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Abstract

Past work on story generation has demon-
strated the usefulness of conditioning on a gen-
eration plan to generate coherent stories. How-
ever, these approaches have used heuristics or
off-the-shelf models to first tag training sto-
ries with the desired type of plan, and then
train generation models in a supervised fash-
ion. In this paper, we propose a deep latent
variable model that first samples a sequence
of anchor words, one per sentence in the story,
as part of its generative process. During train-
ing, our model treats the sequence of anchor
words as a latent variable and attempts to in-
duce anchoring sequences that help guide gen-
eration in an unsupervised fashion. We con-
duct experiments with several types of sen-
tence decoder distributions — left-to-right and
non-monotonic, with different degrees of re-
striction. Further, since we use amortized vari-
ational inference to train our model, we in-
troduce two corresponding types of inference
network for predicting the posterior on anchor
words. We conduct human evaluations which
demonstrate that the stories produced by our
model are rated better in comparison with base-
lines which do not consider story plans, and
are similar or better in quality relative to base-
lines which use external supervision for plans.
Additionally, the proposed model gets favor-
able scores when evaluated on perplexity, di-
versity, and control of story via discrete plan.

1 Introduction

Maintaining long-term narrative flow and consis-
tency are important concerns when aiming to gener-
ate a plausible story (Porteous and Cavazza, 2009;
Hou et al., 2019). Prior work on narrative text gen-
eration has focused on generating consistent stories
via story outlines using keywords or key phrases
(Xu et al., 2018; Yao et al., 2019), event-based
representations (Riedl and Young, 2010; Martin
et al., 2018; Fan et al., 2019), plot graphs (Li et al.,

tberglucsd.eng.edu

Story Title: Winning the Race

Jill wanted to participate in a race.

Jill had been practicing for months.

She hoped she was prepared.

When the day came, she won the race!

Figure 1: Our aim is to generate a story given a title.
We propose models which first generate a high level
story plan realized via a sequence of anchor words.

2013) or a sentence representing theme (Chen et al.,
2019).

Yao et al. (2019) note that compared to specific
event based representations, using keywords to
form the outline is more generalizable and widely
applicable. In this work, we consider a sequence
of anchor words as a means to model story out-
lines. For example, in Figure 1, given a story title
‘Winning the Race’, our model first predicts a se-
quence of anchor words which represents a high
level story plan. Thereafter, a decoder conditions
on the title and generated sequence of anchor words
to generate the final story. We assume an alignment
between the anchor words and the story sentences —
the 3" anchor word corresponds to the i** sentence
in the story.

However, stories do not naturally occur with
a tagged set of such anchor words or keywords.
Many prior works use off the shelf tools to first
label stories with plan outlines, thus using external
supervision for learning plot structures. For exam-
ple, Yao et al. (2019) use the RAKE heuristic (Rose
et al., 2010) to first identify the most important key-
word in each sentence, and then use this to train a
model in a supervised fashion. This approach leads
to improved coherency and control, but creates a re-
liance on such heuristics and does not jointly learn
anchor words along with the generator.
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Inspired by prior work indicating that anchor
words can effectively capture and control high-level
generation structure, we investigate to what extent
high-level control can be learned in a fully unsuper-
vised fashion, directly from natural story data. We
design a hierarchical latent variable model (Figure
2) that induces sequences of anchor words that ex-
plain observed stories, while at the same time learn-
ing to generate entire stories by first generating
anchor sequences. For training, we use amortized
variational learning (Kingma and Welling, 2014),
where an inference network is used to approximate
the posterior on anchor sequences.

At test time, given a title, we first sample a se-
quence of anchor words using the prior model con-
ditioned on only the title, and then generate the
actual story using the decoder conditioning only on
the title and the sampled anchor words.

