
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3789–3804
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3789

Context Analysis for Pre-trained Masked Language Models

Yi-An Lai Garima Lalwani Yi Zhang
AWS AI HLT

{yianl,glalwani,yizhngn}@amazon.com

Abstract

Pre-trained language models that learn contex-
tualized word representations from a large un-
annotated corpus have become a standard com-
ponent for many state-of-the-art NLP systems.
Despite their successful applications in vari-
ous downstream NLP tasks, the extent of con-
textual impact on the word representation has
not been explored. In this paper, we present
a detailed analysis of contextual impact in
Transformer- and BiLSTM-based masked lan-
guage models. We follow two different ap-
proaches to evaluate the impact of context: a
masking based approach that is architecture
agnostic, and a gradient based approach that
requires back-propagation through networks.
The findings suggest significant differences on
the contextual impact between the two model
architectures. Through further breakdown of
analysis by syntactic categories, we find the
contextual impact in Transformer-based MLM
aligns well with linguistic intuition. We fur-
ther explore the Transformer attention pruning
based on our findings in contextual analysis.

1 Introduction

Pre-trained masked language models (MLM) such
as BERT (Devlin et al., 2019) and ALBERT (Lan
et al., 2019) have set state-of-the-art performance
on a broad range of NLP tasks. The success is often
attributed to their ability to capture complex syntac-
tic and semantic characteristics of word use across
diverse linguistic contexts (Peters et al., 2018). Yet,
how these pre-trained MLMs make use of the con-
text remains largely unanswered.

Recent studies have started to inspect the linguis-
tic knowledge learned by pre-trained LMs such as
word sense (Liu et al., 2019a) , syntactic parse trees
(Hewitt and Manning, 2019), and semantic rela-
tions (Tenney et al., 2019). Others directly analyze
model’s intermediate representations and attention

weights to understand how they work (Kovaleva
et al., 2019; Voita et al., 2019).

While previous works either assume access to
model’s internal states or take advantage of model’s
special structures such as self-attention maps, these
analysis are difficult to generalize as the architec-
tures evolve. In this paper, our work complements
these previous efforts and provides a richer under-
standing of how pre-trained MLMs leverage con-
text without assumptions on architectures. We aim
to answer following questions: (i) How much con-
text is relevant to and used by pre-trained MLMs
when composing representations? (ii) How far
do MLMs look when leveraging context? That
is, what are their effective context window sizes?
We further define a target word’s essential context
as the set of context words whose absence will
make the MLM indiscriminate of its prediction.
We analyze linguistic characteristics of these essen-
tial context words to better understand how MLMs
manage context.

We investigate the contextual impacts in MLMs
via two approaches. First, we propose the context
perturbation analysis methodology that gradually
masks out context words following a predetermined
procedure and measures the change in the target
word probability. For example, we iteratively mask
words that have the least change to the target word
probability until the probability deviates too much
from the start. At this point, the remaining words
are relevant to and used by the MLM to represent
the target word, since further perturbation causes a
notable prediction change. Being model agnostic,
our approach looks into the contextualization in the
MLM task itself, and quantify them only on the
output layer. We refrain from inspecting internal
representations since new architectures might not
have a clear notion of ”layer” with inter-leaving
jump connections such as those in Guo et al. (2019)
and Yao et al. (2020).

3790

The second approach is adapted from Falenska
and Kuhn (2019) and estimates the impact of an
input subword to the target word probability via the
norm of the gradients. We study pre-trained MLMs
based on two different architectures: Transformer
and BiLSTM. The former is essentially BERT and
the latter resembles ELMo (Peters et al., 2018).
Although the scope in this work is limited to the
comparison between two popular architectures, the
same novel methodology can be readily applied to
multilingual models as well as other Transformer-
based models pre-trained with MLM.

From our analysis, when encoding words using
sentence-level inputs, we find that BERT is able
to leverage 75% of context on average in terms
of the sentence length, while BiLSTM has the ef-
fective context size of around 30%. The gap is
compelling for long-range context more than 20
words away, wherein, BERT still has a 65% chance
to leverage the words in comparison to BiLSTM
that only has 10% or less to do so. In addition,
when restricted to a local context window around
the target word, we find that the effective context
window size of BERT is around 78% of the sen-
tence length, whereas BiLSTM has a much smaller
window size of around 50%. With our extensive
study on how different pre-trained MLMs operate
when producing contextualized representations and
what detailed linguistic behaviors can be observed,
we exploited these insights to devise a pilot appli-
cation. We apply attention pruning that restricts
the attention window of BERT based on our find-
ings. Results show that the performance remains
the same with its efficiency improved. Our main
contributions can be briefly summarized as:

• Standardize the pre-training setup (model size,
corpus, objective, etc.) for a fair comparison
between different underlying architectures.

• Novel design of a straight-forward and intu-
itive perturbation-based analysis procedure to
quantify impact of context words.

• Gain insights about how different architec-
tures behave differently when encoding con-
texts, in terms of number of relevant context
words, effective context window sizes, and
more fine-grained break-down with respect to
POS and dependency structures.

• Leverage insights from our analysis to con-
duct a pilot application of attention pruning
on a sequence tagging task.

2 Related Work

Pre-training language models (LM) to learn contex-
tualized word representations from a large amount
of unlabeled text has been shown to benefit down-
stream tasks (Howard and Ruder, 2018; Peters et al.,
2018; Radford et al., 2019). Masked language mod-
eling (MLM) introduced in BERT (Devlin et al.,
2019) has been widely used as the pre-training task
in works including RoBERTa (Liu et al., 2019b),
SpanBERT (Joshi et al., 2020), and ALBERT (Lan
et al., 2019). Many of them employ the Trans-
former architecture (Vaswani et al., 2017) that uses
multi-head self-attention to capture context.

To assess the linguistic knowledge learned by
pre-trained LMs, probing task methodology sug-
gest training supervised models on top of the word
representations (Ettinger et al., 2016; Hupkes et al.,
2018; Belinkov and Glass, 2019; Hewitt and Liang,
2019). Investigated linguistic aspects span across
morphology (Shi et al., 2016; Belinkov et al., 2017;
Liu et al., 2019a), syntax (Tenney et al., 2019; He-
witt and Manning, 2019), and semantics (Conneau
et al., 2018; Liu et al., 2019a).

Another line of research inspects internal states
of pre-trained LMs such as attention weights (Ko-
valeva et al., 2019; Clark et al., 2019) or interme-
diate word representations (Coenen et al., 2019;
Ethayarajh, 2019) to facilitate our understanding
of how pre-trained LMs work. In particular, Voita
et al. (2019) studies the evolution of representa-
tions from the bottom to top layers and finds that,
for MLM, the token identity tends to be recreated
at the top layer. A close work to us is Khandel-
wal et al. (2018), they conduct context analysis on
LSTM language models to learn how much context
is used and how nearby and long-range context is
represented differently.

