
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3705–3714
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3705

Global Bootstrapping Neural Network for Entity Set Expansion

Lingyong Yan1,3, Xianpei Han1,2,∗, Ben He3,1, Le Sun1,2

1Chinese Information Processing Laboratory 2State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
{lingyong2014, xianpei}@iscas.ac.cn, benhe@ucas.ac.cn, sunle@iscas.ac.cn

Abstract

Bootstrapping for entity set expansion (ESE)
has been studied for a long period, which ex-
pands new entities using only a few seed en-
tities as supervision. Recent end-to-end boot-
strapping approaches have shown their advan-
tages in information capturing and bootstrap-
ping process modeling. However, due to
the sparse supervision problem, previous end-
to-end methods often only leverage informa-
tion from near neighborhoods (local seman-
tics) rather than those propagated from the
co-occurrence structure of the whole corpus
(global semantics). To address this issue, this
paper proposes Global Bootstrapping Network
(GBN) with the “pre-training and fine-tuning”
strategies for effective learning. Specifically,
it contains a global-sighted encoder to capture
and encode both local and global semantics
into entity embedding, and an attention-guided
decoder to sequentially expand new entities
based on these embeddings. The experimen-
tal results show that the GBN learned by “pre-
training and fine-tuning” strategies achieves
state-of-the-art performance on two bootstrap-
ping datasets.

1 Introduction

Bootstrapping is a classical technique for entity
set expansion (ESE), which starts from several
seed entities of a specific category (e.g., {London,
Beijing, U.S.} for GPE category) and then it-
eratively expands the entity set to cover more en-
tities of the category (e.g., Egypt and Harare).
Most previous ESE studies (Riloff and Jones, 1999;
Curran et al., 2007; Yan et al., 2019) adopt the
pipelined paradigm (see Figure 1a), which itera-
tively: evaluates patterns using seeds, matches and
evaluates entities using patterns, adds top entities
to the seed set. Such a pipelined paradigm makes it
hard to represent the whole bootstrapping process

*Corresponding author.

...

Corpus

Encoder Decoder

Seed Entities

Expansion

Step=1

Expansion

Step=2

Expansion

Step=3(b). end-to-end

(a). pipelined

Pattern

Evaluation

Entity

Evaluation

Entity

Matching
Seed

Entities

evaluated

patterns
entities &

patterns

top evaluated entities

Figure 1: The illustration of the pipelined (a) and the
end-to-end (b) bootstrapping paradigm.

as a single learnable model, and the implementa-
tion of ESE systems are often very ad hoc.

Witnessed the drawbacks of the pipelined boot-
strapping paradigm, recent studies start turning to
the end-to-end paradigm. For instance, Yan et al.
(2020) propose the first end-to-end bootstrapping
neural network for ESE, which uses the encoder-
decoder architecture (see Figure 1b): the encoder
leverages and encodes the co-occurrence relations
between entities and patterns into their embeddings;
the decoder models bootstrapping as a sequential
entity generation process, and the generated enti-
ties are used as expansion results. Compared with
the pipeline paradigm, the end-to-end paradigm
represents the whole bootstrapping process as a
single learnable model and therefore is capable of
leveraging more information and is more flexible.

One of the biggest challenges of end-to-end boot-
strapping is how to learn it effectively since only
very sparse supervision signals (i.e., several seed
entities) are provided. In general, bootstrapping
systems expand entities based on the entity-pattern
duality assumption that “similar entities will share
similar patterns, and similar patterns will match

3706

similar entities”. Based on this assumption, a boot-
strapping network should be able to represent enti-
ties/patterns by leveraging both their near neighbor-
hoods (local semantics) and the information propa-
gated via the entity/pattern co-occurrence structure
in the whole corpus (global semantics). Currently,
using only several seeds as supervision signals, pre-
vious end-to-end bootstrapping models often only
aggregate neighborhood information to represent
entity/patterns, therefore the final representations
of entities/patterns are mostly learned from their
neighborhoods (short-sighted), rather than from
global information (global-sighted). This raises a
big issue because most entities are long-tail (Zipf,
1935), which will only match a limited number of
patterns, and as a result, the local semantics cannot
provide reliable and informative representations for
effective bootstrapping (see Figure 2 for an exam-
ple).

To address the sparse supervision problem, this
paper proposes a new end-to-end bootstrapping
neural network for ESE, called Global Bootstrap-
ping Network (GBN), which can effectively cap-
ture the global information of a corpus via an aug-
mented entity-pattern bipartite graph, and learn to
leverage both the local and the global semantics for
bootstrapping via effective pre-training and fine-
tuning strategies. Our method is motivated by the
recent success of the pre-training and fine-tuning
strategy in addressing the sparse supervision chal-
lenges (Devlin et al., 2019; Hu et al., 2020).

