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Abstract

For many prediction tasks, stakeholders desire
not only predictions but also supporting evi-
dence that a human can use to verify its cor-
rectness. However, in practice, evidence an-
notations may only be available for a minority
of training examples (if available at all). In
this paper, we propose new methods to com-
bine few evidence annotations (strong semi-
supervision) with abundant document-level la-
bels (weak supervision) for the task of evi-
dence extraction. Evaluating on two classifi-
cation tasks that feature evidence annotations,
we find that our methods outperform baselines
adapted from the interpretability literature to
our task. Our approach yields gains with as
few as hundred evidence annotations.'

1 Introduction

Despite the success of deep learning for count-
less prediction tasks, practitioners often desire that
these models not only be accurate but also pro-
vide interpretations or explanations (Caruana et al.,
2015; Weld and Bansal, 2019). Unfortunately,
these terms lack precise meaning, and across pa-
pers, such explanations purport to address a wide
spectrum of desiderata, and it seems unlikely any
one method could address them all (Lipton, 2018).
In both computer vision (Ribeiro et al., 2016; Si-
monyan et al., 2013) and natural language process-
ing (Lei et al., 2016; Lehman et al., 2019), pro-
posed explanation methods often take the form of
highlighting salient features of the input. These so-
called local explanations are intended to highlight
features that elucidate “the reasons behind predic-
tions” (Ribeiro et al., 2016). However, this charac-
terization of the problem remains under-specified.

'Code and datasets to reproduce our work are
available at: https://github.com/danishpruthi/
evidence—-extraction.

In this paper, we instead focus on supplement-
ing predictions with evidence, which we define as
information that gives users the ability to quickly
verify the correctness of predictions. Fortunately,
for many problems, a localized portion of the input
is sufficient to validate the predicted label. In a
large image, a small patch of an image containing
a hamster may be sufficient to render the “hamster”
label applicable. Similarly, in a long clinical note, a
single sentence may suffice to confirm a predicted
diagnosis. This ability to verify results engenders
trust among users, and increases adoption of the
machine learning systems (Dzindolet et al., 2003;
Herlocker et al., 2000; Ribeiro et al., 2016). In
Table 1, we outline the characteristic differences
between local explanations and evidence.

Thus motivated, we cast our problem as learn-
ing to extract evidence using both strong and weak
supervision. The former takes the form of explicit,
but scarce, manual annotations of evidence seg-
ments, whereas the latter is provided by documents
and their class labels which we assume are rela-
tively abundant.?> In the extreme case where evi-
dence annotations are available for all examples,
our task reduces to a standard multitask learning
problem. In the opposite extreme, where only weak
supervision is available, we find ourselves back in
the under-specified realm addressed by local expla-
nations. While predictive tokens may be extracted
using only weak supervision, evidence extraction
requires some amount of strong supervision.

We draw inspiration from Zaidan and Eisner
(2008), who study the reverse problem—how to
leverage marked evidence spans to improve classi-
fication performance. We optimize the joint like-
lihood of class labels and evidence spans, given
the input examples. We factorize our objective
such that we first classify, and then extract the

“While the task formulation is broadly applicable, we limit
to text classification tasks for the scope of this work.
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Explanations Evidence
Objective Elucidate “the reasons behind predictions”. Enable users to quickly verify the predictions.
. Explanations are specific to the model. Evidence is a characteristic of the task.
Evaluation - . . -
No ground truth explanations to compare against. ~ Can be compared against human-labeled evidence.
Example A horror movie that lacks cohesion. A horror movie that lacks cohesion.

Table 1: Distinguishing local explanations from evidence snippets. In the illustrative example, the token horror
is predictive of the negative sentiment as horror movies tend to get poorer ratings than movies from other gen-
res (Kaushik et al., 2019), however, no expert would mark it to be the evidence justifying the negative review.

evidence. For classification, we use BERT (De-
vlin et al., 2019). The extraction task (a sequence
tagging problem) is modeled using a linear-chain
CRF (Lafferty et al., 2001). The CRF uses rep-
resentations and attention scores from BERT as
emission features, allowing the two tasks (i.e. clas-
sification and extraction) to benefit from shared
parameters. Further, the evidence extraction mod-
ule is conditioned on the class label, enabling the
CREF to output different evidence spans tailored to
each class label. This is illustrated in Table 2.