Our work complements prior efforts by analyz-
ing how models pre-trained by MLM make use
of context and provides insights that different ar-
chitectures can have different patterns to capture
context. Distinct from previous works, we leverage
no specific model architecture nor intermediate rep-
resentations while performing the context analysis.

Another related topic is generic model inter-
pretations including LIME (Ribeiro et al., 2016),
SHAP (Lundberg and Lee, 2017), and Ancona et al.
(2017). Despite the procedural similarity, our work
focuses on analyzing how pre-trained MLMs be-
have when encoding contexts and our methodology
is both model-agnostic and training-free.

3791

Model MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT (Devlin et al., 2019) 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BiLSTM + ELMo 72.9/73.4 65.6 71.7 90.2 35.0 64.0 80.8 50.1 67.1

BERT (ours) 84.6/84.0 71.0 91.5 93.6 55.7 86.2 88.6 67.4 80.3
BiLSTM (ours) 70.9/70.2 63.0 73.7 90.6 30.5 67.6 81.2 54.6 66.9

Table 1: GLUE benchmark test results. BiLSTM+ELMo numbers are cited from (Wang et al., 2018). The compa-
rable performance to previous works validates our pre-training process.

3 Masked Language Modeling

Given a sentence X = (w1, w2, ..., wL) where
each word wi is tokenized into li subwords
(si1, ..., sili), a portion of tokens are randomly
masked with the [MASK] token. MLMs are trained
to recover the original identity of masked tokens
by minimizing the negative log likelihood (NLL).
In practice, BERT (Devlin et al., 2019) randomly
replaces 15% tokens by [MASK] for 80% of the
cases, keep the original token for 10% of the time,
and replace with a random token for the remaining
10% of the cases.

For context analysis, we perform the masking
and predictions at the word level. Given a target
word wt, all its subwords are masked X\t =
(...s(t−1)lt−1

,[MASK], ...,[MASK], s(t+1)1...).
Following Devlin et al. (2019), the conditional
probability of wt can be computed from outputs of
MLMs with the independence assumption between
subwords:

P (wt|X\t) = P (st1 . . . stlt |X\t)

=

lt∏
i=1

P (sti|X\t).
(1)

To investigate how MLMs use context, we pro-
pose procedures to perturb the input sentence from
X\t to X̃\t and monitor the change in the target
word probability P (wt|X\t).

4 Approach

Our goal is to analyze the behaviors of pre-trained
MLMs when leveraging context to recover identity
of the masked target word wt, e.g. to answer ques-
tions such as how many context words are consid-
ered and how large the context window is. To this
end, we apply two analysis approaches. The first
one is based on the masking or perturbation of input
context which is architecture agnostic. The second
gradient-based approach requires back-propagation
through networks.

Our first approach performs context perturba-
tion analysis on pre-trained LMs at inference time
and measures the change in masked target word
probabilities. To answer each question, we start
from X\t and design a procedure Ψ that itera-
tively processes the sentence from last perturbation
X̃k+1
\t = Ψ(X̃k

\t). The patterns of P (wt|X̃k
\t) of-

fer insights to our question. An example of Ψ is to
mask out a context word that causes the least or neg-
ligible change in P (wt|X̃k

\t). It’s worth mentioning
that as pre-trained LMs are often used off-the-shelf
as a general language encoder, we do not further
finetune the model on the analysis dataset but di-
rectly analyze how they make use of context. In
practice, we loop over a sentence word-by-word to
set the word as the target first and use rest of words
as the context for our masking process. Since we
do the context analysis only with model inference,
the whole process is fast - around half day on a
4-GPU machine to process 12k sentences.

Our second approach estimates the impact of an
input subword sij to P (wt|X\t) by using deriva-
tives. Specifically, we adapt the IMPACT score
proposed in Falenska and Kuhn (2019) to our ques-
tions. The score IMPACT(sij , wt) can be computed
with the gradients of the negative log likelihood
(NLL) with respect to the subword embedding:

IMPACT(sij , wt) =
‖∂(logP (wt|X\t))

∂sij
‖∑L

m

∑lm
n ‖

∂−logP (wt|X\t)
∂smn

‖
. (2)

The l2-norm of the gradient is used as the impact
measure and normalized over all the subwords in
a sentence. In practice, we report the impact of a
context word wi by adding up the scores from its
subwords

∑li
j IMPACT(sij , wt).

We investigate two different encoder architec-
tures of pre-trained MLMs. The first one is BERT
that employs 12 Transformer encoder layers, 768
dimension, 3072 feed-forward hidden size, and 110
million parameters. The other uses a standard bi-
directional LSTM (Hochreiter and Schmidhuber,

3792

60 50 40 30 20 10 0 10 20 30 40 50 60
Relative Position

0

20

40

60

80

100
Pr

ob
ab

ilit
y

of
 b

ei
ng

 u
se

d
(%

) BERT on EWT
BERT on GUM
BiLSTM on EWT
BiLSTM on GUM

(a) Masking-based context impacts

60 50 40 30 20 10 0 10 20 30 40 50 60
Relative Position

0

2

4

6

8

10

12

M
ea

n
Im

pa
ct

 (%
)

BERT on EWT
BERT on GUM
BiLSTM on EWT
BiLSTM on GUM

(b) Gradient-based context impacts

Figure 1: Analysis of how much context is used by MLMs. (a) Context words at all relative positions have
significantly higher probabilities to be considered by BERT, compared with BiLSTM. (b) Gradient-based IMPACT
score also shows that BERT considers more distant context than BiLSTM, impact scores are normalized to 100%.

EWT GUM

Sentences 9,673 3,197
Words 195,093 67,585
Mean Length 20.17 21.14
Median Length 17 19
Max Length 159 98

Table 2: Statistics of datasets used for analysis

1997) that has 3 layers, 768 embedding dimension,
1200 hidden size, and around 115 million param-
eters. The BiLSTM model parameters are chosen
so that they resemble ELMo while being close to
BERT in model size. To have a fair comparison, we
pre-train both encoders from scratch on the uncased
Wikipedia-book corpus (wikibook) with the same
pre-training setup as in Devlin et al. (2019). For
BiLSTM, we add a linear layer and a LayerNorm
(Ba et al., 2016) on top, to project outputs into 768
dimension. We validate our pre-trained models by
fine-tuning them on GLUE benchmark (Wang et al.,
2018) in single-task manner and report test perfor-
mance comparable to previous works in Table 1.
Our pre-trained BiLSTM-based MLM also gets
comparable results to ELMo (Peters et al., 2018).

We perform MLM context analysis on two En-
glish datasets from the Universal Dependencies
(UD) project, English Web Treebank (EWT) (Sil-
veira et al., 2014) and Georgetown University Mul-
tilayer corpus (GUM) (Zeldes, 2017). Datasets
from the UD project provide consistent and rich lin-
guistic annotations across diverse genres, enabling
us to gain insights towards the contexts in MLMs.
We use the training set of each dataset for analy-
sis. EWT consists of 9, 673 sentences from web

blogs, emails, reviews, and social media with the
median length being 17 and maximum length be-
ing 159 words. GUM comprises 3, 197 sentences
from Wikipedia, news articles, academic writing,
fictions, and how-to guides with the median length
being 19 and maximum length being 98 words. The
statistics of datasets are summarized in Table 2.

