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Abstract

We cast neural machine translation (NMT)
as a classification task in an autoregressive
setting and analyze the limitations of both
classification and autoregression components.
Classifiers are known to perform better with
balanced class distributions during training.
Since the Zipfian nature of languages causes
imbalanced classes, we explore its effect on
NMT. We analyze the effect of various vocab-
ulary sizes on NMT performance on multiple
languages with many data sizes, and reveal an
explanation for why certain vocabulary sizes
are better than others.1

1 Introduction

Natural language processing (NLP) tasks such as
sentiment analysis (Maas et al., 2011; Zhang et al.,
2015) and spam detection are modeled as classi-
fication tasks, where instances are independently
labeled. Tasks such as part-of-speech tagging (Ze-
man et al., 2017) and named entity recognition
(Tjong Kim Sang and De Meulder, 2003) are ex-
amples of structured classification tasks, where in-
stance classification is decomposed into a sequence
of per-token contextualized labels. We can sim-
ilarly cast neural machine translation (NMT), an
example of a natural language generation (NLG)
task, as a form of structured classification, where
an instance label (a translation) is generated as a
sequence of contextualized labels, here by an au-
toregressor (see Section 2).

Since the parameters of modern machine learn-
ing (ML) classification models are estimated from
training data, whatever biases exist in the training
data will affect model performance. Among those
biases, class imbalance is a topic of our interest.
Class imbalance is said to exist when one or more

1Tools, configurations, system outputs, and analyses are at
https://github.com/thammegowda/005-nmt-imbalance

classes are not of approximately equal frequency
in data. The effect of class imbalance has been
extensively studied in several domains where clas-
sifiers are used (see Section 6.3). With neural net-
works, the imbalanced learning problem is mostly
targeted to computer vision tasks; NLP tasks are
under-explored (Johnson and Khoshgoftaar, 2019).

Word types in natural language models resemble
a Zipfian distribution, i.e. in any natural language
corpus, we observe that a type’s rank is roughly
inversely proportional to its frequency. Thus, a
few types are extremely frequent, while most of
the rest lie on the long tail of infrequency. Zipfian
distributions cause two problems in classifier-based
NLG systems:

1. Unseen Vocabulary: Any hidden data set
may contain types not seen in the finite set
used for training. A sequence drawn from a
Zipfian distribution is likely to have a large
number of rare types, and these are likely to
have not been seen in training.

2. Imbalanced Classes: There are a few ex-
tremely frequent types and many infrequent
types, causing an extreme imbalance. Such an
imbalance, in other domains where classifiers
are used, has been known to cause undesired
biases and severe performance degradation
(Johnson and Khoshgoftaar, 2019).

The use of subwords, that is, decomposition of
word types into pieces, such as the widely used
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
addresses the open-ended vocabulary problem by
ultimately allowing a word to be represented as
a sequence of characters if necessary. BPE has
a single hyperparameter named merge operations

that governs the vocabulary size. The effect of this
hyperparameter is not well understood. In practice,
it is either chosen arbitrarily or via trial-and-error
(Salesky et al., 2018).

https://github.com/thammegowda/005-nmt-imbalance
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Regarding the problem of imbalanced classes,
Steedman (2008) states that “the machine learning
techniques that we rely on are actually very bad at
inducing systems for which the crucial information
is in rare events.” However, to the best of our
knowledge, this problem has not yet been directly
addressed in the NLG setting.

In this work, we attempt to find answers to these
questions: ‘What value of BPE vocabulary size is

best for NMT?’, and more crucially an explanation
for ‘Why that value?’. As we will see, the answers
and explanations for those are an immediate con-
sequence of a broader question, namely ‘What is

the impact of Zipfian imbalance on classifier-based

NLG?’

The contributions of this paper are as follows:
We offer a simplified view of NMT architectures by
re-envisioning them as two high-level components:
a classifier and an autoregressor (Section 2). We
describe some of the desired settings for the clas-
sifier (Section 2.1) and autoregressor (Section 2.2)
components. In Section 2.3, we describe how vo-
cabulary size choice relates to the desired settings
for the two components. Our experimental setup is
described in Section 3, followed by an analysis of
results in Section 4 that offers an explanation with
evidence for why some vocabulary sizes are better
than others. Section 5 uncovers the impact of class
imbalance, particularly frequency based discrimi-
nation on classes.2 Section 6 provides an overview
of related work, and in Section 7 we recommend a
heuristic for choosing the BPE hyperparameter.