To induce a useful latent generation plan and to
effectively condition on a sampled plan, we pro-
pose a constrained story decoder and constrained
inference network. Specifically, our constrained
decoder begins a story sentence by deterministic
copying the corresponding anchor word, and then
generates words to the left and then to the right
(Figure 3). For this decoder, the corresponding true
posterior on anchor words is sparse: the anchor
word must be chosen from the observed sentence.
Thus, we constrain the output vocabulary of the
corresponding inference network to the words of
the input sentence. We observe that the proposed
constrained inference network does not suffer from
mode collapse, leading to models which can ef-
fectively learn useful anchor words. Further, we
also contrast this approach with a model whose
decoder is not constrained to use each anchor word
in each sentence. The true posterior in this case is
over the full vocabulary. We conduct experiments
with both constrained and unconstrained decoders
and inference networks, and find that the best re-
sults are achieved through the combination of an
unconstrained decoder with a constrained inference
network — indicating, perhaps, that while it is more
effective to use flexible models, using a constrained
inference network can add a useful inductive bias,
leading the model to mimic the constraint of the
inference network.

We experiment with two English story datasets,
and observe that our best models achieve favorable
scores relative to several baselines when evaluated
on perplexity, diversity, coherency, and control-
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Figure 2: Model Overview: We consider multi-
sentence text generation via a latent generation plan
realized through a sequence of anchor words with
one word per sentence. [We show sequence models
with first-order Markov assumption for simplicity, even
though all sequence models in our approach are auto-
regressive with full context.]

lable story generation as per various automatic and
human evaluations.

Finally, we note that our modelling approach
for story generation has an interesting connection
with work that treats text as a latent variable in
deep generative models (Miao and Blunsom, 2016;
Wen et al., 2017). We treat a latent sequence of
anchor words as a form of hierarchical control over
generated outputs, while related work treats the
latent sequence itself as sequential text that is the
output of the model.

2 Model

Our goal is to generate a story x, consisting of mul-
tiple sentences x1, x2,..Tx, given a title £. Our
model’s generative process is depicted in Figure 2
and operates as follows: First, a sequence of anchor
words representing a generation plan is sampled
from an auto-regressive prior conditioned on the
title. Next, for each anchor word, a sentence is
generated conditioned on the anchor words and
previously generated sentences using a decoder.
During training, the sequence of anchor words is
unobserved and treated as a latent variable. As de-
scribed in more detail later, we will explore several
choices of decoder — those that treat anchor words
as an explicit token in the sentence to be generated,

3638



Unconstrained Decoder
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Figure 3: Simplified demonstration of generation of a sentence conditioned on anchor words and preceding sen-
tences for the two types of decoders: (1) Unconstrained decoder is based on the story generation model of (Yao
et al., 2019), which may or may not use the corresponding anchor word. (2) Constrained decoder is forced to use
anchoring words in corresponding sentences, generating words to the left and then to the right of an anchor word.
[Again, we show sequence models with a first-order Markov assumption for simplicity, even though all sequence

models are auto-regressive with full context. ]

generating surrounding context to the left and right,
and those that simply treat the anchor words as
conditioning information. In the former case, the
posterior must be sparse. In the latter case, our
choice of variational learning scheme will bias (but
not force) the model to use anchor words in output
story sentences. We shall refer to our proposed
model as Latent Anchor Plan model ( LAP).

2.1 Anchor Sequence Prior

We model the sequence of anchor words repre-
senting the generation plan via a sequence of dis-
crete random variables z1, 29, .., 2. Since our aim
is to induce latent plans, we assume z are unob-
served. We consider an auto-regressive prior model
Po(2[t) I1; ps(zi|2<i,t) where each anchor
word is conditioned on preceding anchor words
and the title ¢.

2.2 Story Decoder

Our decoder py(z|t, z) generates a story given the
title ¢ and anchor words z. As mentioned earlier,
z; 1s aligned to the sentence x;. We consider two
decoders: (1) an unconstrained decoder which is
not bound to use z; in x;, and (2) a constrained
decoder which assumes z; is present in x;, and
constructs words to the left and then to the right of
the anchor word z;.

Unconstrained Decoder: Our unconstrained
decoder is based on Yao et al. (2019)’s decoder
which does not use any explicit alignment of
anchor words to corresponding sentences (Figure
3). The decoder is fed the title and the anchor
words appended together, and is trained to generate
the multi-sentence text. The decoder is not bound
to use the anchor word z; for x;, but may have
incentive to do so depending on the training

Constrained Inference Network
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Figure 4: Constrained Inference Network: Proposed
model is trained through amortized variational learn-
ing using an inference network. One of the proposed
models is trained using a constrained inference network
which assigns non-zero probability to only the words
present in corresponding sentences.

objective, as discussed later. At the same time, the
unconstrained decoder has higher flexibility and
can skip using an anchor word if it doesn’t fit with
the preceding context.