5 How much context is used?

Self-attention is designed to encode information
from any position in a sequence, whereas BiL-
STMs model context through the combination of
long- and short-term memories in both left-to-right
and right-to-left directions. For MLMs, the entire
sequence is provided to produce contextualized rep-
resentations, it is unclear how much context in the
sequence is used by different MLMs.

In this section, we first propose a perturbation
procedure Ψ that iteratively masks out a context
word contributing to the least absolute change of
the target word probability P (wt|X̃k

\t). That is, we
incrementally eliminate words that do not penalize
MLMs predictions one by one, until further mask-
ing cause P (wt|X̃k

\t) to deviate too much from the
original probability P (wt|X\t). At this point, the
remaining unmasked words are considered being
used by the MLM since corrupting any of them
causes a notable change in target word prediction.

In practice, we identify deviations using the
negative log likelihood (NLL) that corresponds
to the loss of MLMs. Assuming NLL has a vari-
ance of ε at the start of masking, we stop the per-
turbation procedure when the increase on NLL
logP (wt|X\t) − logP (wt|X̃k

\t) exceeds 2ε. We
observe that NLLs fluctuate around [−0.1, 0.1] at

3793

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95<100100
Masked context (% of length)

0

2

4

6

8
In

cr
ea

se
 in

 N
LL

BERT on EWT
BERT on GUM
BiLSTM on EWT
BiLSTM on GUM

Figure 2: Context usage analysis for MLMs via elimi-
nation of irrelevant context. BERT uses about 75% of
context while BiLSTM uses around 30%.

the start of masking, hence we terminate our proce-
dure when the NLL increase reaches 0.2. We report
the effective context size in terms of percentage of
length to normalize the length impact. The analysis
process is repeated using each word in a sentence
as the target word for all sentences in the dataset.

For our second approach, we follow equation 2
to calculate the normalized impact of each subword
to the target word and aggregate them for each con-
text word to get IMPACT(wi, wt). We group the IM-
PACT scores by relative position of a word wi to the
target word wt and plot the average. To compare
with our first approach, we also use masking-based
method to analyze that for a word with a specific
relative position, what would be its probability of
being used by a MLM.
BERT uses distant context more than BiLSTM.
After our masking process, a subset of context
words are tagged as ”being used” by the pre-trained
LM. In Figure 1a, we aggregated results in terms
of relative positions (context-word-to-target-word)
for all targets and sentences. ”Probability of being
used %” denotes when a context word appears at
a relative position to target, how likely is it to be
relevant to the pre-trained LM.

Figure 1a shows that context words at all relative
positions have substantially higher probabilities to
be considered by BERT than BiLSTM. And BiL-
STM focuses sharply on local context words, while
BERT leverages words at almost all the positions.
A notable observation is that both models consider
a lot more often, words within distance around
[−10, 10] and BERT has as high as 90% probabil-
ity to use the words just before and after the target
word. Using gradient-based analysis, Figure 1b
shows similar results that BERT considers more
distant context than BiLSTM and local words have

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95<100100
Masked context (% of length)

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

NOUN - BERT
ADJ - BERT
VERB - BERT
DET - BERT
ADP - BERT
NOUN - BiLSTM
ADJ - BiLSTM
VERB - BiLSTM
DET - BiLSTM
ADP - BiLSTM

(a) Masking-based: Different syntactic categories

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95<100100
Masked context (% of length)

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

Short - BERT
Medium - BERT
Long - BERT
Short - BiLSTM
Medium - BiLSTM
Long - BiLSTM

(b) Masking-based: Different length buckets

Figure 3: Context usage analysis for MLMs, instances
bucketed by syntactic categories of target words or in-
put lengths. (a) More context is used to model con-
text words than function words. (b) BERT uses fixed
amounts of context while BiLSTM’s context usage per-
centage varies by input length.

more impact to both models than distant words.
There are notable differences between two anal-

ysis approaches. Since the gradient-based IM-
PACT score is normalized into a distribution across
all positions, it does not show the magnitude of
the context impact on the two different models.
On the other hand, the masking-based analysis
shows that BERT uses words at each position more
than BiLSTM based on absolute probability values.
Another important difference is that the gradient-
based approach is a glass-box method and requires
back-propagation through networks, assuming the
models to be differentiable. On the other hand,
the masking-based approach treats the model as a
black-box and has no differentiability assumption
on models. In the following sections, we will con-
tinue analysis with the masking-based approach.
BERT uses 75% of words in a sentence as con-
text while BiLSTM considers 30%. Figure 2
shows the increase in NLL when gradually mask-
ing out the least relevant words. BERT’s NLL
increases considerably when 25% of context are

3794

masked, suggesting that BERT uses around 75% of
context. For BiLSTM, its NLL goes up remarkably
after 70% of context words are masked, meaning
that it considers around 30% of context. Albeit
having the same capacity, we observe that BERT
uses more than two times of context words into
account than BiLSTM. This could explain the su-
perior fine-tuning performance of BERT on tasks
demanding more context to solve. We observe that
pre-trained MLMs have consistent behaviors across
two datasets that have different genres. For the fol-
lowing analysis, we report results combining EWT
and GUM datasets.
Content words needs more context than func-
tion words. We bucket instances based on the
part-of-speech (POS) annotation of the target word.
Our analysis covers content words including nouns,
verbs and adjectives, and function words includ-
ing adpositions and determiners. Figure 3a shows
that both models use significantly more context
to represent content words than function words,
which is aligned with linguistic intuitions (Boyd-
Graber and Blei, 2009). The findings also show
that MLMs handle content and function words in
a similar manner as regular language models do,
which are previously analyzed by Wang and Cho
(2016); Khandelwal et al. (2018).
BiLSTM context usage percentage varies by
input sentence length, whereas for BERT, it
doesn’t. We categorize sentences with length
shorter than 25 as short, between 25 and 50 as
medium, and more than 50 as long. Figure 3b
shows that BiLSTM uses 35% of context for short
sentences, 20% for medium, and only 10% for long
sentences. On the other hand, BERT leverages
fixed 75% of context words regardless of the sen-
tence length.

6 How far do MLMs look?

In the previous section, we looked at how much
context is relevant to the two MLMs via an elimi-
nation procedure. From Figure 1a and 1b, we also
observe that local context is more impactful than
long-range context for MLMs. In this section, we
investigate this notion of locality of context even
further and try to answer the question of how far
away do MLMs actually look at in practice, i.e.,
what is the effective context window size (cws) of
each MLM.

