-
ingly, the initialization and the residual memory
do not always reduce KL divergence. We presume
this because fine-tuning of classification tasks en-
courages input examples of the same class to be
clustered into similar representations, so it requires
to access similar patterns of memory slots while
utilizing many of them.

To validate the assumption mentioned above,
we check the difference in memory usage be-
tween positive examples and negative examples
using SST-2 (Socher et al., 2013) dataset, which

MLM QA GLUE
Model PG-19 SQuAD 1.1 MNLI-m SST-2
(ppD) (EM/F1) (Acc) (Acc)
DistilBERT* 20.61 77.4/85.7 82.0 91.6

+Init +ResM 5.75 80.4/88.3 84.1 93.3

BERTgase™ 11.82 81.1/88.5 83.9 92.9

Table 7: Experimental results on DistilBERT with and
without our method. We add results of BERTgasg for
comparison. * means our reproduced results using
model weights from Sanh et al. (2019) and Devlin et al.
(2018). The initial model weights of DistilBERT is
from the part of BERTpASE.-

is the binary classification tasks to predict the sen-
timent of a movie review. To measure the differ-
ence, we calculate (1) KL divergence between two
distributions (positive/negative) and (2) intersec-
tion over union (IOU), which is a widely used
metric in object detection (Ren et al., 2015) on
the top-1 memory usage. We calculate IOU as
S min(tS, 7)) > maz(t],t; ), where t;” and
t; is atop-1 usage at memory position ¢ for positive
examples and negative examples, respectively. As
illustrated in Figure 4, our best PKM-augmented
model shows much higher KL and lower IOU in
every layer than the plain PKM-augmented model,
implying better discriminative ability.

Other Pretrained Models We release the code
and pretrained weights to encourage researchers
and practitioners to easily utilize and reproduce our
work, allowing the application to different model
sizes and other backbone architectures. In particu-
lar, we employ our methods to DistilBERT model
(Sanh et al., 2019), which is a 6-layer transformer
model trained by knowledge distillation (Hinton

4067



et al., 2015) from BERTgasg. Similarly, it obtains
accuracy comparable to BERTgasg as shown in Ta-
ble 7.° Moreover, we believe our approaches could
also be helpful to any other task.

PKM vs. ResM One might argue that the gap be-
tween the PKM model and the ResM model might
be attributed to the difference in model size. We
claim that the impact of the architectural difference
between PKM and ResM is more than from more
parameters. ResM achieves better memory utiliza-
tion, resulting in a better final performance. 0.3
higher average GLUE score with only 9M more
parameters (smaller than 2% of the entire model) is
significant considering that BERT-Large achieves
a 1.9 higher average GLUE score with 230M more

parameters than BERT-Base (0%93 > %).

8 Conclusion and Future Work

This work starts from unexpected results that di-
rectly applying PKM to PLMs does not work well
in downstream tasks, contrary to (Lample et al.,
2019). In this paper, we successfully augment
PKM to PLMs with two ingredients, weight ini-
tialization and residual connection, based on the
observation of memory utilization and catastrophic
drift during the training. Consequently, we encour-
age to utilize memory architecture such as PKM
for PLMs in practical use.

Although our approach mitigates the catas-
trophic drift problem somehow, we leave further
study on it during both pretraining and finetuning
as future work. One possible solution is to regular-
ize a PKM memory by a structured dropout on the
memory keys like DropHead (Zhou et al., 2020).
It would also help to prune unnecessary memory
slots on-demand during the inference time.
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