Constrained Decoder: We consider a constrained
decoder that always uses z; while generating x;.
This is achieved by first copying z;, then gener-
ating to the left until the sentence start, and then
to the right. Such a decoder is bound to use the
corresponding anchor word by design, and will po-
tentially demonstrate higher control of the anchor
words on the story.

Our decoder architecture follows from Yao et al.
(2019), who use a 3-layer LSTM recurrent model.
Our final reported model uses 1000 dimensional
hidden layer, with tied input and output word em-
beddings. Moreover, the prior model shares the
underlying LSTM modules with the decoder. Since
our goal is to induce a latent discrete plan and com-
pare with keyword tagging based methods, we stick
to the same choice of decoder as in prior work.
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3 Learning and Inference

Our goal is to maximize the log likelihood of
the stories conditioned on the corresponding ti-
tles. Since z is unobserved at training, we must
marginalize over all possible values of z.

> logp(zlt) = > log .y, o pa(elt, 2)]

t,xeD t,xeD

, D represents the dataset of titles and correspond-
ing stories. Since it is infeasible to compute the ex-
act marginal stated above, we use amortized varia-
tional learning by introducing an inference network
¢~ and train the model to maximize the following
evidence lower-bound (ELBO):

ELBO =E, ;. (:|x[log po(|2,1)]

Reconstruction
— KL(gy (]2, 1)[|ps(2[t))

Vv
KL-term

We shall refer to the first term as the reconstruction
term and the second term as the KL-term.

We make a mean-field assumption in the poste-
rior approximation on z as follows: ¢(z|z,t) =
15, q(zi|zi,t).  Note that p(z|t) is auto-
regressive, and thus it is intractable to exactly com-
pute the KL term. We resort to Monte Carlo sam-
pling to approximate the ELBO by drawing sam-
ples from inference network; though we will per-
form this differently for the KL term and the recon-
struction term (more details in Section 3.2).

3.1 Inference Network and Posterior Sparsity

Constrained Inference Network With the con-
strained decoder discussed earlier, the true pos-
terior is sparse — so making the inference net also
sparse would help the learning procedure better ap-
proximate the true posterior (Figure 4). To leverage
this observation, we constrain the inference net-
work’s output distribution to have non-zero prob-
abilities only on the tokens present in the corre-
sponding sentence:

q(z = vlzi, 1) =0if v & @;

o exp(sy) otherwise

Here, s, is the logit output for the token v pro-
duced by the inference network. Our constrained
inference network is a BiLSTM model which
generates an encoding h; for 4 token in a story
sentence. A linear layer transforms /; to a score

s;. Finally, for sentence x;, we compute a softmax
over the scores of words in x; to obtain ¢(z;|z).

Unconstrained Inference Network We also
consider an unconstrained inference network
which does not constrain the inference network’s
output — i.e. the output distribution is over the
entire vocabulary. We use a LSTM model to
encode each sentence, obtain the last word hidden
state, and then finally employ a linear layer to
transform it to the vocabulary size.

When the decoder is not constrained, it may be
interesting to compare the choice of inference net-
work. Using the constrained inference net with
the unconstrained decoder will bias the decoder
to use the anchor words in the aligned sentences
— the model is not required to do this, but varia-
tional learning will pull the inference network and
true model posterior towards each other (i.e. the
ELBO objective pressures them to agree). Thus, if
the inference net is constrained, but the decoder is
not, learning will try to find a weakly constrained
decoder to match the approximate posterior.

3.2 Optimization

Reconstruction term: As mentioned earlier,
we draw samples from the inference network to
approximate the reconstruction term. The decoder
parameters 6 can be trained directly through
back-propagation to minimize the approximate
reconstruction loss. However, since z is discrete,
we use the REINFORCE (Williams, 1992)
algorithm to train the parameters  of the inference
network q(z|x, t). Following prior work (Xu et al.,
2015), we use an entropy regularizer term and a
moving average baseline to reduce the variance
of the resulting gradient estimator for inference
network parameters 7.