For context perturbation analysis, we introduce
a locality constraint to the perturbation procedure

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Access to combined context window size on both sides (% of available context)

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

BERT on EWT
BiLSTM on EWT
BERT on GUM
BiLSTM on GUM

Figure 4: Change in NLL as the context window size
around target word (left and right combined) changes

while masking words. We aim to identify how local
versus distant context impacts the target word prob-
ability differently. We start with masking all the
words around the target, i.e., the model only relies
on its priors learned during pre-training (cws∼ 0%
1). We iteratively increase the cws on both sides
until all the surrounding context is available (cws
∼ 100%). Details of the masking procedure can be
found in Appendix. We report the increase in NLL
compared to when the entire context is available
logP (wt|X\t) − logP (wt|X̃k

\t), with respect to
the increasing cws. This process is repeated using
each word as the target word, for all the sentences
in the dataset. We aggregate and visualize the re-
sults similar to section 5 and use the same threshold
(0.2) as before to mark the turning point.

As shown in Figure 4, increasing the cws around
target word reduces the change of NLL until a point
where the gap is closed. The plot clearly highlights
the differences in the behavior of two models -
for BERT, words within cws of 78% impact the
model’s ability to make target word predictions,
whereas, for BiLSTM, only words within cws of
50% affect the target word probability. This shows
that BERT, leveraging entire sequence by self-
attention, looks at a much wider context window
size (effective cws ∼ 78%) in comparison to the
recurrent architecture BiLSTM (effective cws
∼ 50%). Besides, BiLSTM shows a clear notion
of contextual locality that it tends to consider very
local context for target word prediction.

Furthermore, we investigate the symmetricity of
cws on either side by following the same procedure
but now separately on each side of the target word.
We iteratively increase cws either on left side or
right side while keeping the rest of the words un-
masked. More details of the analysis procedure can

1% here denotes the percent of available context w.r.t.
(sentence-length - 1) context words, excluding target word.

3795

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL
NOUN - BERT
NOUN - BiLSTM

(a) Target word belonging to POS - NOUN

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

DET - BERT
DET - BiLSTM

(b) Target word belonging to POS - DET

Figure 5: Symmetricity analysis of context window
size for two target word syntactic categories from short
sentences l ≤ 25 (a) For NOUN as target, BERT looks
at words within the window [-16, 16], while BiLSTM
has the context window [-7, 7]. (b) When target word
is DET, BERT looks at words within the window [-14,
18], while BiLSTM has the context window [-1, 3].

be found in the Appendix. The analysis results are
further bucketed by the POS categories of target
words as well as input sentence lengths, similar to
Section 5, to gain more fine-grained insights. In
Figure 5, we show the symmetricity analysis of
cws for short length sentences and target word with
POS tags - NOUN and DET. The remaining plots
for medium and long length sentences with target
word from other POS tags are shown in Appendix
due to the lack of space.

From Figure 5, both models show similar behav-
iors across different POS tags when leveraging sym-
metric/asymmetric context. The cws attended to on
either side is rather similar when target words are
NOUN, whereas for DET, we observe both mod-
els paying more attention to right context words
than the left. This observation aligns well with
linguistic intuitions for English language. We can
also observe the striking difference between two
models in effective cws, with BERT attending to a
much larger cws than BiLSTM. The difference in

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95<100100
Masked context (% of length)

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

BERT on EWT
BERT on GUM
BiLSTM on EWT
BiLSTM on GUM

Figure 6: Identifying essential context by masking
most important words. 35-40% of context is critical
to BERT while BiLSTM sees about 20% as essential.

the left and right cws for DET appears to be more
pronounced for BiLSTM in comparison to BERT.
We hypothesize that this is due to BiLSTM’s over-
all smaller cws (left + right) which makes it only
attend to the most important words that happen to
be mostly in the right context.

7 What kind of context is essential?

There is often a core set of context words that is
essential to capture the meaning of target word.
For example, “Many people think cotton is the
most comfortable to wear in hot weather.”
Although most context is helpful to understand the
masked word fabric, cotton and wear are essential
as it would be almost impossible to make a guess
without them.

In this section, we define essential context as
words such that when they are absent, MLMs
would have no clue about the target word identity,
i.e., the target word probability becomes close to
masking out the entire sequence P (wt|X̃mask all).
To identify essential context, we design the pertur-
bation Ψ to iteratively mask words bringing largest
drop in P (wt|X̃k

\t) until we reach a point, where
the increase in NLL just exceeds the 100% mask
setting (logP (wt|X\t) − logP (wt|X̃mask all)).
The words masked using above procedure are la-
belled as essential context words. We further ana-
lyze linguistic characteristics of the identified es-
sential context words.
BERT sees 35% of context as essential, whereas
BiLSTM perceives around 20%. Figure 6 shows
that on average, BERT recognizes around 35% of
context as essential when making predictions, i.e.,
when the increase in NLL is on par with mask-
ing all context. On the other hand, BiLSTM sees
only 20% of context as essential. This implies that
BERT would be more robust than the BiLSTM-

3796

Context Distance All targets NOUN ADJ VERB DET ADP

Full-context Linear 9.37 9.33 9.23 8.97 9.47 9.47
BERT-essential Linear 6.25 6.42 5.89 5.87 5.65 6.11
BiLSTM-essential Linear 5.49 6.43 6.03 6.32 4.20 3.77

Full-context Tree 3.63 3.37 3.73 2.83 4.13 4.31
BERT-essential Tree 2.91 2.66 2.88 2.20 3.18 3.46
BiLSTM-essential Tree 2.74 2.66 2.90 2.28 2.74 2.73

Table 3: Mean distances from essential context words to target words. Linear means linear positional distance and
Tree denotes the dependency tree walk distance. Results are bucketed by part-of-speech tags of target words.

who is responsible for [completing] all paperwork for entering a new market ?
PRON AUX ADJ SCONJ VERB

nsubj

cop mark

DET NOUN SCONJ VERB DET ADJ NOUN PUNCT

advcl

det
obj

mark
acl det

amod

obj
punctroot

i love how it really depends on how a really is , he
PRON VERB ADV ADJ

conj

DET NOUN PUNCT

[good] horse your horse not how talented is .
PRON ADV VERB ADP ADV PRON NOUN ADV AUX ADV ADV ADJ PRON AUX PUNCT

nsubj
advmod

advmod
nsubj

ccomp

advmod
mark

advcl

det
obl:npmod

nmod:poss

nsubj
advmod

cop
punct

advmod
advmod

nsubj
cop

root

punct

the service is great and during weekends it to but the [wait]
DET VERBAUX NOUNNOUN PUNCT

tends get busy , is worthwhile .
PARTADP ADJPRONNOUN DET AUX ADJ PUNCTADJ CCONJ VERB CCONJ

det
nsubj

cop nsubj
obl

case

cc
conj

aux
mark

xcomp

det cop
nsubj

cc
punct

conj
punct

root

Figure 7: Essential context identified by BERT along with POS tags and dependency trees. Words in brackets are
targets. Words underlined are essential.

based encoder in the presence of noisy input, a
finding also supported by Yin et al. (2020); Jin et al.
(2019), as it will be harder to confuse the model
completely given larger size of essential context
words set in comparison to BiLSTM.

