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Abstract
Multi-hop reasoning approaches over knowl-
edge graphs infer a missing relationship be-
tween entities with a multi-hop rule, which cor-
responds to a chain of relationships. We ex-
tend existing works to consider a generalized
form of multi-hop rules, where each rule is
a set of relation chains. To learn such gen-
eralized rules efficiently, we propose a two-
step approach that first selects a small set of
relation chains as a rule and then evaluates
the confidence of the target relationship by
jointly scoring the selected chains. A game-
theoretical framework is proposed to this end
to simultaneously optimize the rule selection
and prediction steps. Empirical results show
that our multi-chain multi-hop (MCMH) rules
result in superior results compared to the stan-
dard single-chain approaches, justifying both
our formulation of generalized rules and the
effectiveness of the proposed learning frame-
work.

1 Introduction

Knowledge graphs (KGs) represent knowledge of
the world as relationships between entities, i.e.,
triples with the form (subject, predicate, object)
(Bollacker et al., 2008; Suchanek et al., 2007;
Vrandečić and Krötzsch, 2014; Auer et al., 2007;
Carlson et al., 2010). Such knowledge resource
provides clean and structured evidence for many
downstream applications such as question answer-
ing. KGs are usually constructed by human ex-
perts, which is time-consuming and leads to highly
incomplete graphs (Min et al., 2013). Therefore
automatic KG completion (Nickel et al., 2011; Bor-
des et al., 2013; Yang et al., 2014; Chen et al., 2018;
Socher et al., 2013; Lao et al., 2011) is proposed
to infer a missing link of relationship r between a
head entity h and a tail entity t.

Existing KG completion work mainly makes use
of two types of information: 1) co-occurrence of

Figure 1: Examples of reasoning with multiple paths. (a) A
standard multi-hop example. The target can be sufficiently
inferred with one chain. (b) An example that requires a rule as
the conjunction of two chains (the stadium hosts two teams but
only one from NBA). (c) An example where multiple chains
cannot sufficiently infer the target but improves its confidence.

entities and relations and 2) deducible reasoning
paths of tuples. KG embeddings encode entities
and relations, the first type of information, together
into continuous vector space with low-rank ten-
sor approximations (Bordes et al., 2013; Dettmers
et al., 2017; Lin et al., 2015; Neelakantan et al.,
2015; Shi and Weninger, 2017; Trouillon et al.,
2016; Wang et al., 2014; Xie et al., 2016; Yang
et al., 2014).

Ours approach utilizes the second type of infor-
mation, reasoning path of tuples that can be de-
duced to the target tuple (Lao and Cohen, 2010;
Xiong et al., 2017; Das et al., 2016, 2017). Here
a reasoning path starts with the head entity h and
ends with the tail entity t: h r1→ e1

rk→ ek
rN→ t, where

r1 ∧ ... ∧ rN forms a relation chain that infers the
existence of r. Therefore these methods are also re-
ferred as multi-hop reasoning over KGs, which
learns a multi-hop chain as a rule to deduce the
target r. An example of such a chain is given in
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Figure 1a to infer whether an athlete plays in an
location. Multi-hop reasoning approaches can usu-
ally utilize richer evidence and self-justifiable in
terms of reasoning path rules used in the predic-
tions, making the prediction of missing relations
more interpretable.

Despite advantages and success of the multi-hop
reasoning approach (Lin et al., 2018; Xiong et al.,
2017; Das et al., 2017; Shen et al., 2018; Chen
et al., 2018; Zhang et al., 2017), a target relation-
ship may not be perfectly inferred from a single
relation chain. There could exist multiple weak
relation chains that correlate with the target rela-
tion. Figure 1 gives examples of such cases. These
multiple chains could be leveraged in following
ways: (1) the reasoning process naturally relies
on the logic conjunction of multiple chains (Fig-
ure 1b); (2) more commonly, there are instances
for which none of the chains is accurate, but ag-
gregating multiple pieces of evidence improves the
confidence (Figure 1c), as also observed in the
case-based study works (Aamodt and Plaza, 1994;
Das et al., 2020). Inspired by these observations,
we propose the concept of multi-chain multi-hop
rule set. Here, instead of treating each single multi-
hop chain as a rule, we learn rules consisting of a
small set of multi-hop chains. Therefore the infer-
ence of target relationships becomes a joint scoring
of such a set of chains. We treat each set of chains
as one rule and, since different query pairs can fol-
low different rules, together we have a set of rules
to reason each relation.