KL term: Note that the KL term can be simplified
as follows:

KL(q,(2)|lpg(2)) = KL(gy(21)|pep(21))+
E. ~q, (z1) [KL(gy (22)]|pg (22]21) )+
E [KL(q+(23)||pg(23]2<3)] + - - ]]]

22~y (22)

We draw samples of z from ¢(z) to approximate
the KL term.

KL term for the constrained inference network:
For the constrained inference network, we have a
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sparse approximate posterior. Given the fact that
typical sentences in our dataset are 5-20 words in
length, it is computationally easy to exactly com-
pute individual KL(q(z;)||p(z;|2<;)) terms by sum-
ming over the tokens in x; instead of the whole
vocabulary. This is still an approximation to the
full KL term since we cannot feasibly sum over the
context.

KL(q(2)|Ip(zil2<i) = Y alz:)logq(z:)/p(2:)
2z, €V

- Z q(z)log q(z)/p(%)

Z; €Xj

Thus, for the constrained inference network,
KL computation now proceeds as follows: we
first compute KL(q(z1)||p(21)) as described
above. Then we sample z1 ~ ¢(z1), and compute
KL(q(22)||p(22|2<1)), and so on — we still need to
use samples, but can exactly compute each of the
K individual KL terms, one at each of the K steps
in the plan, similar to the approach of (Yang et al.,
2018). We observe that the constrained inference
network leads to lower variance in the KL term
approximation, thereby leading to more stable
gradients.

Pretraining: Pretraining the inference network
in an autoencoder setup has been found useful
for VAE training (Li et al., 2019). We pretrain
the inference network in an autoencoder setup
where the decoder reconstructs the corresponding
sentences (rather than whole story). Thereafter, we
train the decoder and prior keeping the inference
network fixed. Finally we perform the full training
with all parameters being updated. We observe
that pretraining through this procedure leads to
more stable training.

4 Experiments

We evaluate and report generation quality of vari-
ous models using automatic metrics for fluency and
diversity, as well as human evaluations for coher-
ence of story and relevance to title. We also analyze
the ability of anchor words to control the generated
story, and highlight comparisons between various
choices of inference networks and decoders.

4.1 Dataset

We use a subset of the ROC-stories corpus (ROC-
DATA) (Mostafazadeh et al., 2016) used earlier by

Yao et al. (2019). Yao et al. (2019) had chosen a
subset of the original ROC corpus in order to select
only those stories which are accompanied by a title.
The train, validation and test splits consist of 78529,
9816, and 9816 stories respectively. Most of the
data consist of five sentence stories. Additionally,
we experiment with the visual story dataset (only
the text portion), which we discuss in more detail
in Section 4.8.

4.2 Methods

NOPLAN-LM: This baseline does not consider
any story generation plan and conditions only on
the title. We use the same 3-layer LSTM as in the
proposed model.

SUPERVPLAN: This baseline is based on the work
of (Yao et al., 2019) which utilizes RAKE-tagged
keywords as observed anchor words. The model
is trained to predict the the observed anchor
words and the story given the title. We can view
this baseline as a latent variable model that was
trained using RAKE keywords as the output of a
deterministic inference network.

LAP: (1) We will refer to our model with
the constrained inference network and uncon-
strained decoder as LAP-CINF-UDEC. (2)
LAP-UINF-UDEC uses the unconstrained in-
ference network and unconstrained decoder. (3)
LAP-CINF-CDEC uses the constrained inference
network with the constrained decoder. We found
that the model with constrained decoder and
unconstrained encoder performed poorly during
training, and so we do not include it in experiments.

Decoding procedure: For all the methods, we gen-
erate samples with top-p sampling (Holtzman et al.,
2020) with p = 0.6 at the time of story generation.
Unless otherwise stated, the same decoding pro-
cedure is followed for the evaluations of diversity,
story quality, and controllable generation discussed
below. Later in the analysis we discuss the effect of
changing the parameter p on some of the evaluation
metrics.