Essential words are close to target words in
both linear position and on dependency tree.
Table 3 calculates the mean distances from
identified essential words to the target words
on combined EWT and GUM datasets. Both
the models tend to identify words much closer
to the target as essential, whether we consider
linear positional distance or node distance in
dependency trees. We use annotated dependency
relations to extract the traversal paths from each
essential word to the target word in dependency
tree. We find that the top 10 most frequent
dependency paths often correspond with the
common syntactic structures in natural language.
For example, when target words are NOUN,
the top 3 paths are DET(up:det)⇒NOUN,
ADP(up:case)⇒NOUN, ADJ(up:amod)⇒
NOUN for both models. Further, we also look at
the dependency paths of essential words which
are unique to each model. The comparison shows

that words of common dependency paths are
sometimes identified as essential by BERT but
not by BiLSTM and vice versa. This suggests
that there is room to improve MLMs by making
them consistently more aware of input’s syntactic
structures, possibly by incorporating dependency
relations into pre-training. The full lists of top
dependency paths are presented in the Appendix.

Figure 7 shows examples of essential words from
BERT with POS tags and dependency relations.
Words in square brackets are target words and the
underlined words are essential words. We observe
that words close to the target in the sentence as well
as in the dependency tree are often seen as essential.
We can also see that BERT often includes the root
of the dependency tree as an essential word.

8 Application: Attention Pruning for
Transformer

As a pilot application, we leverage insights from
analysis in previous sections to perform attention
pruning for Transformer. Transformer has achieved
impressive results in NLP and has been used for
long sequences with more than 10 thousand tokens
(Liu et al., 2018). Self-attention for a sequence of

3797

Model Dev F1 Test F1

BERT - Full 94.9(0.2) 90.8(0.1)
BERT - Dynamic Pruning 94.7(0.2) 90.6(0.2)
BERT - Static Pruning 94.5(0.2) 90.3(0.1)

Table 4: CoNLL-2003 Named Entity Recognition re-
sults (5 seeds). The attention pruning based on our find-
ings gives comparable results to the original BERT.

length L is of O(L2) complexity in computation
and memory. Many works attempt to improve the
efficiency of self-attention by restricting the num-
ber of tokens that each input query can attend to
(Child et al., 2019; Kitaev et al., 2020).

Our analysis in Section 6 shows that BERT has
effective cws of around 78%. We perform a dy-
namic attention pruning by making self-attention
neglect the furthest 22% of tokens. Due to the
O(L2) complexity, this could save around 39% of
computation in self-attention. We apply this lo-
cality constraint to self-attention when fine-tuning
BERT on a downstream task. Specifically, we
use the CoNLL-2003 Named Entity Recognition
(NER) dataset (Sang and Meulder, 2003) with 200k
words for training. We fine-tune BERT for NER
in the same way as in Devlin et al. (2019). We
also explore a static attention pruning that restricts
the attention span to be within [−5,+5]2. Results
in Table 4 show that BERT with attention prun-
ing has comparable performance to the original
BERT, implying successful application of our anal-
ysis findings. Note that we use an uncased vocab-
ulary, which could explain the gap compared to
Devlin et al. (2019).

9 Conclusion

In our context analysis, we have shown that BERT
has an effective context size of around 75% of input
length, while BiLSTM has about 30%. The differ-
ence in context usage is striking for long-range con-
text beyond 20 words. Our extensive analysis of
context window size demonstrate that BERT uses
much larger context window size than BiLSTM.
Besides, both models often identify words with
common syntactic structures as essential context.
These findings not only help to better understand
contextual impact in masked language models, but
also encourage model improvements in efficiency
and effectiveness in future works. On top of that,
diving deep into the connection between our con-

2 With average training set sentence length of 14, this span
equates to cws of 78%.

text analysis and a model’s robustness to noisy texts
is also an interesting topic to explore.

Acknowledgments

The authors would like to acknowledge the entire
AWS Lex Science team for thoughtful discussions,
honest feedback, and full support. We are also very
grateful to the reviewers for insightful comments
and helpful suggestions.

References
Marco Ancona, Enea Ceolini, Cengiz Öztireli, and

Markus Gross. 2017. Towards better understanding
of gradient-based attribution methods for deep neu-
ral networks. arXiv preprint arXiv:1711.06104.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Yonatan Belinkov, Lluı́s Màrquez i Villodre, Hassan
Sajjad, Nadir Durrani, Fahim Dalvi, and James R.
Glass. 2017. Evaluating layers of representation in
neural machine translation on part-of-speech and se-
mantic tagging tasks. In IJCNLP.

Jordan L Boyd-Graber and David M Blei. 2009. Syn-
tactic topic models. In Advances in neural informa-
tion processing systems, pages 185–192.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. ArXiv, abs/1904.10509.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert
look at? an analysis of bert’s attention. ArXiv,
abs/1906.04341.

Andy Coenen, Emily Reif, Ann Yuan, Been Kim,
Adam Pearce, Fernanda B. Viégas, and Martin Wat-
tenberg. 2019. Visualizing and measuring the geom-
etry of bert. In NeurIPS.

Alexis Conneau, Germán Kruszewski, Guillaume Lam-
ple, Loı̈c Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. ArXiv, abs/1810.04805.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of bert, elmo, and gpt-2 embeddings. ArXiv,
abs/1909.00512.

3798

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In RepE-
val@ACL.

Agnieszka Falenska and Jonas Kuhn. 2019. The (non-
)utility of structural features in bilstm-based depen-
dency parsers. In ACL.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-
tics, 7:297–312.

John Hewitt and Percy Liang. 2019. Designing
and interpreting probes with control tasks. In
EMNLP/IJCNLP.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In NAACL-HLT.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and’diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. arXiv: Computation and Language.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How neu-
ral language models use context. In ACL.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. ArXiv,
abs/2001.04451.

Olga V. Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In EMNLP/IJCNLP.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. ArXiv, abs/1903.08855.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summariz-
ing long sequences. ArXiv, abs/1801.10198.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Scott M Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in neural information processing systems,
pages 4765–4774.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. ArXiv, abs/1802.05365.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ” why should i trust you?” explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition.
ArXiv, cs.CL/0306050.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In
EMNLP.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019. What do you
learn from context? probing for sentence struc-
ture in contextualized word representations. ArXiv,
abs/1905.06316.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

3799

you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In EMNLP/IJCNLP.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Tian Wang and Kyunghyun Cho. 2016. Larger-context
language modelling with recurrent neural network.
In ACL.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7145–7154.

Fan Yin, Quanyu Long, Tao Meng, and Kai-Wei
Chang. 2020. On the robustness of language en-
coders against grammatical errors. arXiv preprint
arXiv:2005.05683.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x

3800

A Appendix

B Context Window Size Analysis

B.1 Masking Strategies for Context Window
Size Analysis

As mentioned in Section 6, for analyzing how far
masked LMs look at within the available context,
we follow a masking strategy with locality con-
straints applied. The masking strategy is as follows
- we start from no context available, i.e., all the
context words masked and iteratively increase the
available context window size (cws) on both sides
simultaneously, till the entire context is available.
This procedure is also depicted in Figure 8. For
symmetricity analysis of cws, we follow similar
process as above but considering each side of the
target word separately. Hence, when considering
context words to the left, we iteratively increase the
cws on the left of target word, keeping the rest of
the context words on the right unmasked as shown
in Figure 9.