Learning the generalized multi-hop rule set is
a combinatorial search problem. We address this
challenge with a game-theoretic approach inspired
by (Lei et al., 2016; Carton et al., 2018; Yu et al.,
2019). Our approach consists of two steps: (1)
selecting a generalized multi-hop rule set by em-
ploying a Multi-Layer Perceptron (MLP) over the
candidate chains; (2) reasoning with the general-
ized rule set, which uses another MLP to model the
conditional probability of the target relationship
given the selected relation chains. The nonlinearity
of MLP as reasoner provides the potential to model
the logic conjunction among the selected chains in
the rule set.

We demonstrate the advantage of our method
on KG completion tasks in FB15K-237 and NELL-
995. Our method outperforms existing single-chain
approaches, showing that our defined generalized
rules are necessary for many reasoning tasks.

2 Backgrounds

Problem Formulation We aim to infer missing
relationships between two given entities, such as
athleteAtLocation between Neymar and
Paris, given their other connections in the knowl-
edge graph. Formally, we are given a knowl-
edge graph G, consisting of a set of triplets
O = {(h, r, t)}, where r is a relation edge defined
in G, h is a head entity, and t is the tail entity.
The task is to identify the relation r̂ between a set
of query entity ĥ and t̂. For evaluation, we have
ground truth labels indicating whether each pair
(ĥ, t̂) has the relationship r̂ or not.

For a given query (ĥi, r̂, t̂i), the i-th sample in r̂,
we extract a set of relation chains R = {Rn}Nn=1 =

{(ĥ, r1n, t1n), (t1n, r2n, t2n), · · · (tm−1
n , rmn , t̂)}Nn=1 from the

original KB G. Each chain is a set of connected re-
lations between ĥ and t̂ in G. The proposed multi-
chain multi-hop rule set is a set of rules, each
consisting of multiple relation chains S ⊂ R with
size d = |S|. In the experiments, we represent
each relation chain Rn with only relation names.
Our task is to find such S for a target relation r̂
over each query pair ĥi and t̂i, and estimate the
confidence P (r̂|S). Note that S andR depend on
query sample (ĥi, r̂, t̂i) but for notation simplicity
we omit i and r̂ from S r̂i andRr̂

i .
Relation Chains Extraction To obtain the set of
candidate relation chains R for a target relation
r̂, we take the following extraction steps. First,
we extract a fixed hop k sub-graph from the orig-
inal KB. Each sub-graph starts with an entity ĥ
with relation r̂, ends with an entity t̂, and satisfies
that (ĥ, r̂, t̂) ∈ G. The sub-graph consists of a list
of m-hop paths connecting the two ends, where
1 ≤ m ≤ k. Each of the m-hop paths has the
form (ĥ, r1, t1), (t1, r2, t2), · · · (tm−1, rm, t̂). We call
r1 → r2 · · · → rm a candidate relation chain R. High
k values can result in an intractable number of
chains while low k values may not have sufficient
coverage. Here we extract chains with length up
to k = 3, and for r̂ with a large number of chains
(|R| ≥ 104), we filter out extracted chains with
a set threshold (proportional to count of relation
chains) in the positive training data for that relation.