2 Classifier based NLG

Machine translation is commonly defined as the
task of transforming sequences from the form
x = x1x2x3...xm to y = y1y2y3...yn, where x
is in source language X and y is in target language
Y . There are many variations of NMT architectures
(Section 6.1), however, all share the common objec-
tive of maximizing

Qn
t=1 P (yt|y<t, x1:m) for pairs

(x1:m, y1:n) sampled from a parallel dataset. NMT
architectures are commonly viewed as encoder-
decoder networks. We instead re-envision the NMT
architecture as two higher level components: an au-
toregressor (R) and a token classifier (C), as shown
in Figure 1.

Autoregressor R, (Box et al., 2015) being the
most complex component of the NMT model,
has many implementations based on various neu-

2In this work, ‘type’ and ‘class’ are used interchangeably.
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Figure 1: The NMT model re-envisioned as a token
classifier with an autoregressive feature extractor.

ral network architectures: recurrent neural net-
works (RNN) such as long short-term memory
(LSTM) and gated recurrent unit (GRU), convo-
lutional neural networks (CNN), and Transformer
(Section 6.1). At time step t, R transforms the
input context y<t, x1:m into hidden state vector
ht = R(y<t, x1:m).

Classifier C is the same across all architectures.
It maps ht to a distribution P (yj |ht)8yj 2 VY ,
where VY is the vocabulary of Y . In machine learn-
ing, input to classifiers such as C is generally de-
scribed as features that are either hand-engineered
or automatically extracted. In our high-level view
of NMT architectures, R is a neural network that
serves as an automatic feature extractor for C.

2.1 Balanced Classes for Token Classifier
Untreated, class imbalance leads to bias based on
class frequencies. Specifically, classification learn-
ing algorithms focus on frequent classes while pay-
ing relatively less importance to infrequent classes.
Frequency-based bias leads to poor recall of infre-
quent classes (Johnson and Khoshgoftaar, 2019).

When a model is used in a domain mismatch

scenario, i.e. where test and training set distribu-
tions do not match, model performance generally
degrades. It is not surprising that frequency-biased
classifiers show particular degradation in domain
mismatch scenarios, as types that were infrequent
in the training distribution and were ignored by the
learning algorithm may appear with high frequency
in the new domain. Koehn and Knowles (2017)
showed empirical evidence of poor generalization
of NMT to out-of-domain datasets.



3957

In other classification tasks, where each instance
is classified independently, methods such as up-
sampling infrequent classes and down-sampling
frequent classes are used. In NMT, since classifica-
tion is done within the context of sequences, it is
possible to accomplish the objective of balancing
by altering sequence lengths. This can be done by
choosing the level of subword segmentation (Sen-
nrich et al., 2016).

Quantification of Zipfian Imbalance: We use
two statistics to quantify the imbalance of a training
distribution:

The first statistic relies on a measure of Diver-
gence (D) from a balanced (uniform) distribution.
We use a simplified version of Earth Mover Dis-
tance, in which the total cost for moving a proba-
bility mass between any two classes is the sum of
the total mass moved. Since any mass moved out

of one class is moved into another, we divide the
total per-class mass moves in half to avoid double
counting. Therefore, the imbalance measure D on
K class distributions where pi is the observed prob-
ability of class i in the training data is computed
as:

D =
1

2

KX

i=1

|pi �
1

K
|; 0  D  1

A lower value of D is the desired setting for C,
since the lower value results from a balanced class
distribution. When classes are balanced, they have
approximately equal frequencies; C is thus less
likely to make errors due to class bias.

The second statistic is Frequency at 95th%
Class Rank (F95%), defined as the least frequency
in the 95th percentile of most frequent classes.
More generally, FP% is a simple way of quanti-
fying the minimum number of training examples
for at least theP th percentile of classes. The bot-
tom (1 � P ) percentile of classes are overlooked
to avoid the noise that is inherent in the real-world
natural-language datasets.

A higher value for F95% is the desired setting
for C, as a higher value indicates the presence of
many training examples per class, and ML methods
are known to perform better when there are many
examples for each class.