Concretely, the Global Bootstrapping Network
adopts the encoder-decoder architecture. The en-
coder is a global-sighted graph neural network, in
which each layer aggregates rich information not
only between directly linked entities and patterns
but also the entities and patterns multi-hop away
via augmented links. The decoder is an attention-
guided RNN model, which efficiently generates
expansion results based on the global-sighted en-
tity representations. Compared with previous meth-
ods, GBN can also effectively aggregate the global
information rather than only local neighborhood
information, therefore it is more reliable even for
the long-tail entities/patterns with sparse links.

To learn the GBN, we propose several pre-
training and fine-tuning algorithms: 1) In the pre-
training stage, we design both the self-supervised
and the supervised pre-training strategies to learn
the encoder in the GBN, which ensures the learned
representations of entities/patterns will capture

Original Link

Augmented Link

Entity

Pattern

3-hop neighborhood

(local-sighted)

3-hop neighborhood

(global-sighted)

Harare

&

located in *

visit to *

* court

* says

flight from *

trip to *

city of *

* on Sept.

Figure 2: An example of local/global-sighted neigh-
borhood with/without augmented links (we use a long-
tail GPE–“Harare” as the center entity). By adding
an augmented link, “Harare” can easily observe its
global-sighted neighborhood such as the strong GPE
patterns–“visit to *”, “located in *”, etc., and therefore
it can be accurately expanded.

both the local and global semantics. 2) In the fine-
tuning stage, based on the learned representation,
we use a multi-view learning algorithm to fine-tune
GBN to fit a specific bootstrapping task using only
a few seeds.

To summarize, the main contributions are:

1. We propose a new end-to-end bootstrapping
neural network—GBN, to leverage the global-
sighted information and encode the global-
sighted information into entity embeddings.

2. We propose a novel pre-training and fine-
tuning strategy for learning bootstrapping net-
work with only sparse supervision signals. In
pre-training, our method learns entity/pattern
representations by effectively exploiting co-
occurrence information in the corpus, and in
fine-tuning, our method can be easily fitted to
a specific bootstrapping task.

2 Entity-Pattern Bipartite Graph
Construction

This section describes how to construct the entity-
pattern bipartite graph, which captures the global
structure of entity-pattern co-occurrences in the
original ESE corpus. Furthermore, augmented
links are added for long-tail entities/patterns.

Traditionally, entity-pattern duality is mod-
eled as a set of individual 〈entity, pattern〉 en-
tries (Riloff and Jones, 1999; Curran et al.,
2007; Shi et al., 2014), e.g., {〈Harare, * court〉,
〈London, visit to *〉, ...}. However, such a data
model considers different 〈entity, pattern〉 entries

3707

…
Initial

Embedding

Layer

Multi-Layer GBEncoder Global-sighted

Embedding

(a) GBEncoder

GRU

…

Expanded entities at step t

……

GRU

Expanded entities at step t-1

……

Attention Layer

…

Attention Layer

……

Sc,1

t-2
Sc,1

t-2
Sc,2

t-2
Sc,2

t-2
Sc,3

t-2
Sc,3

t-2
Sc,N

t-2
Sc,N

t-2
Sc,1

t-2
Sc,2

t-2
Sc,3

t-2
Sc,N

t-2
Sc,1

t-1
Sc,1

t-1
Sc,2

t-1
Sc,2

t-1
Sc,3

t-1
Sc,3

t-1
Sc,N

t-1
Sc,N

t-1

Similarity Function Similarity Function

Category

Updating

Function

Category

Updating

Function

(b) GBDecoder

Figure 3: The overall architecture of Global Bootstrapping Network.

independently, makes it hard to leverage the global
co-occurrence structure.

To capture both the local and global semantics,
we follow Yan et al. (2020) and use the entity-
pattern bipartite graph. Concretely, the entities
and patterns are represented as graph nodes, and
an entity and a pattern will be linked if the pat-
tern matches the entity in the corpus. Finally, the
entity-pattern bipartite graph is formulated as a tu-
ple G =< V,E, S >, where V is the node set of
entities and patterns, E is the set of edges connect-
ing entities and patterns, S is the set of seed entities
with corresponding labels.

Graph augmentation. In real-world corpus, en-
tities/patterns usually follow the long-tail distribu-
tion, therefore most entities/patterns have only a
few links to others. Such a sparse neighborhood
makes it challenging to effectively leverage both
the local and global semantics (see Figure 2).

To address this issue, we design to add aug-
mented links to the constructed graph. Specifically,
if there exist at least M paths ≤ K hops between
an unlinked entity and pattern pair, we will add an
augmented link between them (see Figure 2). In
this paper, we set M and K both as 2 for efficiency
and effectiveness1.

3 Global Bootstrapping Network

This section describes the Global Bootstrapping
Network (GBN), which adopts the encoder-decoder
architecture (see Figure 3) and contains:

• GBEncoder: a global-sighted GNN encoder,
which takes the augmented bipartite graph as
the input and encodes both local and global
semantics into entity/pattern embeddings.