3 A Game-Theoretic Approach for
MCMH Rule Learning

A Three-Player Game for Rule Learning Find-
ing a set of chains as the rule is a combinatorial
search problem inR. For example, given an input
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Figure 2: An example workflow of our model, with |Ri| = 4. The generator selects the first two chains as the “critical infor-
mation” for prediction: Si = {LeadTeam→ HomeStadium,LeadTeam→ PlayinCity→ Proxyfor} with comple-
ment Sc

i = {LeadTeam → PlayinLeague → LeagueStadium,LeadTeam → PlaySport → UseStadium}. In
the prediction phase, the predictor Si is encoded as vSi = [0, 0, 1, 1] and estimates probability of athleteHomeStadium
being true as 100%. The complement predictor Sc

i is encoded as vSc
i
= [1, 1, 0, 0] and estimates the probablity as 19%.

of 1,000 chains between a training entity pair, the
selection of a set-rule of 4 chains corresponds to a
search space of 1012. Hence, we propose a game-
theoretic approximation to learn to generate pre-
dictive chains and reduce the learning complexity.
Our method is inspired by the line of rationaliza-
tion works (Carton et al., 2018; Yu et al., 2019).
Specifically, our input is a set of chains Ri ⊂ R
for relation r̂ and each training sample (ĥi, r̂, t̂i).
Our method consists of three submodels: (1) a rule
set generator that selects the set of chains Si as a
rule, (2) a reasoner that predicts the probability of
r̂i based on Si, and (3) a complement predictor that
predicts the probability of r̂ based on Sci = Ri \Si.

During training, the predictor and the comple-
ment predictor aim to minimize the cross-entropy
loss for predicting the existence of r̂. While the gen-
erator is optimized to make the predictor perform
well, while decreasing the complement predictor’s
accuracy. In other words, the generator plays a
cooperative game with the predictor to make the
selected rule set Si be useful for inferring the tar-
get relationship r̂. At the same time it plays an
adversarial game with the complement predictor to
ensure that no critical information is left, i.e., to
ensure the comprehensiveness of the selected Si.
An example of the workflow is given in Figure 2.
Predictors The predictor estimates probability of
r̂ being true conditioned on Si, denoted as p̂(r̂|Si).

The complement predictor estimates probability of
r̂ conditioned on Sci , denoted as p̂c(r̂|Sci ). The two
models are optimized as follows:

Lp = min
p̂
−H(p(r̂|Si); p̂(r̂|Si)),

Lc = min
p̂c
−H(p(r̂|Sc

i ); p̂
c(r̂|Sc

i )),
(1)

where H(p; q) denotes the cross entropy between p
and q, and p(·|·) denotes the empirical distribution.

We encode the inputs Si and Sci as binary vec-
tors vSi and vSc

i
, respectively1, which are both of

dimension |Ri|, with each dimension correspond-
ing to one relation chain in the candidate set Ri.
The j-th component of vSi is set to 1 if and only if
the j-th chain is selected in Si, i.e., Rj ∈ Si, and
similarly for vSc

i
. The input vectors are fed into a

3-layer MLP to predict whether r̂ holds for (ĥi, t̂i).
Generator The generator extracts Si from the
input chain set Ri. This function, denoted as
g : Ri → Si, is optimized with:

min
g(·)
Lp − Lc + λsLs, (2)

where Lp and Lc are the losses of the predictor
and the complement predictor, respectively. Ls is

1Our method could use KG embedding as inputs like pre-
vious works (Xiong et al., 2017; Das et al., 2017). It may
weakens the interpretability of the reasoning model as they
are smoothed representations, but can potentially improve the
performance for cases with smaller training data. We leave
the investigation to future work.
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Dataset #Entity #Relation #Triples #Tasks

FB15K-237 14,505 237 310,116 10
NELL-995 75,492 200 154,213 10

Table 1: Statistics of the Datasets.

a sparsity loss which aims to constrain the number
of chains to be select to a desired size d:

Ls = max{(|Si| − d)/|Ri|, 0}. (3)

Since the generator makes a hard decision for
selection of Si, the losses Lp and Lc are generally
not differentiable. Hence, we utilize the policy gra-
dient (Williams, 1992) reinforcement learning algo-
rithm to optimize the generator. To have bounded
rewards, we use the predictors’ accuracy instead
of the loss values Lp and Lc. The generator is also
modeled with a MLP that is of the same architec-
ture as the predictor. The output is a |Ri|×2 vector
which represents the probabilities that each chain
would be selected into Si and Sci .
Rule selection during inference During inference,
to have a fixed number (d) of selection, for each
instance, we select the top-d chains according to
the probability predicted by the generator.