2.2 Shorter Sequences for Autoregressor

Every autoregressive model is an approximation;
some may be better than others, but no model is

perfect. The total error accumulated grows in pro-
portion to the length of the sequence. These accu-
mulated errors alter the prediction of subsequent
tokens in the sequence. Even though beam search
attempts to mitigate this, it does not completely
resolve it. These challenges with respect to long
sentences and beam size are examined by Koehn
and Knowles (2017).

We summarize sequence lengths using Mean Se-
quence Length, µ, computed trivially as the arith-
metic mean of the lengths of target language se-
quences after encoding them: µ = 1

N

PN
i=1 |y(i)|

where y(i) is the ith sequence in the training cor-
pus of N sequences. Since shorter sequences have
relatively fewer places where an imperfectly ap-
proximated autoregressor model can make errors,
a smaller µ is a desired setting for R.

2.3 Choosing the Vocabulary Size
Systematically

BPE (Sennrich et al., 2016) is a greedy iterative
algorithm often used to segment a vocabulary into
useful subwords. The algorithm starts with char-
acters as its initial vocabulary. In each iteration,
it greedily selects the most frequent type bigram
in the training corpus, and replaces the sequence
with a newly created compound type. Once the
subword vocabulary is learned, it can be applied
to a corpus by greedily segmenting words with the
longest available subword type. These operations
have an effect on D, F95%, and µ.

Effect of BPE on µ: BPE expands rare words
into two or more subwords, lengthening a sequence
(and raising µ) relative to simple white-space seg-
mentation. BPE merges frequent-character se-
quences into one subword piece, shortening a se-
quence (and lowering µ) relative to character seg-
mentation. Hence, the sequence length of BPE
segmentation lies in between the sequence lengths
obtained by white-space and character-only seg-
mentation methods (Morishita et al., 2018).

Effect of BPE on F95% and D: Whether BPE
is viewed as a merging of frequent subwords into
a relatively less frequent compound, or a splitting
of rare words into relatively frequent subwords,
BPE alters the class distribution by moving the
probability mass of classes. Hence, by altering the
class distribution, BPE also alters both F95% and
D. The BPE hyperparameter controls the amount
of probability mass moved between subwords and
compounds.
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Figure 2 shows the relation between number
of BPE merges (i.e. the BPE hyperparameter),
and both D and µ. When few BPE merge oper-
ations are performed, we observe the lowest value
of D, which is a desired setting for C, but at the
same point µ is large and undesired for R (Sec-
tion 2). When a large number of BPE merges are
performed, the effect is reversed, i.e. we observe
that D is large and unfavorable to C while µ is
small and favorable to R. In the following sections
we describe our experiments and analysis to locate
the optimal number of BPE merges that achieves
the right trade-off for both C and R.
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Figure 2: Effect of BPE merge operations on mean se-
quence length (µ) and class imbalance (D).

3 Experimental Setup

Our NMT experiments use the base Transformer
model (Vaswani et al., 2017) on four different target
languages at various training data sizes, described
in the following subsections.

3.1 Datasets
We use the following four language pairs for our
analysis: English!German, German!English,
English!Hindi, and English!Lithuanian. To ana-
lyze the impact of different training data sizes, we
randomly sub-select smaller training corpora for
English$German and English!Hindi languages.
Statistics regarding the corpora used for validation,
testing, and training are in Table 1. The datasets
for English$German, and English!Lithuanian
are retrieved from the News Translation task
of WMT2019 (Barrault et al., 2019).3 For
English!Hindi, we use the IIT Bombay Hindi-
English parallel corpus v1.5 (Kunchukuttan et al.,

3http://www.statmt.org/wmt19/translation-task.html

2018). English, German, and Lithuanian sentences
are tokenized using SACREMOSES.4 Hindi sen-
tences are tokenized using INDICNLPLIBRARY.5

The training datasets are trivially cleaned: we ex-
clude sentences with length in excess of five times
the length of their parallel counterparts. Since the
vocabulary is a crucial part of this analysis, we
exclude all sentence pairs containing URLs.