1Both M and K are set according to the pilot experiments:
M > 2 will produce only a few augmented links, and K > 2
will result in the GPU memory overflow.

• GBDecoder: an attention-guided RNN de-
coder, which iteratively generates new enti-
ties as expansion results based on their global-
sighted embeddings.

3.1 GBEncoder
Given the entity-pattern bipartite graph, the GBEn-
coder embeds entities and patterns by leveraging
both the local and the global semantics. The global-
sighted embeddings can be further leveraged to
perform the global-sighted entity set expansion.

Architecture. To capture both the local and
global semantics, we use a multi-layer graph neu-
ral network, where each layer aggregates informa-
tion from node neighborhood through both original
links and augmented links as:

hli = σ(hl−1i +
∑

j∈N(i)

al−1j hl−1j) (1)

where i represents the i-th node to be updated,N(i)
is the set of nodes linked to the i-th node by both
original and augmented links, hli is the node repre-
sentation after the l-th layer, al−1j is the updating
weight for neighboring node j, σ is a non-linear
mapping function (this paper uses the ReLU).

Attention mechanism. The updating weights
of Eq.1 is critical for finding out related pat-
terns/entities and filtering out noises. To estimate
it accurately, we use the attention mechanism:

aj =
exp(ei,j)∑

k∈N(i) exp(ei,k)

ei,k = g(W ahi,W
b[hk; dk; tk])

(2)

where g(·) is the scaled dot production-based atten-
tion function, W a and W b are learnable parameter
matrices. To calculate the attention score, we use
the following three features:

• Node feature hk: the representation of node k
from the last layer.

3708

• Distance feature dk: a learnable distance em-
bedding. The distance of two nodes equals
to: 1 if they are directly linked; 2 if they are
linked by an augmented link.

• Link type feature tk: a learnable link type
embedding. This paper uses three link types:
before, middle and after2.

Node initialization. This paper initializes en-
tity/pattern representations by their average token
embeddings using pre-trained GloVe tables (Pen-
nington et al., 2014). There are many other choices
for initialization, such as CNN and BERT (Devlin
et al., 2019). Based on the flying experiments, this
paper adopts the average token embeddings for its
simplicity and effectiveness.

Compared to previous end-to-end model (Yan
et al., 2020), the GBEncoder is different in two
aspects: 1). It can leverage more information be-
tween entities by introducing distance information
and link type features; 2). It has a more global-
sighted perceptual field by explicitly modeling aug-
mented links and passing messages through them.

3.2 GBDecoder

Using the global-sighted entity embeddings from
GBEncoder, the GBDecoder sequentially generates
expanded entities using a recurrent neural network.

Specifically, based on the global-sighted embed-
dings, the GBDecoder is a GRU (Cho et al., 2014)-
based model, where the GRU hidden state is used as
the category embedding. The GBDecoder expands
entities in the following bootstrapping schema:

1. At the very beginning, the seed entities are
used to update the category embedding using
the category updating function.

2. The unexpanded entities are evaluated based
on their similarities to the category embedding
calculated by similarity function, and the top
ones are expanded.

3. The expanded entities are added to the seed
set, and the category updating function will
be used to update the category embedding.

4. Go to step 2 unless reaching the end iteration.

Attention-guided category updating function.
To adaptively capture the target category semantics
throughout the bootstrapping process, the GBDe-
coder updates the GRU hidden state (category em-

2before, middle and after are corresponds respectively to
the entity appearing before/within/after the pattern.

bedding) using previous expanded entities at each
step as the follows:

ztc = σ(Wz · stc + Uz · ht−1c)

rtc = σ(Wr · stc + Ur · ht−1c)

h̄tc = σ(W · stc + rtc · U · ht−1c)

htc = ztc � ht−1c + (1− ztc)� h̄tc

(3)

where ht−1c is the hidden state vector of category c
after step t− 1 (h0c is set to all-zero), and stc is the
embedding of the expanded entities of the last step.

To avoid introducing noises when updating the
category embedding, it is crucial to filter out the
noisy expansions from the last step. Therefore, we
use the attention mechanism3 to compute stc:

stc =

N∑
i=1

αt−1
c,i · s

t−1
c,i

αt−1
c,i =

exp(g(ht−1c , st−1c,i))∑
j exp(g(ht−1c , st−1c,i))

(4)

where st−1c,i is the i-th expanded entity embedding
of category c at step i− 1, g(·) is a score function
(this paper uses the scaled dot production). And we
set stc to all-zero if there is no expanded entity.

Similarity function. This paper calculates the
similarity using the cosine similarity:

sim(vi, h
t
c) =

vi
Thtc

||vi||2||htc||2
(5)

where vi is the global-sighted embedding of entity
i. And the top-N unexpanded entities with the
highest similarity scores will be expanded at step t.