Iteration 1 [MASK] [MASK] [MASK] potent [MASK] [MASK]
Target Word

[MASK]

Sentence It is a very potent psychological weapon

Iteration 2 [MASK] [MASK] [MASK] potent psychological [MASK]
Target Word

very

Iteration 3 [MASK] [MASK] a potent psychological weapon
Target Word

very

Iteration 4 [MASK] is a potent psychological weapon
Target Word

very

Iteration 5 It is a potent psychological weapon
Target Word

very

Figure 8: Masking strategy for context window size
analysis

B.2 Additional Plots for Symmetricity
Analysis of Context Window Size

In Figure 10, we show various plots investigating
how context around the target word impact’s model
performance as we look at left and right context
separately. Figures 10a, 10d, 10g, 10j, 10m show
left and right cws for sentences belonging to short
length category (l ≤ 25). The trends show that,
where NOUN, ADJ, VERB leverage somewhat
symmetric context windows, DET and ADP show
asymmetric behavior relying more heavily on right
context words for both the models - BERT and
BiLSTM. Similar observations can be made for
sentences belonging to medium length bucket (l >
25 and l ≤ 50) with ADP being an exception
where BiLSTM shows more symmetric context
different than BERT, as shown in Figures 10b, 10e,
10h, 10k, 10n. However, for sentences belonging to

Iteration 1 [MASK] [MASK] [MASK] potent
Target Word

[MASK]

Sentence It is a very potent psychological weapon

Iteration 2 [MASK] [MASK] [MASK] potent
Target Word

very

Iteration 3 [MASK] [MASK] a potent psychological weapon
Target Word

very

Iteration 4 [MASK] is a potent psychological weapon
Target Word

very

Iteration 5 It is a potent psychological weapon
Target Word

very

psychological weapon

psychological weapon

Figure 9: Masking strategy for symmetricity analysis
of cws on the left

long length bucket (l > 50), left and right context
window sizes are leveraged quite differently.

We can also see that BiLSTM leverages almost
similar number of context words as we moved on to
buckets of longer sentence lengths in comparison
to BERT which can leverage more context when
its available. This is aligned with our observation
from Section 5.

C Dependency Paths from Essential
Words to Target Words

Given a target word, BERT or BiLSTM identifies
a subset of context words as essential. Based on
the dependency relations provided in the datasets,
we extract the dependency paths starting from each
essential word to the target words, i.e., the path to
traverse from an essential word to the given target
word in the dependency tree. We summarize the top
10 most frequent dependency paths recognized by
BERT or BiLSTM given the target words being a
specific part-of-speech category. Table 5, 6, 7, 8, 9
show the results for NOUN, ADJ, VERB, DET, and
ADP, respectively. The up and down denote the di-
rection of traversal, followed by the corresponding
relations in the dependency tree. We can see that
the top dependency paths for BERT and BiLSTM
are largely overlapped with each other. We also
observe that these most frequent dependency paths
are often aligned with common syntactic patterns.
For example, the top 3 paths for NOUN are DET
=(up:det)⇒ NOUN that could be “the” cat,
ADP =(up:case)⇒ NOUN that could be “at”
home, and ADJ =(up:amod)⇒ NOUN which
could be “white” car. This implies that both mod-
els could be aware of the common syntactic struc-
tures in the natural language.

To further compare the behaviors of BERT and
BiLSTM when identifying essential context, we
count the occurrence of dependency paths based on
the disjoint essential words. That is, given an input
sentence, we only count the dependency paths of

3801

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10
In

cr
ea

se
 in

 N
LL

NOUN - BERT
NOUN - BiLSTM

(a) BERT looking at context window size
[-16, 16]; biLSTM looking at context
window size [-7, 7]

50 45 40 35 30 25 20 15 10 5 00 5 10 15 20 25 30 35 40 45
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

NOUN - BERT
NOUN - BiLSTM

(b) BERT looking at context window size
[-29, 32]; biLSTM looking at context
window size [-12, 12]

160 140 120 100 80 60 40 20 00 20 40 60 80 100 120 140 160
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

NOUN - BERT
NOUN - BiLSTM

(c) BERT looking at context window size
[-135, 72]; biLSTM looking at context
window size [-19, 5]

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

ADJ - BERT
ADJ - BiLSTM

(d) BERT looking at context window size
[-15, 16]; biLSTM looking at context
window size [-5, 5]

50 45 40 35 30 25 20 15 10 5 00 5 10 15 20 25 30 35 40 45
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

ADJ - BERT
ADJ - BiLSTM

(e) BERT looking at context window size
[-28, 30]; biLSTM looking at context
window size [-7, 6]

160 140 120 100 80 60 40 20 00 20 40 60 80 100 120 140 160
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

ADJ - BERT
ADJ - BiLSTM

(f) BERT looking at context window size
[-54, 77]; biLSTM looking at context
window size [-6, 4]

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

VERB - BERT
VERB - BiLSTM

(g) BERT looking at context window size
[-14, 16]; biLSTM looking at context
window size [-7, 6]

50 45 40 35 30 25 20 15 10 5 00 5 10 15 20 25 30 35 40 45
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

VERB - BERT
VERB - BiLSTM

(h) BERT looking at context window size
[-28, 30]; biLSTM looking at context
window size [-9, 8]

160 140 120 100 80 60 40 20 00 20 40 60 80 100 120 140 160
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

VERB - BERT
VERB - BiLSTM

(i) BERT looking at context window size
[-102, 148]; biLSTM looking at context
window size [-10, 9]

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

DET - BERT
DET - BiLSTM

(j) BERT looking at context window size
[-14, 18]; biLSTM looking at context
window size [-1, 3]

50 45 40 35 30 25 20 15 10 5 00 5 10 15 20 25 30 35 40 45
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

DET - BERT
DET - BiLSTM

(k) BERT looking at context window size
[-25, 31]; biLSTM looking at context
window size [-1, 2]

160 140 120 100 80 60 40 20 00 20 40 60 80 100 120 140 160
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

DET - BERT
DET - BiLSTM

(l) BERT looking at context window size
[-50, 75]; biLSTM looking at context
window size [-2, 2]

25 20 15 10 5 00 5 10 15 20 25
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

ADP - BERT
ADP - BiLSTM

(m) BERT looking at context window
size [-13, 16]; biLSTM looking at context
window size [-2, 3]

50 45 40 35 30 25 20 15 10 5 00 5 10 15 20 25 30 35 40 45
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

ADP - BERT
ADP - BiLSTM

(n) BERT looking at context window size
[-25, 30]; biLSTM looking at context
window size [-3, 3]

160 140 120 100 80 60 40 20 00 20 40 60 80 100 120 140 160
Access to |x| context window (in #words) on corresponding side