3.2 Hyperparameters

Our model is a 6 layer Transformer encoder-
decoder that has 8 attention heads, 512 hidden vec-
tor units, and a feed forward intermediate size of
2048, with GELU activation. We use label smooth-
ing at 0.1, and a dropout rate of 0.1. We use the
Adam optimizer (Kingma and Ba, 2015) with a
controlled learning rate that warms up for 16K
steps followed by the decay rate recommended
for training Transformer models (Popel and Bojar,
2018). To improve performance at different data
sizes we set the mini-batch size to 6K tokens for
the 30K-sentence datasets, 12K tokens for 0.5M-
sentence datasets, and 24K for the remaining larger
datasets (Popel and Bojar, 2018). All models are
trained until no improvement in validation loss is
observed, with a patience of 10 validations, each
done at 1,000 update steps apart. Our model is
implemented using PyTorch and run on NVIDIA
P100 and V100 GPUs. To reduce padding tokens
per batch, mini-batches are made of sentences hav-
ing similar lengths (Vaswani et al., 2017). We trim
longer sequences to a maximum of 512 tokens af-
ter BPE. To decode, we average the last 10 check-
points, and use a beam size of 4 with length penalty
of 0.6, similar to Vaswani et al. (2017).

Since the vocabulary size hyperparameter is the
focus of this analysis, we use a range of vocabulary
sizes that include character vocabulary and BPE
operations that yield vocabulary sizes between 500
and 64K types. A common practice, as seen in
Vaswani et al. (2017)’s setup, is to jointly learn
BPE for both source and target languages, which
facilitates three-way weight sharing between the
encoder’s input, the decoder’s input, and the output
(i.e. classifier’s class) embeddings (Press and Wolf,
2017). However, to facilitate fine-grained analysis
of vocabulary sizes and their effect on class imbal-
ance, our models separately learn source and target
vocabularies; weight sharing between the encoder’s

4https://github.com/alvations/sacremoses
5https://github.com/anoopkunchukuttan/indic nlp library

http://www.statmt.org/wmt19/translation-task.html
https://github.com/alvations/sacremoses
https://github.com/anoopkunchukuttan/indic_nlp_library
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Languages Training Sentences EN Toks XX Toks Validation Test

DE!EN
EN!DE

Europarl v10
WMT13CommonCrawl
NewsCommentary v14

30K 0.8M 0.8M

NewsTest18 NewsTest19
0.5M 12.9M 12.2M

1M 25.7M 24.3M
4.5M 116M 109.8M

EN!HI IITB Training 0.5M 8M 8.6M
IITB Dev IITB Test1.3M 21M 22.5M

EN!LT Europarl v10 0.6M 17M 13.4M NewsDev19 NewsTest19

Table 1: Training, validation, and testing datsets, along with sentence and token counts in training sets. We
generally refer to dataset’s sentence size in this work.

and decoder’s embeddings is thus not possible. For
the target language, however, we share weights be-
tween the decoder’s input and the classifier’s class
embeddings.

4 Results and Analysis
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Figure 3: EN$DE NewsTest2019 BLEU as a function
of vocabulary size at various training set sizes. Only
the large dataset with 4.5M sentences has its best per-
formance at a large vocabulary; all others peak at an 8K
or smaller vocabulary size.

BLEU scores for DE!EN and EN!DE exper-
iments are reported in Figures 3a and 3b respec-
tively. Results from EN!HI, and EN!LT are
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Figure 4: BLEU on EN!HI IITB Test and EN!LT
NewsTest2019 as a function of vocabulary size. These
language pairs observed the best BLEU scores in the
range of 500 to 8K vocabulary size.

combined in Figure 4. All the reported BLEU
scores are obtained using SACREBLEU (Post,
2018).6

We make the following observations: smaller
vocabulary such as characters have not produced
the best BLEU for any of our language pairs or
dataset sizes. A vocabulary of 32K or larger is
unlikely to produce optimal results unless the data
set is large e.g. the 4.5M DE$EN sets. The BLEU
curves as a function of vocabulary sizes have a
shape resembling a hill. The position of the peak of
the hill seems to shift towards a larger vocabulary
when the datasets are large. However, there is a lot
of variance in the position of the peak: one extreme
is at 500 types on 0.5M EN!HI, and the other
extreme is at 64K types in 4.5M DE!EN.