4.3 Perplexity

For the models with latent generation plans, we
use importance weighting (IW) (Burda et al., 2016)
(with 20 samples) to estimate perplexity scores
since (IW) has been shown to provide a tighter
bound than ELBO for evaluation purposes (Li et al.,
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Method Inference N/W  Decoder PPL| NLL| DIVt DIV-B|
test test dev plan story story
No Plan
ROC-DATA NA NA NA NA NA NA 9.01 0.23
NOPLAN-LM NA Unconstrained 17.3 154.0 160.7 NA 7.70 0.50
With Plan
SUPERVPLAN NA' Unconstrained <28.3 <180.3 <187.6 8.71 7.74 0.49
LAP-CINF-UDEC  Constrained Unconstrained <21.3 <1689 <176.5 9.24 7.93 0.45
LAP other variants:
LAP-CINF-CDEC  Constrained Constrained <209 <1669 <174.1 9.24 7.98 0.44
LAP-UINF-UDEC  Unconstrained Unconstrained <17.5 <154.2 <160.9 0.01 7.67 0.52

Table 1: Automated metrics: We report Negative Log Likelihood (NLL), perplexity (PPL) (computed using im-
portance weighted samples for models with latent variables), and diversity (DIV and DIV-B). LAP-CINF-UDEC
performs better than SUPERVPLAN on perplexity as well as diversity. We also experiment with two other vari-
ants for LAP. LAP-UINF-UDEC, which does not constrain the inference network, suffers from posterior collapse.
LAP-CINF-CDEC, which uses the constrained decoder, achieves perplexity and diversity results that are compara-

ble to LAP-CINF-UDEC.

2019). For the baseline, SUPERVPLAN, we also
evaluate its marginal likelihood for comparison
with our model. To do this, we separately train
an inference network (with the same architecture
as that used by the LAP-CINF-UDEC model) to
approximate the posterior on anchor words for
the trained SUPERVPLAN (by keeping the trained
model parameters fixed). This approximate pos-
terior is then used to compute an upper bound on
NLL and perplexity.

The proposed model LAP-CINF-UDEC per-
forms better than the baseline SUPERVPLAN,
which uses separately tagged generation plans (Ta-
ble 1). However, the proposed method’s perplexity
is close to that of NOPLAN-LM, which does not
consider any generation plan. This is not uncom-
mon for deep latent variable models — since their
held-out likelihood is intractable, and most approx-
imations yield upper bounds on perplexity, their
reported perplexity is always pessimistic. Among
LAP variants, we observe that LAP-UINF-UDEC
suffers from posterior collapses, and behaves simi-
larly to NOPLAN-LM since the latent variables z
are not informative or useful. Finally, LAP-CINF-
CDEC performs similar on likelihood evaluations
compared to the LAP-CINF-UDEC model with an
unconstrained decoder .

4.4 Diversity

We generate story samples for all the titles in the
test split. We employ two evaluations to report di-
versity in the generated outputs:

DIV We compute the geometric mean of empiri-
cal unigram, bigram, and trigram distribution en-

tropy from the generated set of stories (Jhamtani
et al., 2018). For methods which use generation
plans, we also compute this diversity metric on an-
chor word sequences. Table 1 shows the results for
various models. LAP-CINF-UDEC performs bet-
ter than SUPERVPLAN, achieving higher diversity
for both story and plans. Among the LAP vari-
ants, using the non-constrained inference network
(LAP-UINF-UDEC) leads to worse results on story
diversity, and fares poorly in plan diversity (due to
posterior collapse). LAP-CINF-CDEC again per-
forms similarly to LAP-CINF-UDEC.

DIV-B We also report inter-story BLEU4 scores
(Zhu et al., 2018). We compute samples from var-
ious methods for 1000 titles in the test split. For
each generated story, the remaining 999 are treated
as references. Thus, lower values indicate higher
diversity in the generated stories. Table 1 shows
the results. LAP-CINF-UDEC performs better than
SUPERVPLAN, though is still far from the values
for human written stories in the ROC dataset itself.