For baselines, we repurpose input attribution
methods from the interpretability literature. Many
approaches in this category first extract, and then
classify (Lei et al., 2016; Lehman et al., 2019; Jain
et al., 2020; Paranjape et al., 2020). Across two
text sequence classification and evidence extraction
tasks, we find our methods to outperform baselines.
Encouragingly, we observe gains by using our ap-
proach with as few as 100 evidence annotations.

2 Related Work

We briefly discuss methods from the interpretabil-
ity literature that aim to identify salient features of
the input. Lei et al. (2016) propose an approach
wherein a generator first extracts a subset of the
text from the original input, which is further fed to
an encoder that classifies the input by using only
the extracted subset. The generator and encoder
are trained end-to-end via REINFORCE-style op-
timization (Williams, 1992). However, follow-up
work discovered the end-to-end training to be quite
unstable with high variance in results (Bastings
et al., 2019; Paranjape et al., 2020). Consequently,
other approaches adopted the core idea of extract,
and then classify in different forms: Lehman et al.
(2019) decouple the extraction and prediction mod-
ules and train them individually with intermediate
supervision; Jain et al. (2020) use heuristics, like
attention scores, for extraction; and lastly, Paran-
jape et al. (2020) extract subsets that have high

mutual information with the output variable and
low mutual information with the input variable.

3 Extracting Evidence

Formally, let the training data consist of n points
{(x1,¥1)-.-(Xn,Yn)}, where x; is a document, y;
is the associated label. We assume that for m points
(m < n) we also have evidence annotations e;, a
binary vector such that e;; = 1 if token x;; is a part
of the evidence, and 0 otherwise. The conditional
likelihood of the output labels and evidence given
the documents can be written as:

n

L=]]p(y eilx)

i=1
We can factorize this likelihood in two ways. First,

n

L= H e1|Xl yl|xl7el)
=1
n
= H el‘xl y2|el>
1 §
extract classify

(assuming y; L x;|e;)

This corresponds to the extract, then classify ap-
proach. Since both components of this likelihood
function require extractions, supervised methods
can only leverage m (out of n) training exam-
ples (Lehman et al., 2019). Unsupervised or semi-
supervised extraction methods can still use all the
document-level labels during training (Jain et al.,
2020; Paranjape et al., 2020). Alternatively, we can
factorize the likelihood as follows:

n

H yl‘xl

=1

el|yz>X1)

classify extract

The classify, then extract approach is amenable to
weakly supervised learning, as we can optimize
the classification objective for all n examples, and
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Movie Review

I don’t know what movie the critics saw, but it wasn’t this one. The popular consensus among newspaper

critics was that this movie is unfunny and dreadfully boring . In my personal opinion, they couldn’t be more wrong.
If you were expecting Airplane! - like laughs and Agatha Christie - intense mystery, then yes, this movie would

be a disappointment. However, if you’re just looking for an enjoyable movie and a good time , this is one to see ...

Lean, mean, escapist thrillers are a tough product to come by. Most are unnecessarily complicated , and others
have no sense of expediency—the thrill-ride effect gets lost in the cumbersome plot. Perhaps the ultimate escapist
thriller was the fugitive, which featured none of the flash-bang effects of today’s market but rather a bread-and-butter,
textbook example of what a clever script and good direction is all about. ...

Table 2: Non cherry-picked evidence extractions from our approach. We condition our extraction model on both
the positive and the negative label. Our approach is able to tailor the extractions as per the conditioned label.

the extraction objective for m examples. We use
BERT (Devlin et al., 2019) to model py(y|x), and
a linear-chain CRF (Lafferty et al., 2001) to model
po(e|x,y; 6), where:

K
1
p¢(e|yax) = EGXP E ¢kfk(et7€t—17$tay)
k=1

Here ¢ indexes the input sequence, and Z is a nor-
malization factor. Function f(-) extracts K fea-
tures including both emission and transition fea-
tures, and ¢ are the corresponding weights. The
transition weights allow the CRF to model contigu-
ity in the evidence tokens. We examine two types
of emission features for a given token x; in the
input z, including (1) BERT features ( fggrr(x)¢)
where we encode the entire input sequence, and
use the representation corresponding to token ;>
and (2) attention features where we use the last
layer attention values from different heads of the
[CLS] token to the given token x;. These features
tie the classification and extraction architectures.

The classify, then extract approach also allows
conditioning the evidence extraction model on the
(predicted or oracle) label of the text document.
For binary classification, one way to achieve this
is to transform the existing emission features f to
new features f* in the following manner:

' frlen, ec—1,2) ify=0
for(et, et—1, 24, y) = {o iy 1
0 ify =0

!/
€s, €11, = ~
Sors1(es, €1, 21,y) {fk(et,etl,wt) ify=1

This transformation allows us to use even indexed
emission weights (¢p9y) for the first class, and
odd indexed emission weights (¢ox1) for the sec-
ond class. Similar transformations can be easily

3Note that we share the BERT representations between the
classification and extraction modules.

constructed for multi-class classification problems.
During inference we use the predicted label § in-
stead of the true label y. Using this formulation,
emission features (and their corresponding weights)
capture the association of each word with the ex-
traction label (evidence or not) and the classifi-
cation label. For instance, for binary sentiment
analysis of movie reviews, the token “brilliant” is
highly associated with the positive class, and if the
review is (marked/predicted to be) positive, then
the chances to select it as a part of the evidence in-
crease. Inversely, if “brilliant” occurs in a negative
review, the chances of selecting it decrease.

By conditioning the extraction models on the
classification label, one can find supporting evi-
dence tailored for each class (as one can see in Ta-
ble 2). This can be especially useful when the input
examples exhibit characteristics of multiple classes,
or when classification models are less certain about
their predictions. In such cases, examining the
extractions for each class could help validate the
model behaviour.

Implementation Details We train both the clas-
sification and extraction modules simultaneously.
For evidence extraction, the emission features of
the CRF include BERT representations or its atten-
tion values (depending upon the experiment). The
same BERT model is also used for classification,
thus the two tasks share the BERT parameters. We
use the transformers library by Hugging Face (Wolf
et al., 2019), and default optimization parameters
for finetuning BERT.

4 Results and Discussion

Baselines =~ We use several approaches that at-
tempt to rationalize predictions as baselines for
the evidence extraction task. These include:
(i) the Pipeline approach (Lehman et al., 2019),
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Sentiment Analysis

Propaganda Detection

Approach Prediction Extraction Prediction Extraction
(Accuracy) (F1 score) (F1 score) (F1 score)
Pipeline approach® (Lehman et al., 2019) 76.9 14.0 — —
Information Bottleneck (IB)™® (Paranjape et al., 2020) 82.4 12.3 — —
IB (semi-supervised, 25%)° (Paranjape et al., 2020) 85.4 18.1 — —
Top-k attention! (Jain et al., 2020) 93.1 27.7 65.8 27.4
Supervised attention (Zhong et al., 2019) 93.2 43.1 67.1 342
Our Methods
Classify only (BERT) 93.1 — 65.8 —
Extract only (BERT-CRF) 42.6 — 39.1
Classify & Extract (BERT’s Attention-CRF) 93.1 452 65.8 41.0
Classify & Extract (BERT-CRF) 93.3 454 64.1 41.5
Classify & Extract (BERT-CRF) w/ predicted labels 93.2 46.3 64.9 41.2
Classify & Extract (BERT-CRF) w/ oracle labels 93.3 46.8 64.9 45.0

Table 3: Evaluating different methods on two classification tasks that feature evidence annotations. The last row
is an upper bound assuming access to the oracle label for conditioning. 1 denotes unsupervised approaches, and ¢
indicates sentence-level extraction methods, which can not be applied to the propaganda detection task as the input
is only a single sentence. All the values are averaged across 5 seeds.

wherein the extraction and classification mod-
ules are pipelined, and individually trained with
supervision; (ii) the Information Bottleneck ap-
proach (Paranjape et al., 2020) which extracts sen-
tences from the input such that they have maxi-
mal mutual information (MI) with the output label,
and minimal MI with the original input;* (iii) the
FRESH approach (Jain et al., 2020), which extracts
the top-k tokens with the highest attention scores
(value of k is set to match the fraction of evidence
tokens in the development set);®> and (iv) Super-
vised attention, where attention is supervised to be
uniformly high for tokens marked as evidence, and
low otherwise (Zhong et al., 2019).

Setup  We evaluate the different evidence ex-
traction approaches on two text classification tasks:
analyzing sentiment of movie reviews (Pang et al.,
2002), and detecting propaganda techniques in
news articles (Da San Martino et al., 2019). For the
sentiment analysis task, we use the IMDb movie
reviews dataset collected by Maas et al. (2011)
comprising 25K movie reviews available for train-
ing, and 25K for development and testing. The
dataset has disjoint sets of movies for training and
testing. Additionally, we use 1.8K movie reviews
with marked evidence spans collected by Zaidan
et al. (2007). Of these 1.8K spans, we use 1.2K for

“There exist trivial solutions to the Information Bottle-
neck objective when subset granularity is tokens instead of
sentences. One such solution is when the extraction model
extracts “.” for the positive class, a “,” for the negative class.

>Interestingly, Jain et al. (2020) find this simple thresh-
olding approach to be better than other end-to-end ap-
proaches (Bastings et al., 2019; Lei et al., 2016)

training, and 300 each for development and test-
ing. Note that here less than 5% of all the movie
reviews are annotated for evidence, and the reviews
are consistently long (with more than 600 words on
an average), thus necessitating evidence to quickly
verify the predictions.

For the task of propaganda detection in news
articles, we use the binary sentence-level labels
(propaganda or not), and token-level markings that
support these labels. Similar to the sentiment
dataset, we use token-level evidence markings for
5% of all the sentences. The total number of sen-
tences in train, dev, and test sets are 10.8K, 1.7K,
4K respectively. Sentences without any propaganda
content have no token-level markings.

Results  We evaluate the predictions and their
supporting evidences from different models. We
compute the micro-averaged token-wise F1 score
for the extraction task. From Table 3, we can
clearly see that our approach outperforms other
baseline methods on both the extraction tasks. The
pipeline approach (Lehman et al., 2019) is unable
to leverage a large pool of classification labels. Ad-
ditionally, the pipeline and the Information Bot-
tleneck approaches extract evidence at a sentence
level, whereas the evidence markings are at a to-
ken level, which further explains their low scores.
Further, the top-£ attention baseline achieves a rea-
sonable F1 score of 27.7 on the extraction task
for sentiment analysis task, and 27.4 on the pro-
paganda detection task, without any supervision.
This result corroborates with findings of Jain et al.
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Figure 1: Mean and standard error of extraction scores
with increasing amounts of evidence annotations.

(2020) who find attention scores to be good heuris-
tics for extraction. Supervising attention with la-
beled extractions improves extraction F1 score on
both tasks, which is inline with results in Zhong
et al. (2019).

In our approach, the extraction model benefits
from classification labels because of two factors:
(i) sharing parameters between extraction and clas-
sification; and (ii) conditioning on the predicted ¢
for extraction. These benefits are substantiated by
comparing the extract only (BERT-CRF) approach
with the classify & extract (BERT-CRF) method.
The latter approach leads to improvements of 2.8
and 2.4 points for sentiment analysis and propa-
ganda detection tasks, respectively. Conditioning
on the predicted label improves the extractions by
0.9 points on the sentiment analysis task. For propa-
ganda detection, we don’t see an immediate benefit
because many predicted labels are misclassified.
However, upon using oracle labels, the extraction
performance improves by 3.5 points.

When we lower the number of evidence annota-
tions available during training, we discover (unsur-
prisingly) that the extraction performance degrades
(Figure 1). For sentiment analysis, with less than
100 annotations, supervised attention performs the
best, as no new parameters need to be trained. How-
ever, with over 100 training instances, classify &
extract model outperforms this baseline, and is sig-
nificantly better than the best unsupervised baseline.
For propaganda detection, our approaches perform
the best. As expected, the performance gap be-
tween extract only and classify & extract approach
decreases with increase in available annotations.

5 Conclusion

We present a simple technique to supplement pre-
dictions with evidence by jointly modeling the text
classification and evidence sequence labeling tasks.
We show that conditioning the evidence extraction
on the predicted label, in a classify then extract

framework, leads to improved performance over
baselines with as few as a hundred annotations.
It also allows generating evidence for each label,
which can enable stakeholders to better verify the
correctness of predictions.
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