4 Learning GBN with Pre-training and
Fine-tuning

In this section, we describe how to learn GBN ef-
fectively using the “pre-training and fine-tuning”
(Devlin et al., 2019). In the pre-training stage, we
adopt both the self-supervised and the supervised
pre-training algorithms to pre-train the GBEncoder;
in the fine-tuning stage, we adopt the multi-view
learning algorithm to fine-tune both the GBEncoder
and the GBDecoder. In this way, the sparse super-
vision problem can be effectively resolved.

4.1 Pre-training Strategies
The pre-training stage mainly aims to pre-train the
GBEncoder to effectively capture both the local

3Yan et al. (2020) use the average embedding of last ex-
panded entities as stc, which can be regarded as a special case
of our method.

3709

and global semantics from entity-pattern graphs.
Specifically, we want the GBEncoder to aggre-

gate related information for all entities and patterns
from their global-sighted neighborhoods while ig-
noring the noises. To this end, the GBEncoder
should be able to effectively leverage as much in-
formation as possible from the dataset and task def-
inition, including the inherent structural informa-
tion within each dataset (self-supervised) and the
labeled entity/pattern information within human-
annotated datasets (supervised).

Self-supervised pre-training. The self-
supervised pre-training strategies are designed to
leverage the structural information included within
the dataset and the task definition without the help
of manually-labeled supervision signals. And we
design the following learning algorithm for self-
supervised pre-training:

• Neighborhood learning. This strategy mainly
learns to discriminate the neighboring nodes
of a certain node and the nodes many hops
away from it. This is because the links be-
tween entities and patterns usually indicate
relevance between them; on the opposite side,
the long path between them usually indi-
cates the irrelevance. Therefore, we want the
learned entity and pattern embeddings more
similar if they are neighbors than if they are
many hops away. To this end, we try to maxi-
mize the following function:

CL(i) =
∑

j∈N(i)

ci,j
ci,j +

∑
k∈N ′(i) ci,k

ci,j = exp(
vTi vj

||vi|| · ||vj ||
)

(6)

where vi is the outputted embedding of node
i, N(i) is the set of directly linked nodes of
node i, N ′(i) is the set of nodes at least n-
hops way from i. In this paper, we set n = 20
following Yan et al. (2020).

• Masked link prediction. This strategy learns
to predict the masked links between entities
and patterns. Specifically, we randomly mask
a fixed ratio r of existing links between enti-
ties and patterns in the bipartite graph; then
we use the GBEncoder to encode the masked
graph; finally, we use the following function
to predict whether the link is masked between
entity i and pattern j:

LP (i, j) = σ(gLP ([ei; pj])) (7)

where ei and pj are corresponding embed-

Algorithm 1 Multi-View Fine-Tuning Algorithm

Require: A bipartite graph G, seed entities (SEs)
1: Construct GBTeacher with the GBEncoder fol-

lowed by an MLP classifier
2: Learn GBTeacher using SEs, and predict entity

labels using the GBTeacher
3: while NOT reach the finish iteration do
4: Learn GBN using predicted entity labels and

expand seeds using GBN
5: Learn GBTeacher using SEs and expanded

entities, and predict entity labels using the
GBTeacher

6: end while

dings of entity i and pattern j outputted by
GBEncoder, gLP (·) is an MLP function. In
this paper, we experimentally set r as 0.1.
For training, we sample one negative link per
masked link.

Supervised pre-training. In addition, some
datasets provide manually-labeled node types,
which can be good supplementary supervision.
And we exploit them using the following algorithm:

• Node label prediction. This strategy mainly
learns to predict the given entity labels in the
supervised datasets. Specifically, we use the
following function to predict the entity labels:

TP (i) = σ(gTP (ei)) (8)

where gTP (·) is another MLP function and
σ(·) is the sigmoid activation function.

Note that, since the GBDecoder needs the seed
entities (supervision signals) to start the bootstrap-
ping process, which cannot be pre-trained unsuper-
visedly. Therefore, this paper does not pre-train but
only fine-tunes it without loss of generality.

4.2 Fine-tuning via Multi-View Learning

After pre-training the GBEncoder, this paper fine-
tunes both the GBEncoder and the GBDecoder us-
ing the multi-view learning algorithm proposed by
Yan et al. (2020) on the bootstrapping dataset.

Specifically, this paper first constructs an aux-
iliary neural network to directly predict the entity
labels, called GBTeacher, which contains a GBEn-
coder followed by an MLP classifier. Then we
iteratively optimize the GBTeacher and GBN as
the following steps (see Alg. 1):

3710

0 200 400 600 800
Throughput

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
isi
on

CoNLL

GBN
BootstrapNet
LTB
Emboot
Gupta
LP

0 400 800 1200 1600 2000
Throughput

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

OntoNotes
GBN
BootstrapNet
LTB
Emboot
LP

Figure 4: The precision-throughput curve on CoNLL and OntoNotes.