4 Empirical Evaluation

We evaluate our model with MCMH rules on two
datasets, FB15K-237 (Toutanova et al., 2015) and
NELL-995 (Xiong et al., 2017). We follow the
existing setting of treating each target relation-
ship as a separate task and training and evaluating
relationship-specific reasoning models, and use the
standard data splits (Xiong et al., 2017). Table 1
summarizes statistics of two datasets. For each tar-
get relation in the datasets, we extract candidate
chain setR following Section 2. Table 2 shows the
number of extracted chains for each relation. We
compare with previous works in the same setting,
DeepPath (Xiong et al., 2017) and MINERVA (Das
et al., 2017). They both are single-chain methods,
i.e., they learn a reasoning model to find a single
multi-hop chain for the inference.
Overall results Table 3 shows our method with
double chains and five chains outperforms the
single-chain baseline (d = 1 in our model) by clear
margins on both datasets, demonstrating the ad-
vantage of our generalized rules compared to the
single-chain rules studied in the existing works.
Moreover, our generalized rule learning method,

when setting d = 5, outperforms existing base-
lines on both datasets. For some relations (such as
the teamSports relation), our method performs
worse compared to the previous works. It is likely
because the relation has less training data while
previous works use pre-trained KG embeddings to
alleviate the problem.

Effects of numbers of chains in one rule (d) The
required numbers of chains differ from different
datasets: on NELL-995, using double- relation
chain with d = 2 achieves slightly better perfor-
mance compared to setting d = 5, while on FB15K-
237 there is a clear advantage with d = 5 relation
chains. This observation shows that on FB15K-
237 a relation generally requires more chains as
evidence to improve the confidence of prediction.
Moreover, since a conjunction rule usually does
not span over 5 chains, for many FB15K-237 test
tuples the evidence is not sufficient for making the
decision, therefore adding more chains can enhance
the confidence thus improve results significantly.

Choices of d The average number of chains (i.e.,
the number of chains that connect the specific entity
pair) is 13.8 for NELL-995 and 63.3 for FB15K-
237. Therefore selecting d=5 chains is a significant
portion of the whole input space. Moreover, MAP
of our model using all candidate chains is 0.671
for FB15K-237 and 0.892 for NELL-995, which
are close to that of d=5 (the detail performance for
each relation is shown in Appendix B). From the
above observations, selecting d=5 chains is suffi-
cient for the KB completion task. Also, the logic
conjunction between d=2 chains or among 5 chains
is more likely to be human-interpretable compared
to the selection of large numbers of chains. Figure
3 of Appendix B shows MAP versus the number
of selected chains d for two representative rela-
tions, showing that the performance of our model
converges after d=5.

Effects of MLP versus linear predictors Finally
we study the impact of the two different ways that
our generalized rules contribute to the improved
results, namely modeling logic conjunctions and
enhancing confidence of multiple weak rules, as
discussed in Section 1. To this end, we replace the
MLP predictors with linear models. The rationale
is that the linear model is less effective in captur-
ing conjunctions among inputs, so improvements
from linear models over the single-chain baseline
are more likely due to the enhanced confidence,
rather than finding a conjunctive rule. We denote
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FB15K-237 NELL-995

Relation #Chains #Chains per Sample Relation #Chains #Chains per Sample

teamSports 115 5.1 athletePlaysForTeam 852 20.9
birthPlace 285 62.5 athletePlaysInLeague 568 6.2
filmWrittenBy 153 65.9 athleteHomeStadium 174 5.2
filmDirector 132 37.5 athletePlaysSport 143 3.3
filmLanguage 3,380 82.2 orgHeadquaterCity 2,467 16.2
tvLanguage 1,614 55.2 orgHiredPerson 4,717 20.7
capitalOf 2,634 117.1 bornLocation 974 23.8
orgFounded 3,728 102.9 personLeadsOrg 3,347 20.3
musicianOrigin 6,784 158.2 teamPlaySports 228 6.3
personNationality 365 49.0 worksFor 4,840 21.6

Table 2: Number of chains extracted for each relation. We show both the total number of different chains for each
relation, and the average number of chains that can be extracted per instance.