4.5 Human Evaluations

We conduct human evaluations on Amazon Me-
chanical Turk to evaluate the quality of generated
stories given the title. We evaluate the story sam-
ples with respect to: (1) coherence, which mea-
sures the logical and coherent narrative flow in a
story, and (2) fidelity to title, which measures the
degree to which the story is relevant to the given
title. Given two stories from two different meth-
ods, we request human annotators to provide their
preference (or mark as tie).
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LAP-CINF-UDEC  Coherence Title-Fidelity
vs Method M win-tie-loss win-tie-loss
M=SUPERVPLAN 0.310.37 0.32 0.390.270.34
M=NOPLAN-LM 0.360.350.297  0.330.370.30

M=ROC-DATA 0.120.080.80 T 0.080.150.77 1

Table 2: Human preference evaluations when pitting vari-
ous methods against LAP-CINF-UDEC (i.e. preference for
LAP-CINF-UDEC is reported under win). Compared to SU-
PERVPLAN, LAP-CINF-UDEC performs better on fidelity
to title and similar on coherence. Loss vs win judgements
marked with T are statistically significant under bootstrap test
(p < 0.05) considering 1000 subsets each of size 400.

In order to ensure the quality of human evalua-
tions, we restrict the annotation task to annotators
from Anglophone countries, and limited to work-
ers with more than 90% HIT (Human Intelligence
Task) acceptance rates. We randomize the order
of presented stories to avoid positional bias effects.
Additionally, we added two ‘check’ data points
with each HIT. More specifically, to construct a
‘check’, we pick a random story from the devel-
opment set, and then prepare a ‘decoy’ story by
replacing three lines of the story with that of an-
other randomly chosen story. The HITs where an-
notators marked the ‘decoy’ as the preferred story
relative to the unaltered story with respect to either
coherence or fidelity for either of the two check
data points are skipped. These skipped HITs are
then re-annotated.

Based on the automated metrics and manual
qualitative inspection, we pick LAP-CINF-UDEC
as the best configuration among all the variants of
our model for human evaluation. We randomly
selected 200 titles from the test split, generate sam-
ples from all the methods under consideration, and
evaluate each method against LAP-CINF-UDEC.
Each comparison is rated by three different annota-
tors leading to a total of 600 judgements per pair.
Table 2 shows the results. We observe that on aver-
age, annotators found LAP-CINF-UDEC outputs
similar or better on coherence and fidelity com-
pared to the baselines. LAP-CINF-UDEC is judged
better than NOPLAN-LM on coherence, perhaps
because having a plan provides a rough sketch of
the story leading to more coherent outputs. Com-
pared to SUPERVPLAN, outputs from the proposed
method LAP-CINF-UDEC are judged similar in
quality in terms of coherence but better in terms

'We retrofit an inference network to a trained SUPERV-
PLAN to approximate PPL and NLL for evaluation purposes
only. Training the SUPERVPLAN model does not involve any
inference network.

Method CTRL
SUPERVPLAN 38.8%
LAP-CINF-UDEC 72.9%
LAP variants:
LAP-CINF-CDEC  100.0%
LAP-UINE-UDEC 0.0%

Table 3: We evaluate models for the extent to which the
story follows the generation plan by evaluating the fraction
of anchor words used in corresponding sentences (CTRL).
LAP-CINF-UDEC demonstrates better control compared to
SUPERVPLAN. Model with LAP-UINF-UDEC inference net-
work collapses, while LAP-CINF-CDEC demonstrates perfect
control due to the nature of the decoder.

of fidelity to title, perhaps because the ELBO ob-
jective encourages the inference network to pick
anchor words which can be more easily predicted
from the title by the prior model, leading to better
title fidelity. We show example generated samples
from LAP-CINF-UDEC in Table 4. More exam-
ples and qualitative analysis can be found in the
Appendix.

We found LAP-CINF-CDEC outputs to be
slightly worse than LAP-CINF-UDEC and SUPER-
VPLAN outputs on coherency. Compared to LAP-
CINF-UDEC, the constrained decoder achieves
slightly better scores for perplexity and diversity
(Table 1) and control (next subsection), but suffers
on overall coherency. This behavior is likely due to
the reduced flexibility of the model architecture (an
example output is provided in Table 5). In contrast,
the non-constrained decoder achieves a favorable
balance between control and coherency. This high-
lights an interesting balance between the genera-
tion plan and the degree to which the decoder must
follow the plan.