0

2

4

6

8

10

In
cr

ea
se

 in
 N

LL

ADP - BERT
ADP - BiLSTM

(o) BERT looking at context window size
[-99, 113]; biLSTM looking at context
window size [-3, 3]

Figure 10: Symmetricity analysis of context window size for different syntactic categories of target word belonging
to sentences from buckets of different lengths; along the rows, we consider sentences of different lengths for a given
syntactic category: (a) - (c) analysis for NOUN; (d) - (f) analysis for ADJ; (g) - (i) analysis for VERB; (j) - (l)
analysis for DET; (m) - (o) analysis for ADP; along the columns, we consider different syntactic categories for
given bucket ranging from short (first column), medium (second column) to long (third column)

3802

BERT BiLSTM
DET =(up:det)⇒ NOUN DET =(up:det)⇒ NOUN
ADP =(up:case)⇒ NOUN ADP =(up:case)⇒ NOUN
ADJ =(up:amod)⇒ NOUN ADJ =(up:amod)⇒ NOUN
VERB =(down:obj)⇒ NOUN VERB =(down:obj)⇒ NOUN
ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN VERB =(down:obl)⇒ NOUN
NOUN =(down:compound)⇒ NOUN ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN
NOUN =(up:compound)⇒ NOUN NOUN =(up:nmod)⇒ NOUN
NOUN =(up:nmod)⇒ NOUN NOUN =(down:nmod)⇒ NOUN
NOUN =(down:nmod)⇒ NOUN NOUN =(down:compound)⇒ NOUN
VERB =(down:obl)⇒ NOUN NOUN =(up:compound)⇒ NOUN

Table 5: Top 10 most frequent dependency paths when the target words are NOUN.

BERT BiLSTM
NOUN =(down:amod)⇒ ADJ NOUN =(down:amod)⇒ ADJ
DET =(up:det)⇒ NOUN =(down:amod)⇒ ADJ DET =(up:det)⇒ NOUN =(down:amod)⇒ ADJ
ADP =(up:case)⇒ NOUN =(down:amod)⇒ ADJ ADP =(up:case)⇒ NOUN =(down:amod)⇒ ADJ
AUX =(up:cop)⇒ ADJ AUX =(up:cop)⇒ ADJ
VERB =(down:obj)⇒ NOUN =(down:amod)⇒ ADJ ADV =(up:advmod)⇒ ADJ
ADV =(up:advmod)⇒ ADJ VERB =(down:obj)⇒ NOUN =(down:amod)⇒ ADJ
ADJ =(up:amod)⇒ NOUN =(down:amod)⇒ ADJ ADJ =(up:amod)⇒ NOUN =(down:amod)⇒ ADJ
ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:amod)⇒ ADJ PUNCT =(up:punct)⇒ ADJ
PUNCT =(up:punct)⇒ NOUN =(down:amod)⇒ ADJ VERB =(down:obl)⇒ NOUN =(down:amod)⇒ ADJ
PUNCT =(up:punct)⇒ ADJ PUNCT =(up:punct)⇒ NOUN =(down:amod)⇒ ADJ

Table 6: Top 10 most frequent dependency paths when the target words are ADJ.

BERT BiLSTM
PRON =(up:nsubj)⇒ VERB PRON =(up:nsubj)⇒ VERB
NOUN =(up:obj)⇒ VERB NOUN =(up:obj)⇒ VERB
PUNCT =(up:punct)⇒ VERB PUNCT =(up:punct)⇒ VERB
AUX =(up:aux)⇒ VERB AUX =(up:aux)⇒ VERB
ADV =(up:advmod)⇒ VERB ADV =(up:advmod)⇒ VERB
ADP =(up:case)⇒ NOUN =(up:obl)⇒ VERB ADP =(up:case)⇒ NOUN =(up:obl)⇒ VERB
NOUN =(up:obl)⇒ VERB NOUN =(up:obl)⇒ VERB
PART =(up:mark)⇒ VERB PART =(up:mark)⇒ VERB
DET =(up:det)⇒ NOUN =(up:obj)⇒ VERB DET =(up:det)⇒ NOUN =(up:obj)⇒ VERB
SCONJ =(up:mark)⇒ VERB SCONJ =(up:mark)⇒ VERB

Table 7: Top 10 most frequent dependency paths when the target words are VERB.

BERT BiLSTM
NOUN =(down:det)⇒ DET NOUN =(down:det)⇒ DET
ADP =(up:case)⇒ NOUN =(down:det)⇒ DET ADP =(up:case)⇒ NOUN =(down:det)⇒ DET
ADJ =(up:amod)⇒ NOUN =(down:det)⇒ DET ADJ =(up:amod)⇒ NOUN =(down:det)⇒ DET
VERB =(down:obj)⇒ NOUN =(down:det)⇒ DET VERB =(down:obj)⇒ NOUN =(down:det)⇒ DET
ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET
VERB =(down:obl)⇒ NOUN =(down:det)⇒ DET VERB =(down:obl)⇒ NOUN =(down:det)⇒ DET
NOUN =(up:compound)⇒ NOUN =(down:det)⇒ DET NOUN =(down:nmod)⇒ NOUN =(down:det)⇒ DET
PROPN =(down:det)⇒ DET NOUN =(up:compound)⇒ NOUN =(down:det)⇒ DET
NOUN =(down:nmod)⇒ NOUN =(down:det)⇒ DET PROPN =(down:det)⇒ DET
NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET

Table 8: Top 10 most frequent dependency paths when the target words are DET.

BERT BiLSTM
NOUN =(down:case)⇒ ADP NOUN =(down:case)⇒ ADP
DET =(up:det)⇒ NOUN =(down:case)⇒ ADP DET =(up:det)⇒ NOUN =(down:case)⇒ ADP
VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP
NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP
PROPN =(down:case)⇒ ADP PROPN =(down:case)⇒ ADP
ADJ =(up:amod)⇒ NOUN =(down:case)⇒ ADP ADJ =(up:amod)⇒ NOUN =(down:case)⇒ ADP
DET =(up:det)⇒ NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP DET =(up:det)⇒ NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP
PUNCT =(up:punct)⇒ VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP PRON =(up:nmod:poss)⇒ NOUN =(down:case)⇒ ADP
NOUN =(down:nmod)⇒ PROPN =(down:case)⇒ ADP NOUN =(down:nmod)⇒ PROPN =(down:case)⇒ ADP
PRON =(up:nmod:poss)⇒ NOUN =(down:case)⇒ ADP PRON =(down:case)⇒ ADP

Table 9: Top 10 most frequent dependency paths when the target words are ADP.

3803

essential words which are unique to each model,
e.g., words essential to BERT but not essential to
BiLSTM. Our goal is to see for these essential
words unique to a model, whether some special
dependency paths are captured by the model. Ta-
ble 10, 11, 12, 13, 14 show the results for NOUN,
ADJ, VERB, DET, and ADP, respectively. We
observe that around top 5 dependency paths for
essential words unique to BERT or BiLSTM are
mostly overlapping with each other as well as the
results in Table 5, 6, 7, 8, 9. This implies that
sometimes words of common dependency paths
can be identified by BERT as essential while BiL-
STM fails to do so and sometimes it’s another way
around. In other words, there is a room to make
models to be more consistently aware of syntactic
structures of an input. The observation suggests
that explicitly incorporating dependency relations
into pre-training could potentially benefit masked
language models.