• Learning GBTeacher: this step uses the seed
entities plus the labeled entities expanded by
GBN to fit the GBTeacher.

• Learning GBN: this step uses the predicted
entity labels by the optimized GBTeacher to
fit the GBN.

5 Experiments

5.1 Experimental Setup

Datasets: Following Zupon et al. (2019) and
Yan et al. (2020), we use CoNLL and OntoNotes
datasets. CoNLL is constructed from the CoNLL
2003 shared task dataset (Tjong Kim Sang and
De Meulder, 2003), which contains 4 entity types.
OntoNotes is a sparse dataset constructed from the
OntoNotes datasets (Pradhan et al., 2013) but with-
out numerical categories, which contains 11 entity
types. The patterns are n-grams (n ≤ 4).

As for the pre-training datasets, we use Wikigold
(Balasuriya et al., 2009), GUM (Zeldes, 2017) and
half of the DocRED (Yao et al., 2019) for super-
vised pre-training; we use the remaining half of
the DocRED without labels for self-supervised pre-
training4.

Baselines. We use the following baselines:
1). LP5: this is the classical label propagation

method, which propagates the seed labels to other
entities based on the co-occurrence features.

2). Gupta (Gupta and Manning, 2014): this is a
classical bootstrapping system that evaluates pat-
terns and new entities by learning an entity classi-
fier6.

4Due to the limited scalability of implementing GNN, we
split the DocRED into small ones (each contains ≤ 2, 000
documents).

5LP is implemented using the scikit-learn package.
6Because the labels of its builtin NER model mismatch the

labels in the OntoNotes, we don’t run it on the OntoNotes.

3). Emboot (Zupon et al., 2019): this method fol-
lows Gupta and Manning (2014), but learns custom
word embeddings for entities and patterns, which
are used to guide the entity classifier.

4). LTB (Yan et al., 2019): this method performs
the lookahead search to capture more information
for each entity using the MCTS algorithm.

5). BootstrapNet (Yan et al., 2020): this method
uses an end-to-end model to capture informa-
tion from entity/pattern neighborhoods and expand
seeds without attention mechanism. In other words,
this is the short-sighted baseline of our method on
both model and learning algorithms.

Metrics.To evaluate these methods, we fol-
low Zupon et al. (2019) to report the cumulative
precision-throughput curve. And we also report
the P@Iter.K7(the precision after K-th expansion
iterations, K = 1, 10, 20) and the corresponding
MAP (the mean average precision).

Other Settings. Our pre-training strategy is to
first perform the self-supervised pre-training and
then the supervised pre-training on the pre-training
datasets. After that, we fine-tune the GBN on the
bootstrapping datasets.

For all methods, we run them 20 bootstrapping it-
erations and expand 10 entities per iteration. We set
the layer number of the GBEncoder as 3, the learn-
ing rate as 1e-3. We implemented our model using
PyTorch (Paszke et al., 2019) with the PyTorch Ge-
ometric extension (Fey and Lenssen, 2019). And
all models are run on a single Nvidia TiTan RTX8.

7Because we mainly study the precision at different itera-
tions, P@Iter.K is more intuitive.

8Our codes and datasets are available at
https://www.github.com/lingyongyan/
bootstrapping_pre-train.

https://www.github.com/lingyongyan/bootstrapping_pre-train
https://www.github.com/lingyongyan/bootstrapping_pre-train

3711

CoNLL OntoNotes

P@Iter.1 P@Iter.10 P@Iter.20 MAP P@Iter.1 P@Iter.10 P@Iter.20 MAP

GBN 1.000 0.953 0.915 0.956 0.800 0.556 0.477 0.611
GBN−gs 1.000 0.920 0.868 0.929 0.709 0.447 0.381 0.512
GBN−pt 0.825 0.618 0.534 0.659 0.600 0.326 0.285 0.404

Table 1: The ablation study results of GBN. GBN−gs is the model without global-sighted encoder; GBN−pt is the
model not learned by the “pre-training and fine-tuning” strategies.

5.2 Overall Results

Figure 4 shows the overall results on CoNLL and
OntoNotes. From this figure, we can see that:

• GBN significantly outperforms all base-
lines. On both CoNLL and OntoNotes,
the proposed GBN can expand entities with
higher precision compared with the baselines.
Specifically, on the CoNLL, GBN can expand
800 entities with the precision more than 90%,
while the baselines can achieve at most 80%,
the LP method even can not expand more than
300 entities; on the OntoNotes, GBN can also
expand 2200 entities with the precision more
than 47%, while the precisions of most other
baselines are less than 40%, BootstrapNet can
achieve around 45% precision in the end, but
its final expanded entities are less than 2000.

• End-to-end paradigm is promising for
bootstrapping. From the Figure 4, we can
see that both two end-to-end models– GBN
and BootstrapNet can achieve better perfor-
mance than other pipelined methods in two
aspects: compared with the pipelined meth-
ods, both end-to-end models can achieve
significantly higher precision; the precision-
throughput curves decrease more slightly with
the increases of the throughput on CoNLL and
OntoNotes datasets.

5.3 Detailed Analysis

Ablation study of GBN. To detailedly analyze the
contribution of the global-sighted encoding and the
“pre-training and fine-tuning” strategy, we conduct
ablation study on the two datasets (see Table 1),
where GBN−gs replaces the global-sighted encoder
in GBN with a simple graph attention network
(Veličković et al., 2018); GBN−pt denotes a vari-
ant of the GBN model that is not learned by “pre-
training and fine-tuning” strategy but rather by the
multi-view learning algorithm like Yan et al. (2020).

P@Iter.1 P@Iter.10 P@Iter.20 MAP

GBN 1.000 0.953 0.915 0.956
GBN-self 1.000 0.935 0.908 0.948
GBN-sup 0.900 0.728 0.640 0.756
GBN-both 0.825 0.618 0.534 0.659

(a) CoNLL

P@Iter.1 P@Iter.10 P@Iter.20 MAP

GBN 0.800 0.556 0.477 0.611
GBN-self 0.709 0.534 0.450 0.564
GBN-sup 0.636 0.337 0.289 0.421
GBN-both 0.600 0.326 0.285 0.404

(b) OntoNotes

Table 2: The performance of GBN with different pre-
training strategies.

We can see that, without the global-sighted encod-
ing, the final performance may decrease even with
the “pre-training and fine-tuning” strategy. This
indicates that our proposed global-sighted encoder
can effectively capture global-sighted information
than other encoder models. From Table 1, we can
also see that, without using the “pre-training and
fine-tuning” strategy, the performance of GBN de-
creases sharply. This verifies the importance of the
“pre-training and fine-tuning” strategies for boot-
strapping tasks. Furthermore, we found that “pre-
training and fine-tuning” is critical for models with
a large capacity: there is a large performance gap
between GBN−pt and GBN. Therefore we believe
that the capacity of models should be consistent
with its learning algorithms and supervision sig-
nals: an expressive model with a weak learning
algorithm may not result in a strong performance.

Effect of different pre-training strategies. To
further analyze the effect of different pre-training
strategies, we conduct another ablation study by
ablating the self-supervised pre-training strategies
(GBN-self), the supervised pre-training strategy
(GBN-sup) and both of them (GBN-both). The re-
sults are shown in Table 2. We can see that: 1).
Both the self-supervised pre-training strategies and

3712

0 200 400 600 800
Throughput

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
CoNLL

3 layers
2 layers
1 layer

0 400 800 1200 1600 2000
Throughput

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OntoNotes
3 layers
2 layers
1 layer

Figure 5: The performance of GBN with different layer
numbers of GBEncoder.

the supervised pre-training strategy are effective
for GBN’s final performance. 2). Compared to
the supervised pre-training strategy, self-supervised
pre-training strategies obtain less performance im-
provement. This could be explained by the fact
that the pre-training and the bootstrapping datasets
are often with different structures, making it more
difficult to capture structural information via self-
supervised pre-training strategies.

Effect of Encoder layers. To analyze the effect
of layer numbers of GBEncoder, we conduct exper-
iments with different layer numbers (see Figure 5).
From Figure 5, we can see that the performance of
the GBN increases with more layers, which also
indicates that the performance of bootstrapping
methods for ESE can benefit from effectively cap-
turing more global-sighted information, as more
layers we used, more global-sighted information
can be captured.

6 Related Work

Bootstrapping. Bootstrapping is a widely studied
technique in IE (Riloff and Shepherd, 1997; Qadir
et al., 2015; Gupta et al., 2018), as well as word
sense disambiguation (Yoshida et al., 2010), entity
translation (Lee and Hwang, 2013), model learning

(Whitney and Sarkar, 2012), etc.
Currently, bootstrapping methods for ESE can

be categorized into two paradigms: pipelined
paradigm and end-to-end paradigm (Yan et al.,
2020). The pipelined methods (Riloff and Jones,
1999; Collins and Singer, 1999) mainly leverage
direct co-occurrence information, which will easily
lead to the semantic drifting problem (Curran et al.,
2007). To resolve this problem, many pipelined
methods are proposed, e.g., mutual exclusive boot-
strapping (Curran et al., 2007; McIntosh and Cur-
ran, 2008, 2009; Gupta et al., 2018), bootstrapping
using negative seeds (Yangarber et al., 2002; Shi
et al., 2014), lexical and statistical features (Liao
and Grishman, 2010; Gupta and Manning, 2014),
word embeddings (Batista et al., 2015; Gupta and
Manning, 2015; Zupon et al., 2019), active learning
(Berger et al., 2018), lookahead search (Yan et al.,
2019), etc. Recently Yan et al. (2020) propose an
end-to-end bootstrapping model and show its ad-
vantages in information leveraging and flexibility.
Besides, there are some other studies that focus on
the web-based ESE (Tong and Dean, 2008; Carlson
et al., 2010; Chen et al., 2016), which heavily relies
on the base search engine.

Pre-training and fine-tuning. The early pre-
trained models on the ImageNet (Russakovsky
et al., 2015) show its advantages in many CV
tasks (Simonyan and Zisserman, 2014; Johnson
et al., 2016; Huang et al., 2017; He et al., 2017).
In NLP, the pre-training has also been proven its
effectiveness on many tasks, including the early
word vectors such as word2vec or Glove (Mikolov
et al., 2013; Pennington et al., 2014) and recent
language model pre-training such as Elmo (Peters
et al., 2018), BERT (Devlin et al., 2019) and XLNet
(Yang et al., 2020). Recently, Hu et al. (2020) also
show the advantages of graph pre-training, which
directly inspires our work.

7 Conclusions

In this paper, we propose the Global Bootstrap-
ping Network (GBN) and effective “pre-training
and fine-tuning” strategies to learn it. Specifically,
we design global-sighted GBEncoder to capture
both local and global semantics from the corpus
and an effective attention-guided GBDecoder to
adaptively expand new entities. To learn GBN, we
design several pre-training and fine-tuning strate-
gies. Experiments show that the proposed GBN
together with “pre-training and fine-tuning” al-

3713

gorithm significantly outperforms state-of-the-art
methods. For future work, we want to design more
effective “pre-training and fine-tuning” strategies
and apply our model on other bootstrapping tasks.

Acknowledge

This research work is supported by the National
Key Research and Development Program of China
under Grant No.2017YFB1002104, the National
Natural Science Foundation of China under Grants
no. U1936207, Beijing Academy of Artificial
Intelligence (BAAI2019QN0502), and in part
by the Youth Innovation Promotion Association
CAS(2018141).

References

Dominic Balasuriya, Nicky Ringland, Joel Nothman,
Tara Murphy, and James R Curran. 2009. Named
entity recognition in wikipedia. In Proceedings of
the 2009 Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources
(People’s Web), pages 10–18.

David S. Batista, Bruno Martins, and Mário J. Silva.
2015. Semi-supervised bootstrapping of relation-
ship extractors with distributional semantics. In Pro-
ceedings of EMNLP, pages 499–504.

Matthew Berger, Ajay Nagesh, Joshua Levine, Mihai
Surdeanu, and Helen Zhang. 2018. Visual Super-
vision in Bootstrapped Information Extraction. In
Proceedings of EMNLP, pages 2043–2053, Brussels,
Belgium.

Andrew Carlson, Justin Betteridge, Richard C. Wang,
Estevam R. Hruschka, Jr., and Tom M. Mitchell.
2010. Coupled Semi-supervised Learning for Infor-
mation Extraction. In Proceedings of WSDM, pages
101–110, New York, NY, USA.

Zhe Chen, Michael Cafarella, and H. V. Jagadish. 2016.
Long-tail Vocabulary Dictionary Extraction from the
Web. In Proceedings of the Ninth ACM Interna-
tional Conference on Web Search and Data Min-
ing, WSDM ’16, pages 625–634, New York, NY,
USA. ACM. Event-place: San Francisco, Califor-
nia, USA.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Properties
of Neural Machine Translation: Encoder-Decoder
Approaches. arXiv:1409.1259 [cs, stat]. ArXiv:
1409.1259.

Michael Collins and Yoram Singer. 1999. Unsuper-
vised Models for Named Entity Classification. In
EMNLP.

James R. Curran, Tara Murphy, and Bernhard Scholz.
2007. Minimising semantic drift with mutual ex-
clusion bootstrapping. In Proceedings of PACLING,
volume 6, pages 172–180. Citeseer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL-HLT, pages
4171–4186, Minneapolis, Minnesota.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geomet-
ric. arXiv preprint arXiv:1903.02428.

Pankaj Gupta, Benjamin Roth, and Hinrich Schütze.
2018. Joint Bootstrapping Machines for High
Confidence Relation Extraction. In Proceed-
ings of NAACL-HLT, pages 26–36, New Orleans,
Louisiana.

Sonal Gupta and Christopher Manning. 2014. Im-
proved Pattern Learning for Bootstrapped Entity Ex-
traction. In Proceedings of CoNLL, pages 98–108,
Ann Arbor, Michigan.

Sonal Gupta and Christopher D. Manning. 2015. Dis-
tributed Representations of Words to Guide Boot-
strapped Entity Classifiers. In Proceedings of
NAACL-HLT, pages 1215–1220, Denver, Colorado.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. 2017. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 2961–2969.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zit-
nik, Percy Liang, Vijay Pande, and Jure Leskovec.
2020. Strategies for Pre-training Graph Neural
Networks. arXiv:1905.12265 [cs, stat]. ArXiv:
1905.12265.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong
Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer,
Zbigniew Wojna, Yang Song, Sergio Guadarrama,
et al. 2017. Speed/accuracy trade-offs for modern
convolutional object detectors. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 7310–7311.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016.
Perceptual losses for real-time style transfer and
super-resolution. In European conference on com-
puter vision, pages 694–711. Springer.

Taesung Lee and Seung-won Hwang. 2013. Bootstrap-
ping Entity Translation on Weakly Comparable Cor-
pora. In Proceedings of ACL, pages 631–640.

Shasha Liao and Ralph Grishman. 2010. Filtered Rank-
ing for Bootstrapping in Event Extraction. In Pro-
ceedings of COLING, pages 680–688.

Tara McIntosh and James R. Curran. 2008. Weighted
Mutual Exclusion Bootstrapping for Domain Inde-
pendent Lexicon and Template Acquisition. In Pro-
ceedings of ALTA, pages 97–105, Hobart, Australia.

https://doi.org/10.1145/1718487.1718501
https://doi.org/10.1145/1718487.1718501
https://doi.org/10.1145/2835776.2835778
https://doi.org/10.1145/2835776.2835778
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1905.12265

3714

Tara McIntosh and James R. Curran. 2009. Reducing
semantic drift with bagging and distributional sim-
ilarity. volume 1, pages 396–404. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of EMNLP, pages
1532–1543, Doha, Qatar.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards Ro-
bust Linguistic Analysis using OntoNotes. In Pro-
ceedings of CoNLL, pages 143–152, Sofia, Bulgaria.

Ashequl Qadir, Pablo N. Mendes, Daniel Gruhl, and
Neal Lewis. 2015. Semantic Lexicon Induction
from Twitter with Pattern Relatedness and Flexible
Term Length. In Proceedings of AAAI, pages 2432–
2439.

Ellen Riloff and Rosie Jones. 1999. Learning dictio-
naries for information extraction by multi-level boot-
strapping. In Proceedings of AAAI/IAAI, pages 474–
479.

Ellen Riloff and Jessica Shepherd. 1997. A corpus-
based approach for building semantic lexicons.
arXiv preprint cmp-lg/9706013.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision, 115(3):211–252.

Bei Shi, Zhenzhong Zhang, Le Sun, and Xianpei Han.
2014. A probabilistic co-bootstrapping method for
entity set expansion. In Proceedings of COLING,
pages 2280–2290.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the HLT-NAACL, pages 142–147.

Simon Tong and Jeff Dean. 2008. System and meth-
ods for automatically creating lists. US Patent
7,350,187.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. In ICLR.

Max Whitney and Anoop Sarkar. 2012. Bootstrap-
ping via Graph Propagation. In Proceedings of ACL,
pages 620–628.

Lingyong Yan, Xianpei Han, Ben He, and Le Sun.
2020. End-to-end bootstrapping neural network for
entity set expansion. In Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence.

Lingyong Yan, Xianpei Han, Le Sun, and Ben He.
2019. Learning to bootstrap for entity set expansion.
In Proceedings of EMNLP, pages 292–301.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. arXiv:1906.08237 [cs].
ArXiv: 1906.08237.

Roman Yangarber, Winston Lin, and Ralph Grish-
man. 2002. Unsupervised Learning of Generalized
Names. In Proceedings of COLING, pages 1–7.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai
Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang,
Jie Zhou, and Maosong Sun. 2019. DocRED: A
Large-Scale Document-Level Relation Extraction
Dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 764–777, Florence, Italy. Association
for Computational Linguistics. Citation Key Alias:
yao DocREDLargeScaleDocumentLevel 2019.

Minoru Yoshida, Masaki Ikeda, Shingo Ono, Issei Sato,
and Hiroshi Nakagawa. 2010. Person Name Disam-
biguation by Bootstrapping. In Proceedings of SI-
GIR, pages 10–17. ACM.

Amir Zeldes. 2017. The gum corpus: creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

George Zipf. 1935. The psych-biology of language.

Andrew Zupon, Maria Alexeeva, Marco Valenzuela-
Escárcega, Ajay Nagesh, and Mihai Surdeanu. 2019.
Lightly-supervised Representation Learning with
Global Interpretability. In Proceedings of the Third
Workshop on Structured Prediction for NLP, pages
18–28.

https://doi.org/10.3115/1687878.1687935
https://doi.org/10.3115/1687878.1687935
https://doi.org/10.3115/1687878.1687935
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://doi.org/10.3115/1072228.1072382
https://doi.org/10.3115/1072228.1072382
https://www.aclweb.org/anthology/P19-1074
https://www.aclweb.org/anthology/P19-1074
https://www.aclweb.org/anthology/P19-1074
https://doi.org/10.1145/1835449.1835454
https://doi.org/10.1145/1835449.1835454