4.6 Controllable Generation

We evaluate models for the extent to which the
story follows the generation plan. To evaluate this,
we draw one story sample per title in the test split,
and report the fraction of anchor words which were
used in corresponding sentences (CTRL ). LAP-
CINF-UDEC (73%) fares much better than SUPER-
VPLAN (39%) (Table 3). We note that in some
outputs from LAP-CINF-UDEC, even though the
exact anchor word was not used, we observe se-
mantically equivalent concepts being used — for
example, for the sampled anchor word ‘dismay’,
the generated story sentence was: ‘She then real-
ized she wasn’t able to attempt it’.

We also analyze CTRL and DIV-B values when
sampling with different values of parameter p in
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TITLE: the exam

ANCHOR WORDS: midterm knew nervous performed passed

STORY: I had a big geometry exam today. I knew that i would have to do it. I was nervous. I had not performed
since i1 was a little girl. I passed out.

TITLE: the new bed

ANCHOR WORDS: alex new store amazing glad

STORY: Alex was trying to find a new bed. She needed a new one. She went to the store to get one. She found a
amazing one. She was glad she bought it.

TITLE: picnic

ANCHOR WORDS:  goes fancy least eating leave

STORY: Last week i visited my friends to the park. It was at the fancy park. They had to eat the food and water. I

had a great time eating. I had to leave.

Table 4: Generated samples from the proposed method LAP-CINF-UDEC. We observe that samples from the proposed method
demonstrate fidelity to the title, better follow the sampled plan of anchor word sequences, and are in aggregate more coherent

than baselines which do not consider a generation plan.

TITLE: the exam
LAP-CINF- ANCHOR WORDS: failing nervous tried test shocked
CDEC STORY: Jessica was failing her math class. She was nervous to try to take the test. She tried
to help. She took the test. She was shocked and confident
TITLE: the new bed
LAP-UINF- ANCHOR WORDS: forms forms forms forms forms
UDEC STORY: Jane was about to get a new bed. She had been trying to catch a few new sheets. She

decided to get a new bed. She looked at the new sheets. It was the right choice.

Table 5: Generated samples from LAP-CINF-CDEC and LAP-UINF-UDEC variants of the proposed model class. We observe
that when using the constrained decoder variant, story outputs lack coherence more often than when using the unconstrained
decoder, though they demonstrate better control by design. The LAP-UINF-UDEC variant suffers from posterior collapse,
leading to a generic anchor word sequence, and often produces stories that lack overall structure.

p LAP-CINF-UDEC LAP-CINF-CDEC SUPERVPLAN

CTRL DIV-B CTRL DIV-B CTRL DIV-B
0.5 80% 0.48 100% 0.48 43%  0.54
0.6 73% 0.45 100% 0.44 39%  0.48
0.7 67% 0.41 100% 0.40 34% 043
0.8 59% 0.35 100% 0.34 29%  0.38

Table 6: Using higher p in top-p sampling leads to
lower control of story via plan and higher diversity.

top-p sampling. As we increase p, we observe
higher diversity in samples, along with lower scores
for CTRL for LAP-CINF-UDEC as well as SUPER-
VPLAN (Table 6). This further shows an interesting
trade-off between control and diversity.

4.7 Inference Network

The latent plan model with no constraint on the in-
ference network, LAP-UINF-UDEC, suffers from
severe mode collapse and essentially ignores the
plan. This demonstrates that constraining the infer-
ence network was useful in mitigating the posterior
collapse issue. In preliminary experiments, we
also observed that using a bag-of-words inference
network instead of the BiLSTM leads to worse
performance on perplexity, diversity and control,

which indicates that the learned posteriors for the
BiLSTM network are in fact considering words in
context rather than just identifying topical words
in the vocabulary.

On analyzing the argmax outputs from the
inference network of the trained LAP-CINF-UDEC
model, we find that 42% of the predicted anchor
words are nouns, 39% of them are verbs, and 11%
are adjectives, compared to 58%, 33% and 6%
respectively for the RAKE extracted keywords
for the ROC data. Thus, the inference network
learned along-with the LAP-CINF-UDEC model
has higher preference for verbs and adjectives
compared to the RAKE algorithm.