3804

BERT BiLSTM
DET =(up:det)⇒ NOUN ADP =(up:case)⇒ NOUN
ADP =(up:case)⇒ NOUN DET =(up:det)⇒ NOUN
ADJ =(up:amod)⇒ NOUN VERB =(down:obl)⇒ NOUN
PUNCT =(up:punct)⇒ NOUN VERB =(down:obj)⇒ NOUN
VERB =(down:obl)⇒ NOUN PUNCT =(up:punct)⇒ NOUN
VERB =(down:obj)⇒ NOUN NOUN =(up:nmod)⇒ NOUN
ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN PUNCT =(up:punct)⇒ VERB =(down:obj)⇒ NOUN
NOUN =(up:nmod)⇒ NOUN NOUN =(down:nmod)⇒ NOUN
NOUN =(down:nmod)⇒ NOUN PUNCT =(up:punct)⇒ VERB =(down:obl)⇒ NOUN
NOUN =(up:compound)⇒ NOUN PRON =(up:nsubj)⇒ VERB =(down:obj)⇒ NOUN

Table 10: Top 10 dependency paths from essential words unique to each model to the target words that are NOUN.

BERT BiLSTM
NOUN =(down:amod)⇒ ADJ NOUN =(down:amod)⇒ ADJ
DET =(up:det)⇒ NOUN =(down:amod)⇒ ADJ PUNCT =(up:punct)⇒ ADJ
ADP =(up:case)⇒ NOUN =(down:amod)⇒ ADJ ADP =(up:case)⇒ NOUN =(down:amod)⇒ ADJ
VERB =(down:obj)⇒ NOUN =(down:amod)⇒ ADJ VERB =(down:obl)⇒ NOUN =(down:amod)⇒ ADJ
PUNCT =(up:punct)⇒ NOUN =(down:amod)⇒ ADJ PUNCT =(up:punct)⇒ NOUN =(down:amod)⇒ ADJ
AUX =(up:cop)⇒ ADJ NOUN =(up:nmod)⇒ NOUN =(down:amod)⇒ ADJ
ADJ =(up:amod)⇒ NOUN =(down:amod)⇒ ADJ DET =(up:det)⇒ NOUN =(down:amod)⇒ ADJ
PUNCT =(up:punct)⇒ ADJ VERB =(down:obj)⇒ NOUN =(down:amod)⇒ ADJ
ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:amod)⇒ ADJ PUNCT =(up:punct)⇒ VERB =(down:obj)⇒ NOUN =(down:amod)⇒ ADJ
VERB =(down:obl)⇒ NOUN =(down:amod)⇒ ADJ PRON =(up:nsubj)⇒ ADJ

Table 11: Top 10 dependency paths from essential words unique to each model to the target words that are ADJ.

BERT BiLSTM
PUNCT =(up:punct)⇒ VERB PUNCT =(up:punct)⇒ VERB
ADP =(up:case)⇒ NOUN =(up:obl)⇒ VERB NOUN =(up:obl)⇒ VERB
NOUN =(up:obj)⇒ VERB NOUN =(up:obj)⇒ VERB
NOUN =(up:obl)⇒ VERB PRON =(up:nsubj)⇒ VERB
DET =(up:det)⇒ NOUN =(up:obj)⇒ VERB DET =(up:det)⇒ NOUN =(up:obl)⇒ VERB
PRON =(up:nsubj)⇒ VERB VERB =(up:advcl)⇒ VERB
ADV =(up:advmod)⇒ VERB ADP =(up:case)⇒ NOUN =(up:obl)⇒ VERB
NOUN =(up:nsubj)⇒ VERB VERB =(down:advcl)⇒ VERB
CCONJ =(up:cc)⇒ VERB VERB =(up:conj)⇒ VERB
SCONJ =(up:mark)⇒ VERB VERB =(down:conj)⇒ VERB

Table 12: Top 10 dependency paths from essential words unique to each model to the target words that are VERB.

BERT BiLSTM
NOUN =(down:det)⇒ DET NOUN =(down:det)⇒ DET
ADP =(up:case)⇒ NOUN =(down:det)⇒ DET VERB =(down:obl)⇒ NOUN =(down:det)⇒ DET
VERB =(down:obj)⇒ NOUN =(down:det)⇒ DET NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET
NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET NOUN =(down:nmod)⇒ NOUN =(down:det)⇒ DET
VERB =(down:obl)⇒ NOUN =(down:det)⇒ DET PUNCT =(up:punct)⇒ VERB =(down:obl)⇒ NOUN =(down:det)⇒ DET
ADJ =(up:amod)⇒ NOUN =(down:det)⇒ DET PUNCT =(up:punct)⇒ NOUN =(down:det)⇒ DET
ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET ADP =(up:case)⇒ NOUN =(down:det)⇒ DET
PRON =(up:nsubj)⇒ VERB =(down:obj)⇒ NOUN =(down:det)⇒ DET ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:det)⇒ DET
NOUN =(up:compound)⇒ NOUN =(down:det)⇒ DET VERB =(down:obj)⇒ NOUN =(down:det)⇒ DET
DET =(up:det)⇒ NOUN =(down:nmod)⇒ NOUN =(down:det)⇒ DET PUNCT =(up:punct)⇒ VERB =(down:obj)⇒ NOUN =(down:det)⇒ DET

Table 13: Top 10 dependency paths from essential words unique to each model to the target words that are DET.

BERT BiLSTM
NOUN =(down:case)⇒ ADP NOUN =(down:case)⇒ ADP
DET =(up:det)⇒ NOUN =(down:case)⇒ ADP VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP
VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP PUNCT =(up:punct)⇒ VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP
ADJ =(up:amod)⇒ NOUN =(down:case)⇒ ADP DET =(up:det)⇒ NOUN =(down:case)⇒ ADP
PUNCT =(up:punct)⇒ VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP ADJ =(up:amod)⇒ NOUN =(down:case)⇒ ADP
PROPN =(down:case)⇒ ADP AUX =(up:aux)⇒ VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP
NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP PROPN =(down:case)⇒ ADP
DET =(up:det)⇒ NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP PRON =(up:nsubj)⇒ VERB =(down:obl)⇒ NOUN =(down:case)⇒ ADP
ADP =(up:case)⇒ NOUN =(down:nmod)⇒ NOUN =(down:case)⇒ ADP NOUN =(up:nmod)⇒ NOUN =(down:case)⇒ ADP
NOUN =(up:compound)⇒ NOUN =(down:case)⇒ ADP ADP =(up:case)⇒ NOUN =(up:nmod)⇒ NOUN =(down:case)⇒ ADP

Table 14: Top 10 dependency paths from essential words unique to each model to the target words that are ADP.