Relation Single-Chain Ours Ours (-conj) DeepPath MINERVABaseline d=2 d=5 d=2 d=5

N
E

L
L

-9
95

athletePlaysForTeam 0.872 0.940∗ 0.947∗ 0.900 0.897 0.750 0.824
athletePlaysInLeague 0.962 0.977∗ 0.981∗ 0.957 0.975 0.960 0.970
athleteHomeStadium 0.892 0.896 0.895 0.856 0.854 0.890 0.895
athletePlaysSport 0.916 0.978∗ 0.982∗ 0.932 0.978 0.957 0.985
teamPlaySports 0.728 0.769 0.782 0.669 0.771 0.738 0.846
orgHeadquarterCity 0.957 0.932 0.907 0.962 0.903 0.790 0.946
worksFor 0.794 0.842∗ 0.849∗ 0.811 0.842 0.711 0.825
bornLocation 0.823 0.902∗ 0.850∗ 0.874 0.872 0.757 0.793
personLeadsOrg 0.833 0.832 0.813 0.832 0.822 0.795 0.851
orgHiredPerson 0.833 0.825 0.814 0.837 0.855 0.742 0.851
Average 0.861 0.890 0.882 0.863 0.877 0.809 0.879

FB
15

K
-2

37

teamSports 0.740 0.739 0.769∗ 0.758 0.765 0.955 -
birthPlace 0.463 0.505∗ 0.566∗ 0.443 0.512 0.531 -
filmDirector 0.303 0.368 0.411∗ 0.363 0.413 0.441 -
filmWrittenBy 0.498 0.516∗ 0.553∗ 0.507 0.518 0.457 -
filmLanguage 0.632 0.665∗ 0.678∗ 0.667 0.675 0.670 -
tvLanguage 0.975 0.962 0.957 0.957 0.956 0.969 -
capitalOf 0.648 0.795 0.825∗ 0.820 0.786 0.783 -
orgFounded 0.465 0.407 0.490∗ 0.431 0.485 0.309 -
musicianOrigin 0.376 0.408∗ 0.516∗ 0.390 0.476 0.514 -
personNationality 0.713 0.806∗ 0.828∗ 0.703 0.760 0.823 -
Average 0.581 0.617 0.659 0.604 0.635 0.645 -

Table 3: Overall Results (MAP) on NELL-995 and FB15K-237. ∗ highlights the cases where our MLP model
outperforms the baseline with statistical significance (p-value<0.01 in t-test).

this model as Ours (-conj) and show its results in
Table 3. It is observed that the Ours (-conj) model
outperforms the baseline, but is generally not as
good as the MLP model. Hence most of the rela-
tions mainly benefit from the case of confidence
enhancement. However, the results also highlight
a few relations with a notable performance gap,
e.g., athletePlaysForTeam, indicating that
multiple conjunctions are also important to KB
completion tasks.

5 Conclusion

We propose a new approach of multi-chain multi-
hop rule learning for knowledge graph completion
tasks. First, we formalize the concept of multi-

hop rule sets with multiple relation chains from
knowledge graphs. Second, we propose a game-
theoretical learning approach to efficiently select
predictive relation chains for a query relation. Our
formulation and learning method demonstrate ad-
vantages on two benchmark datasets over existing
single-chain based approaches. For future work,
we plan to investigate rules beyond chains, as well
as integrate KG embeddings into our framework.
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