Although Figures 3 and 4 indicate where the op-
timal vocabulary size is for these chosen language
pairs and datasets, the question of why the peak is
where it is remains unanswered. We visualize µ,
D, and F95% in Figure 5 to answer that question,

6BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.6



3960

and report these observations:

1. Small vocabularies have a relatively larger
F95% (favorable to classifier), yet they are sub-
optimal. We reason that this is due to the pres-
ence of a larger µ, which is unfavorable to the
autoregressor.

2. Larger vocabularies such as 32K and beyond
have a smaller µ which favors the autoregres-
sor, yet rarely achieved the best BLEU. We
reason this is due to the presence of a lower
F95% and a higher D being unfavorable to the
classifier. Since the larger datasets have many
training examples for each class, as indicated
by a generally larger F95%, we conclude that
bigger vocabularies tend to yield optimal re-
sults compared to smaller datasets in the same
language.

3. On small (30K) to medium (1.3M) data sizes,
the vocabulary size of 8K seems to find a good
trade-off between µ and D, as well as between
µ and F95%.

There is a simple heuristic to locate the peak:
the near-optimal vocabulary size is where sentence
length µ is small, while F95% is approximately 100
or higher.

BLEU scores are often lower at larger vocabu-
lary sizes—where µ is (favorably) low but D is
(unfavorably) high (Figure 5). This calls for a fur-
ther investigation that is reported in the following
section.

5 Measuring Classifier Bias Due to
Imbalance

In a typical classification setting with imbalanced
classes, the classifier learns an undesired bias based
on frequencies.

A balanced class distribution debiases in this
regard, leading to improvement in the precision
of frequent classes as well as recall of infrequent
classes. However, BLEU focuses only on the preci-

sion of classes; except for adding a global brevity
penalty, it is ignorant of the poor recall of infre-
quent classes.

Therefore, the BLEU scores shown in Figures 3a,
3b and 4 capture only a part of the improvements
and biases. In this section we perform a detailed
analysis of the impact of class balancing by consid-
ering both precision and recall of classes.

We accomplish this in two stages: First, we de-
fine a method to measure the bias of the model

for classes based on their frequencies. Second,
we track the bias in relation to vocabulary size
and class imbalance, and report DE!EN, as it has
many data points.

5.1 Frequency Based Bias
We measure frequency bias using the Pearson cor-
relation coefficient, ⇢, between class rank and class
performance, where for performance measures we
use precision and recall. Classes are ranked based
on descending order of frequencies in the training
data encoded with the same encoding schemes used
for reported NMT experiments. With this setup, the
class with rank 1, say F1, is the one with the high-
est frequency, rank 2 is the next highest, and so on.
More generally, Fk is an index in the class rank list
which has an inverse relation to class frequencies.
We define precision as Pk for class k similar to
the unigram precision in BLEU and extend its defi-
nition to the unigram recall as Rk (See Appendix
A for detail). The Pearson correlation coefficients
between class rank and precision (⇢F,P ), and class
rank and recall (⇢F,R) are reported in Figure 6. In
datasets where D is high, the performance of clas-
sifier correlates with class rank. Such correlations
are undesired for a classifier.

5.2 Analysis of Class Frequency Bias
An ideal classifier is one that does not discrimi-
nate classes based on their frequencies, i.e. one
that exhibits no correlation between ⇢F,P , and⇢F,R.
However, we see in Figure 6 that:

1. ⇢F,P is positive when the dataset has high
D; i.e if the class rank increases (frequency
decreases), precision increases in relation
to it. This indicates that frequent classes
have relatively less precision than infrequent
classes. The bias is strongly positive on
smaller datasets such as 30K DE!EN, which
gradually diminishes if the training data size
is increased or a vocabulary setting is chosen
to reduce D.

2. ⇢F,R is negative, i.e., if the class rank in-
creases, recall decreases in relation to it. This
is an indication that infrequent classes have
relatively lower recall than frequent classes.

Figure 6 shows a trend that frequency based bias
measured by correlation coefficient is lower in set-
tings that have lower D. However, since D is non-
zero, there still exists non-zero correlation between
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Figure 5: Visualization of sequence length (µ) (lower is better), class imbalance (D) (lower is better), frequency of
95th percentile class (F95%) (higher is better; plotted in logarithmic scale), and test set BLEU (higher is better) on
all language pairs and training data sizes. DE$EN of 1M resembles resembles DE$EN of 0.5M and is provided
in Appendix B along with visualizations on validation sets. The vocabulary sizes that achieved highest BLEU are
indicated with dashed vertical lines, and the vocabulary our heuristic selects is indicated by dotted vertical lines.

recall and class rank (⇢F,R), indicating the poorer
recall of low-frequency classes.

6 Related Work

6.1 NMT Architectures
Several variations of NMT models have been pro-
posed and refined: Sutskever et al. (2014) and Cho
et al. (2014b) introduce the RNN-based encoder-
decoder model. Bahdanau et al. (2015) introduce
the attention mechanism and Luong et al. (2015)
propose several variations that became essential
components of many future models. RNN mod-
ules, either LSTM (Hochreiter and Schmidhuber,
1997) or GRU (Cho et al., 2014a), have been pop-

ular choices for composing NMT encoders and
decoders. The encoder uses bidirectional informa-
tion, but the decoder is unidirectional, typically
left-to-right, to facilitate autoregressive generation.
Gehring et al. (2017) use a CNN architecture that
outperforms RNN models. Vaswani et al. (2017)
propose the Transformer, whose main compo-
nents are feed-forward and attention networks.
There are only a few models that perform non-
autoregressive NMT (Libovický and Helcl, 2018;
Gu et al., 2018). These are focused on improv-
ing the speed of inference; generation quality is
currently sub-par compared to autoregressive mod-
els. These non-autoregressive models can also be
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Figure 6: Correlation analysis on DE!EN shows that
NMT models suffer from frequency based class bias,
indicated by non-zero correlation of both precision and
recall with class rank. Reduction in class imbalance
(D), as shown by the horizontal axis, generally reduces
the bias as indicated by the reduction in magnitude of
correlation.

viewed as token classifiers with a different kind of
feature extractor, whose strengths and limitations
are yet to be theoretically understood.

6.2 BPE Subwords
Sennrich et al. (2016) introduce BPE as a simplified
way to solve out-of-vocabulary (OOV) words with-
out having to use a back-off dictionary for OOV
words. They note that BPE improves the translation
of not only the OOV words, but also some rare in-
vocabulary words. The analysis by Morishita et al.
(2018) is different than ours in that they view var-
ious vocabulary sizes as hierarchical features that
are used in addition to a fixed vocabulary. Salesky
et al. (2018) offer an efficient way to search BPE
vocabulary size for NMT. Kudo (2018) use BPE as
a regularization technique by introducing sampling
based randomness to the BPE segmentation. To
the best of our knowledge, no previous work exists
that analyzes BPE’s effect on class imbalance.

6.3 Class Imbalance
The class imbalance problem has been extensively
studied in classical ML (Japkowicz and Stephen,
2002). In the medical domain Mazurowski et al.
(2008) find that classifier performance deteriorates
with even modest imbalance in the training data.
Untreated class imbalance has been known to de-
teriorate the performance of image segmentation.
Sudre et al. (2017) investigate the sensitivity of

various loss functions. Johnson and Khoshgoftaar
(2019) survey imbalance learning and report that
the effort is mostly targeted to computer vision
tasks. Buda et al. (2018) provide a definition and
quantification method for two types of class imbal-
ance: step imbalance and linear imbalance. Since
the imbalance in Zipfian distribution of classes is
neither single-stepped nor linear, we use a diver-
gence based measure to quantify the imbalance.

7 Conclusion

Envisioning NMT as a token classifier with an au-
toregressor helps in analysing its weaknesses. Our
analysis provides an explanation of why text gen-
eration using BPE vocabulary is more effective
compared to word and character vocabularies, and
why certain BPE hyperparameters are better than
others. We show that the number of BPE merges is
not an arbitrary hyperparameter, and that it can be
tuned to address the class imbalance and sequence
length problems. Our recommendation for Trans-
former NMT is to use the largest possible BPE

vocabulary such that at least 95% of classes have

100 or more examples in training. Even though
certain BPE vocabulary sizes indirectly reduce the
class imbalance, they do not completely eliminate
it. The class distributions after applying BPE con-
tain sufficient imbalance for inducing the frequency
based bias, especially affecting the recall of rare
classes. Hence more effort in the future is needed
to directly address the Zipfian imbalance.
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