4.8 Visual Storytelling Dataset

We also conduct experiments with the text portion
of a visual story dataset (Huang et al., 2016). The
dataset consists of 40155, 4990, and 5055 stories
in train, dev, and test splits. Compared to the ROC
data, there are no titles associated with stories, and
we learn unconditional anchor word sequence p(z).
We train the best model configuration L AP-CINF-
UDEC (with constrained inference network and
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Model PPL] DIV
dev test plan story

No Plan

VI1ZSTORYDATA NA NA NA 8.9

NOPLAN-LM 38.5 40.0 NA 6.3
With Plan

SUPERVPLAN <41.5 <422 6.5 6.5

LAP-CINF-UDEC <39.9 <40.8 8.0 6.6

Table 7: Experiments with a second story dataset. We
experiment with the text portion of the Visual Story
Dataset. We observe that LAP-CINF-UDEC is able to
perform better than SUPERVPLAN on perplexity and di-
versity.

unconstrained decoder). To train the baseline SU-
PERVPLAN, we run the RAKE algorithm to tag the
data with the anchor words. We observe that LAP-
CINF-UDEC performs better in terms of diversity
of generated stories and plans, as well as perplex-
ity relative to SUPERVPLAN (Table 7). Diversity
computations are performed with 200 generated
samples. We provide further example generations
from various methods in the Appendix.

5 Related Work

Prior work on story generation has largely focused
on plot outline via keywords or key phrases (Yao
et al., 2019; Xu et al., 2018), event-based represen-
tations (Martin et al., 2018; Fan et al., 2019), or a
sentence theme (Chen et al., 2019). Liu et al. (2020)
propose a method to generate a story conditioned
on a character description. Prior work on narrative
text generation with plans has mostly relied on ex-
ternal resources or tools to extract outlines (Zhou
et al., 2018; Fan et al., 2019), and then training in
a supervised manner. For example, using VADER
(Hutto and Gilbert, 2014) to tag sentiment polarity
(Luo et al.).

Much prior work has used manually defined ob-
jectives to encourage coherence in generated text.
In this context, reinforcement learning has been
used to encourage stories to follow certain manu-
ally defined goals such as being locally coherent
(Tambwekar et al., 2018; Xu et al., 2018). Prior
work on visual story generation aim to learn topi-
cally coherent visual story generation (Huang et al.,
2019; Wang et al., 2019). Compared to topics, key-
words provide more fine-grained plan, and thus are
more likely to provide fine-grained control over
generated outputs.

In this work we have proposed a constrained

inference network and a constrained decoder for
story generation. Pointer networks (Vinyals et al.,
2015) have been used for amortized inference in
prior work on summarization (Miao and Blun-
som, 2016), though in a semi-supervised context.
Non-monotonic sequence generation has been ex-
plored in past for tasks such as machine translation
(Welleck et al., 2019).

In the proposed model, the generation plan can
be used to control the story via the anchor words.
Hard and soft constraints for incorporating key-
words into generation have been explored in Kid-
don et al. (2016); Miao et al. (2019). Controllable
text generation has been explored in other tasks as
well, such as summarization (Fan et al., 2018), para-
phrasing (Goyal and Durrett, 2020), style transfer
(Keskar et al., 2019), and data-to-text generation
(Shen et al., 2019).

6 Conclusion

In this work we have proposed a deep latent vari-
able model which induces a discrete sequence of
anchor words as a high-level plan to guide story
generation.” We train the models though varia-
tional learning using a constrained inference net-
work, and compare constrained and unconstrained
versions of the decoder. The proposed model per-
forms similarly or better than baselines on vari-
ous automated and human evaluations. Related ap-
proaches might be used more broadly for a variety
of language generation tasks, or even for related
domains like music generation. Other modeling
extensions might explore richer structure in latent
plans — for example, generalizing beyond isolated
words. Finally, in this work we trained decoders
from scratch, though it would be interesting to ex-
plore the incorporation of large pretrained models
such as GPT2 (Radford et al., 2018) to increase
fluency.
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APPENDIX
A. