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Abstract

We present in this work a method for in-
corporating global context in long documents
when making local decisions in sequence la-
beling problems like NER. Inspired by work
in featurized log-linear models (Chieu and Ng,
2002; Sutton and McCallum, 2004), our model
learns to attend to multiple mentions of the
same word type in generating a representa-
tion for each token in context, extending that
work to learning representations that can be
incorporated into modern neural models. At-
tending to broader context at test time pro-
vides complementary information to pretrain-
ing (Gururangan et al., 2020), yields strong
gains over equivalently parameterized models
lacking such context, and performs best at rec-
ognizing entities with high TF-IDF scores (i.e.,
those that are important within a document).

1 Introduction

Many of the main datasets used in NLP are com-
prised of relatively short documents: English
OntoNotes (Weischedel et al., 2012), for exam-
ple, contains an average of 223 tokens per docu-
ment, the WSJ portion of the Penn Treebank (Mar-
cus et al., 1993) averages 501 tokens, the IMDb
dataset (Maas et al., 2011) averages 272 tokens, and
SQuAD 2.0 (Rajpurkar et al., 2018) contains an av-
erage of 134 tokens per passage. This focus has,
in turn, led to the development of models specifi-
cally optimized for the characteristics of short doc-
uments, including a pervasive focus on the sentence
as the atomic unit of analysis for such tasks as NER
and parsing, and influencing the maximum context

∗Work completed while at UC Berkeley.

length of contextual language models like BERT
(Devlin et al., 2019) to be limited to 512 tokens.

At the same time, however, longer documents
are increasingly the objects of empirical study in ar-
eas as diverse as computational social science and
the digital humanities—including novels (Piper,
2018; Underwood, 2019), scientific articles (Jur-
gens et al., 2018) and political manifestos (Menini
et al., 2017; Denny and Spirling, 2018). These
long documents present not only challenges for
NLP (such as any task, like coreference resolution,
whose computational complexity is superlinear in
the size of the document) but opportunities as well,
since the longer document context presents greater
opportunity for learning better representations.

Recent work in NLP has begun exploring this
link between longer documents and representa-
tion learning. First, while contextualized mod-
els (e.g. Peters et al., 2018; Devlin et al., 2019)
generally consider the context of a few sentences,
several recent advancements have enabled signif-
icantly longer input sequences (e.g. Dai et al.,
2019; Beltagy et al., 2020; Kitaev et al., 2020; Rae
et al., 2019); most, however, are either incapable of
processing book-level documents or prohibitively
resource-intensive for standard use.

Second, domain- and task-adaptive pretraining
has proven especially effective for adapting the
weights of general-purpose language models to the
distribution of a particular domain or task (Gururan-
gan et al., 2020; Han and Eisenstein, 2019; Beltagy
et al., 2019; Lee et al., 2020). While longer docu-
ments are able provide more context for these mod-
els to adapt to, pretraining operates at the broad
level of a domain, and is unable to exploit new con-
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text at evaluation time in unseen test documents.
To highlight the value of considering document con-
text at test time, consider the following sentence
from E.M. Forster’s A Room with a View (1908):

“Mr. Beebe!” said the maid, and the new
rector of Summer Street was shown in;
he had at once started on friendly rela-
tions, owing to Lucy’s praise of him in
her letters from Florence.

From the context of this sentence alone, it is
unclear if Florence refers to “a city in Italy” or
“a person named Florence”; this local contextual
ambiguity might lead an NER system to classify
Florence as either a PERSON or LOCATION.

However, examining the broader document con-
text clarifies this entity type: other mentions of
Florence within the text more clearly indicate that
it refers to the city:

• “I saw him in Florence,” said Lucy...
• As her time at Florence drew to its close...
• ...two carriages stopped, half into Florence...

We might hypothesize, in fact, that a model
that can attend to multiple mentions of a term
like Florence in a document will perform better
at recognizing important entities—those that are
frequently mentioned within it and that may be
infrequently seen outside of it. This fundamental
idea—that multiple mentions of a term can provide
shared information to help disambiguate each one—
originates in featurized log-linear models that incor-
porate global information in making local predic-
tions (Chieu and Ng, 2002; Sutton and McCallum,
2004; Liu et al., 2010); we extend that work here
to the context of learning representations that can
be incorporated into state-of-the-art neural models,
explicitly learning to attend over relevant context
sequences that are available only at test time, pro-
viding a complementary source of information to
domain- and task-adaptive pretraining.

This work makes the following contributions:

1. We present Doc-ARC (Document-Attentive
Representation of Context), an attention-
based method for incorporating document con-
text in sequence labeling tasks, and demon-
strate improvements over equivalently param-
eterized models without document attention.

2. We evaluate Doc-ARC on three datasets con-
taining long documents from different do-
mains (literature, biomedical texts, and news),

and present a new dataset of the full text of
biomedical articles paired with labeled annota-
tions of their abstracts in the GENIA/JNLPBA
dataset (Collier and Kim, 2004).

3. We demonstrate that Doc-ARC outperforms
alternative methods at recognizing important
document entities (defined as those with a
high TF-IDF score), identifying tangible sce-
narios where it would be advantageous to use.

2 Doc-ARC

The core idea behind Doc-ARC is to leverage
nearby representations of the same word when gen-
erating a representation for a given token. Rather
than representing Florence above through a contex-
tual representation scoped only over one sentence,
we represent it through a weighted combination of
that token itself and other instances of Florence
in the document. By attending over multiple in-
stances of the same word, we are able to preserve
the importance of the specific local context of a
token, while also reasoning about its broader use
in the rest of the document. While this model has
application to a wide range of NLP tasks, we focus
on the sequence labeling problem of NER.

2.1 Model Overview
Figure 1 illustrates this model for a sample text
from the JNLPBA corpus. Consider a sequence
x = {x1, . . . , xn} with corresponding labels y =
{y1, . . . , yn}, drawn from a document D. Other
sequences in D may or may not have labels and the
labeled set may or may not be contiguous.

Let e(x) be an encoding of x under some lan-
guage model (e.g. BERT). When predicting a label,
we consider both e(x), the original encoding of the
target sequence, and c(x), an attention-weighted
sum over the encodings of each xi ∈ x as they
appear in the context of D.

Formally, let us define V(xi) to be the word
type (drawn from vocabulary V) for token xi.1 We
define SK(xi) = {(sk, ik)}Kk=1 to be the K closest
sequences to x in D which also contain a token of
type V(xi),2 where sk is the k-th closest context
sequence to x and ik denotes the index of V(xi)

1Here, we refer to a word token as an occurrence of a given
word type. This is not to be confused with WordPiece tokens;
we do not attend over subword representations. Throughout
this work, we average over subword representations after run-
ning a sequence through BERT to convert from WordPiece
representations to word-level representations.

2The “closest” sequences are those with the minimum
absolute difference in sentence index to the target sentence.
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Target (   )Sentence 0 (    ) Sentence 7 (    ) Sentence 8  (    )Sentence 5 (    )

[CLS] The proximal IL-4 promoter is only 
moderately augmented by GATA-3 , but certain 
genomic regions significantly enhanced GATA-3 

promoter transactivation . [SEP]

… certain genomic 
regions significantly 

enhanced GATA-3 promoter 
transactivation …

… retroviral 
transduction of GATA-3 

into developing T 
cells induced IL-5 …

GATA-3 dependent 
enhancer activity in 
IL-4 gene regulation.

… we propose that GATA-3 
is permissive, but not 
sufficient, for full 
IL-4 enhancement …

Attention

GATA-3 dependent enhancer activity in IL-4 gene regulation. 
Previously, we analyzed the proximal IL-4 promoter in directing Th2-
specific activity. An 800-base pair proximal promoter conferred some 
Th2-selective expression in transgenic mice. However, this region 
directed extremely low reporter mRNA levels relative to endogenous 
IL-4 mRNA , suggesting that full gene activity requires additional 
enhancer elements. Here, we analyzed large genomic IL-4 regions for 
enhancer activity and interaction with transcription factors. The proxi‐
mal IL-4 promoter is only moderately augmented by GATA-3, but 
certain genomic regions significantly enhanced GATA-3 promoter 
transactivation. Some enhancing regions contained consensus , GATA 
sites that bound Th2-specific complexes. However, retroviral transduc‐
tion of GATA-3 into developing T cells induced IL-5 to full Th2 levels, 
but only partially restored IL-4 production. Thus, we propose that 
GATA-3 is permissive, but not sufficient, for full IL-4 enhancement and 
may act through GATA elements surrounding the IL-13/IL-4 gene

Document (   )

BERT BERT BERT BERTBERT

distance
embedding

LM encoding in
context sentenceoriginal

encoding
attention-weighted
context encoding

B-PROTEIN

……

sequence encoder

sentence 5 distance = 2 distance = 3distance = 0distance = 5

Figure 1: Overview of Doc-ARC with an example from the JNLPBA corpus, a dataset for named-entity recognition
in biomedical research papers. The model attends over the representation of xi = GATA-3 in context sentences sk
to product the context encoding c(x). The BERT base model can be left trainable (dynamic Doc-ARC) for small
encoders or frozen (static Doc-ARC) for large encoders.

in sk. For each xi ∈ x and each k ≤ K, our
model fetches ec(xi)(k), an encoding of V(xi) as it
appears in the context of sk,

ec(xi)
(k) = [e(sk)ik ; d(sk,x)] , (1)

(sk, ik) ∈ SK(xi)

with d(sk,x) denoting a bucketed embedding of
the distance between sk and x. We adapt our dis-
tance buckets from Lee et al. (2017).

Finally, we compute c(xi) by attending over
each of the ec(xi)(k).

c(xi) =
K∑
k=1

αk · ec(xi)(k) (2)

αk ∝ exp
(
wattn

>ec(xi)
(k)
)

(3)

If a given word type has K ′ < K occurences in
D, we only attend over these K ′ relevant instances.
We allow sequences to attend over the target occur-
rence itself; that is, (x, i) ∈ SK(xi).

Our model generates a prediction by passing
this composite representation through a sequence
encoder fs (such as a bidirectional LSTM, GRU, or
Transformer layer), and generating a distribution
over labels through a softmax function:

z = fs
(
[e(x); c(x)]

)
(4)

p(y | x,D) = softmax(z)

2.2 Static and Dynamic Doc-ARC

When processing a single target sequence of length
N words, our model must process O(NK) context
sequences. If the context representation ec(x) is
allowed to be trainable, O(NK) model activation
copies are stored for each target sentence, which be-
comes prohibitively expensive for large encoders.

Though optimizations can be made using
GPU/TPU parallelism (e.g. Raffel et al., 2019)
and/or memory-efficient encoders (e.g. Kitaev
et al., 2020; Lan et al., 2019), our work adopts
a different focus. Instead, we consider two simple
cases which encapsulate the trade-offs inherent to
this method, regardless of encoder architecture:

Static. Our static variant of Doc-ARC assumes
that e(·) is fixed throughout training. This variant is
applicable when the encoder is a memory-intensive
language model such as BERT. To offset the effects
of freezing BERT, we pass the context representa-
tions through a trainable 1-layer context encoder
fc, which we found crucial to good performance in
our experiments.

ec(x)
(k) = fc

(
ec(x1)

(k), . . . , ec(xn)
(k)
)

(5)

To compute c(x), we first gather all of the unique
sequences that x will attend over, compute the
representations of the attended sequences with a
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Dataset Documents Sentences Tokens

TRAIN DEV TEST LABELED UNLABELED LABELED UNLABELED

LitBank 80 10 10 8, 562 617, 490 210, 532 13, 116, 998

JNLPBA 714 168 168 10, 116 562, 994 273, 315 9, 803, 762

OntoNotes1000 434 70 34 63, 765 1, 125, 758

Table 1: Dataset statistics. JNLPBA consists of many small documents (research papers), while LitBank consists
of considerably fewer, long documents (novels). Both LitBank and JNLPBA have approximately the same ratio of
labeled to unlabeled data (1-2%), providing complementary settings for evaluating Doc-ARC. OntoNotes1000 has
the shortest documents on average, but each document is fully labeled.

frozen base model, and cache these representations
in CPU memory.

Dynamic. Our dynamic variant assumes that e(·)
is trainable, which necessitates a memory-efficient
encoder (see §4.2). Here, each of the O(NK) con-
text sequences are processed by the encoder in a
single batch, including duplicate sentences. Activa-
tions for all the sequences are held in GPU memory.
We process single target sequence batches with gra-
dient accumulation to achieve larger effective batch
sizes. We do not include the context encoder fc.

3 Datasets

We evaluate our model on three named entity
recognition (NER) datasets: LitBank (Bamman
et al., 2019), JNLPBA (Collier and Kim, 2004) and
OntoNotes (Weischedel et al., 2012). Table 1 lists
descriptive statistics for each dataset.

LitBank. The LitBank dataset (Bamman et al.,
2019) is comprised of relatively long documents
drawn from 100 English novels, with each doc-
ument containing annotations for roughly 2,000
words. This dataset contains annotations for nested
entities using six of the ACE 2005 (Walker et al.,
2006) categories (PER, LOC, FAC, GPE, ORG,
VEH). We convert that hierarchy into a flat struc-
ture suitable for NER by preserving only the outer-
most layer for any nested structure (using the same
process used by JNLPBA for GENIA, described
below); all annotations nested within another are
removed. We use the same training, development
and test splits reported in Bamman et al. (2019).

While the labeled documents in LitBank are al-
ready quite long, they represent less than 2% of the
novels they are drawn from—the average full text
novel in this collection is approximately 133,000
words. We draw on this broader context by treating
the remainder of the novel as unlabeled document
context that we can exploit.

JNLPBA. To test our performance in the biomed-
ical domain, we use data from the JNLPBA 2004
shared task on entity recognition (Collier and Kim,
2004); this data consists of flat annotations of
MEDLINE abstracts extracted from the nested en-
tity annotations in the GENIA corpus (Kim et al.,
2003), with five labels (PROTEIN, CELL LINE,
CELL TYPE, DNA and RNA).

While the median document length in JNLPBA
is only 245 words, these abstracts have a potentially
much larger unlabeled context: the full text of the
article themselves. One contribution we make in
this work is constructing a new dataset by pairing
the abstracts in GENIA with their full scientific ar-
ticles. We do so by converting the MEDLINE iden-
tifiers encoded in the JNLPBA dataset to PubMed
identifiers using mappings from the National Li-
brary of Medicine,3 querying PubMed to retrieve
the article metadata,4 manually downloading the
full-text article pdf, and OCR’ing each pdf using
Abbyy FineReader. We are able to pair a total of
882 abstracts in the JNLPBA training set with their
full-text articles (44.1%) and 168 abstracts in the
test set (41.6%). To enable hyperparameter tun-
ing, we divide the training set into 714 documents
for training and 168 documents for development,
holding out the 168 original test documents for
evaluation. The average length of the unlabeled
document context in this dataset is 9,337 words.

OntoNotes1000. The OntoNotes 5.0 dataset
(Weischedel et al., 2012) provides named entity an-
notations for a subset of documents, with 18 entity
classes, including PERSON, LOCATION, MONEY

and WORK OF ART. While the median length
of documents in this collection is quite short at
277 words, we simulate a scenario of longer doc-
ument context by only focusing on documents in

3https://ii.nlm.nih.gov/MUID_to_PMID.
shtml

4https://pubmed.ncbi.nlm.nih.gov/

https://ii.nlm.nih.gov/MUID_to_PMID.shtml
https://ii.nlm.nih.gov/MUID_to_PMID.shtml
https://pubmed.ncbi.nlm.nih.gov/
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LitBank JNLPBA OntoNotes1000

Base Model Doc-ARC BERT + LSTM Doc-ARC BERT + LSTM Doc-ARC BERT + LSTM

BERTBASE 75.75 (0.45) 74.22 (0.49) 71.17 (0.49) 69.28 (0.39) 84.25 (0.41) 82.20 (0.47)

BERTTAPT 74.28 (0.80) 72.08 (0.84) 71.43 (0.93) 69.77 (1.22) 83.75 (0.51) 82.35 (0.56)

Table 2: Static Doc-ARC results. We report mean (SD) test F1 scores across 5 runs. Our baseline comparison
(BERT+LSTM) has a comparable number of trainable parameters, but lacks attention over context occurrences.
Each Doc-ARC model was hyperparameter tuned over K, listed in the Appendix A.2.

OntoNotes that are over 1,000 words in length.
We use the same training, development, and test

splits of this data used in Pradhan et al. (2013),
using the BIO labels in the OntoNotes-5.0-NER-
BIO repository.5 Subsetting the data to only those
documents within these partitions with over 1,000
words yields a total of 434 training documents, 70
development documents, and 34 test documents.

Preprocessing. For Doc-ARC (both static and dy-
namic), all labeled sequences are kept at their orig-
inal length; none were longer than BERT’s maxi-
mum input length (512). All unlabeled (context) se-
quences longer than 256 tokens are partitioned into
chunks of length ≤ 256 tokens, since this limits
the complexity of computing c(x) (see §2.2). For
baselines, unlabeled sequences are disregarded.

4 Experiments

We evaluate our static and dynamic Doc-ARC mod-
els on LitBank, JNLPBA, and OntoNotes1000. To
enable a fair comparison of the specific contribu-
tion of document-level attention, each Doc-ARC

model is compared to a baseline which lacks con-
textual inputs and has a comparable number of
trainable parameters.

4.1 Static Doc-ARC

We compute e(x) from a frozen BERTBASE model,
using the last four layers of BERT as a token’s
representation. To offset the effects of freezing
BERT’s weights, we let fs and fc be trainable bi-
LSTMs. We perform hyperparameter tuning on the
development set over K for each model.

Task-adaptive pretraining (TAPT). The avail-
ability of unlabeled data drawn from the same doc-
uments as a labeled dataset is exactly the scenario
that task-adaptive pretraining (Gururangan et al.,
2020) has demonstrated sizeable effects for. To
investigate this in the context of this NER task, we

5https://github.com/yuchenlin/
OntoNotes-5.0-NER-BIO

pretrain BERTBASE on the training documents’ full
text (both labeled and unlabeled) for 100 epochs,
yielding a BERTTAPT model for each dataset.

Baselines. We compare each static Doc-ARC

model to a baseline with a comparable number
of trainable and non-trainable parameters (frozen
BERT representations input into two stacked bi-
LSTMs), but lacking attention over neighboring
sequences; using the notation from §2, the only in-
put to the baseline model is e(x), and not c(x). We
train this baseline model on the labeled set only.

Results. Table 2 lists results for Doc-ARC on
all three datasets with the encoder fixed to both
BERTBASE and BERTTAPT. We find that Doc-ARC

performs above the baselines for all trials, a differ-
ence that can reasonably be attributed to Doc-ARC’s
document-level contextual attention mechanism.

We find that task-adaptive pretraining is least
beneficial for LitBank and OntoNotes1000 (perhaps
due to the similarity in domain to BERT’s train-
ing data of BookCorpus and Wikipedia), and most
helpful for JNLPBA, which has a linguistic domain
most distinct from BERT’s training data.

4.2 Dynamic Doc-ARC

We compute e(x) from the last layer of a
TransformerTINY model (Turc et al., 2019), a
compact, two-layer Transformer distilled from
BERTBASE, which we will refer to as BERTTINY.
We do not process the context representations
through fc, but maintain that fs is a trainable bi-
LSTM (see Eq. 4). For all datasets, we attend
over the K = 10 closest sequences, which was
the largest configuration that could be trained on a
single GPU for all three datatsets.

Baselines. We compare each dynamic Doc-ARC

to trainable BERTTINY, as well as BERTTINY with
one bi-LSTM attached. Analogous to the static
case, the dynamic baseline has a comparable num-
ber of parameters to dynamic Doc-ARC, but lacks
attention over neighboring context sequences.

https://github.com/yuchenlin/OntoNotes-5.0-NER-BIO
https://github.com/yuchenlin/OntoNotes-5.0-NER-BIO
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Dataset Doc-ARC BERTTINY + LSTM

LitBank 64.47 (1.27) 56.17 (0.83) 60.97 (0.40)

JNLPBA 65.26 (0.79) 56.96 (0.75) 62.08 (0.66)

OntoNotes1000 72.55 (0.76) 69.19 (0.67) 71.32 (0.42)

Table 3: Dynamic Doc-ARC results, all evaluated at
K = 10. The BERT+LSTM baseline has a compara-
ble number of trainable parameters, but lacks attention
over context occurrences. We report mean (SD) test F1

scores across 5 runs.

Results. We find that dynamic Doc-ARC signif-
icantly outperforms the baselines. Relative to
BERTTINY+LSTM baselines, we find that dynamic
Doc-ARC gains are greater than their static coun-
terparts for LitBank and JNLPBA. Though the dy-
namic models cannot match the performance of
their static analogues, it is worth noting that the
static variants have roughly twice as many train-
able parameters. Moreover, BERTBASE has roughly
25 times as many parameters as BERTTINY.

4.3 Task Fine-Tuning

To contextualize the performance of our dynamic
models, we can consider results for a fully task fine-
tuned BERTBASE and BERTTAPT model; as Table
4 illustrates, when given the ability to fine-tune
all of its parameters to the task, performance is
significantly higher than the small dynamic models,
and comparable to the larger (but static) Doc-ARC

models.
While a direct comparison is ill-suited given the

disparity in trainable parameters in a task-tuned
BERTBASE (11 times the number of trainable param-
eters as a static Doc-ARC and 25 times the number
of trainable parameters as a dynamic Doc-ARC),
it illustrates one direction of future work: incor-
porating a task-tuned contextual language model
into Doc-ARC.6 However, even with a static model
with an order of magnitude fewer parameters, we
find that Doc-ARC can outperform even a trainable
BERT baseline for certain classes of important en-
tities, as illustrated in the following section.

6Though training a dynamic Doc-ARC model with a large
BERT encoder is computationally infeasible, it can be approx-
imated via a two-step training procedure: (1) task fine-tune a
BERT model to the labeled training set and (2) train a static
Doc-ARC model with the encoder e(x) initialized to these
task-tuned BERT weights. In our experiments, this approach
yielded only marginal improvements over standard fine-tuning
scores (Table 4).

Dataset BERTBASE BERTTAPT

LitBank 76.90 (0.61) 76.28 (0.36)

JNLPBA 70.05 (0.81) 70.62 (0.79)

OntoNotes1000 84.44 (0.18) 85.22 (0.29)

Table 4: Fully-trainable BERT finetuning results. We
report mean (SD) test F1 scores across 5 runs.

5 Analysis

Doc-ARC was designed to (1) improve the perfor-
mance of NER systems for rare, but important enti-
ties by (2) leveraging rich contextual information
in long documents. In this section, we characterize
the extent to which these goals were met using both
quantitative and qualitative analysis.

5.1 Characterizing Important Entities

We hypothesize that Doc-ARC is most beneficial
for rare entities that occur primarily within the con-
text of a single document (such as the names of
major characters in a novel). Such entities have a
unique relevance only within the context of their
document and are often the entities of highest im-
portance for downstream analyses. However, these
entities are particularly difficult for NER systems
to classify correctly due to their rarity, unusual
surface forms, and/or ambiguous meaning across
documents. Given that these entities occur multi-
ple times throughout a document and in diverse
contexts, Doc-ARC should have the capacity to
leverage this additional context for greater accu-
racy among important entities.

One means to identify important terms in a doc-
ument is TF-IDF: words with high TF-IDF scores
must appear frequently throughout a given docu-
ment or appear characteristically within that docu-
ment by appearing infrequently in other documents;
terms with the highest scores satisfy both crite-
ria. As Figure 2 illustrates, TF-IDF scores have
a strong relationship with the presence of entity
labels; words with high TF-IDF scores are more
likely to be named entities across all three datasets.

Table 5 lists the three entities with the highest
TF-IDF scores for each of the datasets, which ap-
pear exclusively as named entities and capture im-
portant characters (LitBank), proteins (JNLPBA),
and political entities (OntoNotes).

Given that TF-IDF is a reasonable indicator for
important entities, we analyze Doc-ARC’s perfor-
mance for high TF-IDF words in comparison to al-
ternative models. First, we compute TF-IDF scores
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Figure 2: Among words in the labeled test set, we com-
pute the proportion of words that appear with NER
labels for each TF-IDF quantile. Across all datasets,
words with a higher TF-IDF score are more likely ap-
pear as named entities.

Dataset Top Words Entity Type(s)

LitBank Lucilla Person
Cresswell Facility
Marjoribanks Person

JNLPBA Akt-1 Protein
Plasmin Protein
Siah-1 Protein

OntoNotes1000 Linpien GPE/NORP/LOC
Dongguan GPE/ORG
Koreans NORP

Table 5: Top three entities with the highest TF-IDF
scores across all test sets, with entity type(s).

for all words across all documents for each dataset,
using the logarithm of the term-frequency to con-
trol for variation in document length. We then re-
strict our vocabulary to words in the labeled test set
that appear with a named entity label at least once,
thereby excluding spurious high TF-IDF words (e.g.
document-characteristic adjectives and adverbs).
We split this vocabulary of high TF-IDF entities
at the 90th, 95th, and 99th percentile and compute
word-level F1 scores within each percentile.7

Results. In Figure 3, we compare word-level F1
scores between our best static Doc-ARC models
with a fixed BERTBASE input (Table 2) and a task-
finetuned BERTBASE model (Table 4). We plot the
difference in word-level F1 scores across the entire
test set and the top 10%, top 5%, and top 1% of
TF-IDF entities.

While the static Doc-ARC underperforms a fine-
tuned BERTBASE across all words (mirroring the
results from Table 4), we find that the static Doc-
ARC outperforms finetuned BERT for high TF-IDF

7Note that the word-level F1 scores reported in this section
differ from the entity span-level F1 scores reported in §4, since
span-level F1 measures do not allow for word-level analysis.
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Figure 3: Difference in word level F1 scores between
static Doc-ARC and task-finetuned BERTBASE, com-
pared across all words and the top TF-IDF entities.

entities. Moreover, these performance gains in-
crease with the TF-IDF threshold, indicating that
Doc-ARC’s performance is more sensitive to high-
importance entities than a standard finetuned BERT
model. These results are particularly pronounced
for OntoNotes1000, where Doc-ARC outperforms a
finetuned BERT model by over 17 points in the top
1% of TF-IDF entities.

5.2 Characterizing Context Attention

We now turn to analyzing our model’s use of at-
tention over context occurrences. We parameterize
this analysis via the attention width (K) and the
attention weight (αk).

Attention Width. The attention width (K) deter-
mines the number of context occurrences a target
word can attend over. In order to better understand
the impact of the attention width on our model’s
performance, we plot mean dev F1 scores across
three runs for several values of K in Figure 5. We
find that the optimal value of K is dataset-specific
and that performance does not monotonically in-
crease with K, indicating that too much context
can be detrimental. The maximum dev F1 scores
were used to determine the final hyperparameters
in Table 2 (further hyperparameter details can be
found the in Appendix A.2).

Attention Weight. In Figure 4, we plot the distri-
bution attention weight as a function of the distance
to the target word. Unsurprisingly, the model as-
signs the highest weight to the target sentence itself
(distance = 0), including the target occurrence it-
self or multiple mentions of the target word within
the target sentence. Though the attention weight
distributions for distances greater than zero tend to
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Figure 4: For each distance bucket (x-axis), we plot the distribution of attention weights assigned to context
sentence in each bucket. A context sentence’s distance to the target sentence is measured via absolute difference
in sentence index. A distance of zero corresponds to mentions of the target word within the target sentence.

2 5 10 15 20 25 35 50
Attention Width (K)

70

74

78

82

86

De
v 

F1
 S

co
re

OntoNotes
LitBank
JNLPBA

Figure 5: Mean dev F1 with standard deviations
(shaded) across three runs, for various values of K.
Each model was trained with BERTBASE.

have small medians, they have very long tails; for
certain rare context sequences, Doc-ARC assigns a
weight higher than the target token itself.

6 Related Work

Our work draws from several strands of related
research. First, our motivation for this work is
rooted in early research exploring the global scope
of information across an entire document in mak-
ing token-level decisions. Chieu and Ng (2002)
presents one of the earliest examples of this for
NER, employing features scoped over both the lo-
cal token context and the broader type context in a
log-linear classifier. Our use of attention in build-
ing a representation of a token that is informed by
other instances of the same type is likewise influ-
enced by work on Skip-Chain CRFs (Sutton and
McCallum, 2004), which explicitly model the la-
bel dependencies between words of the same type,
including for the task of NER (Liu et al., 2010).

Second, automatically retrieving relevant con-
text has been shown to improve accuracy across a
variety of NLP tasks. Searching for the k most sim-
ilar context sequences to a given target has been
explored for language model pretraining (Guru-
rangan et al., 2020), training (Kaiser et al., 2017;
Lample et al., 2019), and inference (Khandelwal
et al., 2020); incorporating shared span represen-
tations linked through coreference has also been
shown to help in multi-task learning (Luan et al.,
2018). Recently, Guu et al. (2020) introduced a neu-
ral knowledge retriever for open-domain question
answering, trained to retrieve the k most relevant
documents during all of pretraining, finetuning, and
inference. Though named-entity masking had pre-
viously shown not to improve standard BERT pre-
training (Joshi et al., 2020), Guu et al. (2020) find
that it significantly improves retrieval-augmented
pretraining. Most prior work has computed similar-
ity in embedding space, using either model internal
representations (Khandelwal et al., 2020; Guu et al.,
2020) or lightweight sentence encoders (Gururan-
gan et al., 2019). Instead, we adopt word-type
identity match as a simpler, yet effective heuristic.

Finally, self-supervised pretraining within rel-
evant domain and/or task data has been widely
shown to be beneficial for downstream task accu-
racy (Gururangan et al., 2020; Han and Eisenstein,
2019; Beltagy et al., 2019; Lee et al., 2020), with
applications generally focused on transfer repre-
sentation learning. Gururangan et al. (2020) addi-
tionally investigate human curated task-adaptive
pretraining—comparable to our long-document
settings—in which labeled annotations are drawn
from a larger pool of unlabeled texts.
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7 Conclusion

We present in this work a new method for reasoning
over the context of long documents by attending
over representations of identical word types when
generating a representation for a token in sequence
labeling tasks like NER. We show that when com-
paring equivalently parameterized models, incor-
porating attention over the entire document context
leads to performance gains over models that lack
that contextual mechanisms; further, the gains are
asymmetric, with a substantial increase in accuracy
for important entities within a document (defined
as those with high TF-IDF scores). In the context
of long documents, our approach presents a novel
alternative to established methods such as long se-
quence modeling and task-adaptive pretraining.

Our work’s main contribution is a computa-
tionally tractable method for attention in long
documents, employing exact word match as a
complexity-reducing heuristic. Though our at-
tention mechanism is ostensibly simple, Doc-
ARC ’s strong performance in comparison to non-
contextual baselines demonstrates both the value
of the exact-match heuristic and the general utility
of our framework.

This work leaves open several natural directions
for future research, including incorporating docu-
ment attention within a fully trainable task-tuned
BERT model, and broadening the focus of atten-
tion beyond identical word types to words that
bear other forms of similarity (such as similar-
ity in subword morphology and meaning). Code
and data to support this work can be found at
https://github.com/mjoerke/Doc-ARC.
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A Appendix

Following Dodge et al. (2019), we report our
computing infrastructure (A.1), hyperparameter
details (A.2), running times (A.3), and develop-
ment set results (A.4) to foster reproducibile re-
sults. Our code and datasets are available at
https://github.com/mjoerke/Doc-ARC.

A.1 Computing Infrastructure
Each Doc-ARC model and baseline comparison was
trained on a single NVIDIA Tesla c© K80 GPU with
12GB GPU memory. Task-adaptive pretraining was
performed on a Google Cloud c© v2-8 TPU.

A.2 Hyperparameters

Parameter Value(s)

Epochs 30
Patience 3
Batch Size 16
Learning Rate 0.001
K (Attention Width) [2, 5, 10, 15, 25, 35, 50]
H (LSTM Hidden) 256

Trainable Parameters 9.5M
Total Parameters 118M

Table 6: Static Doc-ARC hyperparameters

Static Doc-ARC. We list hyperparameters de-
tails for static Doc-ARC results (Table 2) in Table
6. We perform hyperparameter tuning over K only,
choosing the optimal K via mean dev F1 across 3
trials. The final values ofK for both BERTBASE and
BERTTAPT are listed in Table 7. For static Doc-ARC

with BERTTAPT, we performed tuning overK ≤ 25
on LitBank and JNLPBA due to time constraints.
Each BERT+LSTM baseline was trained with iden-
tical hyperparameters (except for K, which does
not apply).

Dataset Base Model K

LitBank BERTBASE 25
BERTTAPT 25

JNLPBA BERTBASE 25
BERTTAPT 15

OntoNotes1000 BERTBASE 50
BERTTAPT 50

Table 7: Optimal K for each static Doc-ARC model

Dynamic Doc-ARC. We list hyperparameters
details for dynamic Doc-ARC results (Table 3) in
Table 8. Hyperparameter tuning over K was lim-
ited to K ≤ 10 since this was the largest configu-
ration that could be trained on a single GPU. We
perform hyperparameter tuning overK only, choos-
ing the optimal K via mean dev F1 across 3 trials;

all models had the best results for K = 10. Each
BERT+LSTM baseline was trained with identical
hyperparameters (except for K, which does not
apply).

Parameter Value(s)

Epochs 30
Patience 5
Batch Size 4
Learning Rate 0.0001
K (Attention Width) [2, 5, 10]
H (LSTM Hidden) 128

Total Parameters 4.8M

Table 8: Dynamic Document Attention

Task Adaptive Pretraining. We perform task-
adaptive pretraining on full texts within the train-
ing set for 100 epochs. Pretraining was performed
using Google’s BERT pretraining code8. Hyperpa-
rameters for pretraining are listed in Table 9.

Parameter Value

Epochs 100
Learning Rate 2e-5
Batch Size 32
Max Sequence Length 128
Whole Word Masking True
Masking Probability 0.15
Short sequence Probability 0
Next-sequence Prediction True
Warmup 6%

Table 9: Task-Adaptive Pretraining (TAPT) hyperparameters

Task Finetuning. Finetuning hyperparameters
for BERTBASE results (Table 4) and BERTTINY (Ta-
ble 3) are listed in Table 10.

Parameter Value

Epochs 10
Patience 3
Learning Rate 2e-5
Batch Size 16

BERTBASE Parameters 108M
BERTTINY Parameters 4.4M

Table 10: Task finetuning hyperparameters

A.3 Running Times.
For each reported result, we list average training
times in Table 11. Note that task-adaptive pretrain-
ing was only run once for each dataset.

A.4 Development Set Results.
We reproduce each of the tables in the main paper
with development set results. Table 12 lists dev
results for Table 2, Table 13 lists dev results for
Table 3, and Table 14 lists dev results for Table 4

8https://github.com/google-research/
bert/blob/master/run_pretraining.py

https://github.com/mjoerke/Doc-ARC
https://github.com/google-research/bert/blob/master/run_pretraining.py
https://github.com/google-research/bert/blob/master/run_pretraining.py
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Model Dataset Training Time (Hours:Min)

Static Doc-ARC LitBank 26:23
JNLPBA 24:35
OntoNotes1000 21:27

Static BERT+LSTM baseline LitBank 00:21
JNLPBA 00:25
OntoNotes1000 02:04

Dynamic Doc-ARC LitBank 01:51
JNLPBA 02:14
OntoNotes1000 07:31

Dynamic BERT+LSTM baseline LitBank 00:07
JNLPBA 00:09
OntoNotes1000 00:42

BERTBASE finetuning LitBank 00:27
JNLPBA 00:26
OntoNotes1000 02:30

BERTTINY finetuning LitBank 00:01
JNLPBA 00:02
OntoNotes1000 00:08

Task-adaptive pretraining LitBank 04:48
JNLPBA 04:27
OntoNotes1000 00:28

Table 11: Average training times for each model.

LitBank JNLPBA OntoNotes1000

Base Model Doc-ARC BERT + LSTM Doc-ARC BERT + LSTM Doc-ARC BERT + LSTM

BERTBASE 73.34 (0.77) 71.98 (0.93) 75.88 (0.37) 73.93 (0.30) 85.45 (0.20) 83.64 (0.10)

BERTTAPT 71.50 (0.29) 68.83 (0.71) 77.11 (0.44) 74.93 (0.28) 85.00 (0.19) 83.33 (0.32)

Table 12: Static Doc-ARC results on the development set. We report mean (SD) F1 scores across 5 runs.

Dataset Doc-ARC BERTTINY + LSTM

LitBank 56.51 (0.92) 45.80 (1.35) 53.52 (0.75)

JNLPBA 72.04 (0.29) 61.03 (0.88) 68.64 (0.24)

OntoNotes1000 74.11 (0.41) 70.21 (0.30) 72.98 (0.42)

Table 13: Dynamic Doc-ARC results on the development set. We report mean (SD) F1 scores across 5 runs.

Dataset BERTBASE BERTTAPT

LitBank 73.41 (0.95) 71.49 (0.40)

JNLPBA 74.91 (0.78) 75.96 (0.41)

OntoNotes1000 85.90 (0.36) 86.04 (0.20)

Table 14: BERT finetuning results on the development set. We report mean (SD) F1 scores across 5 runs.


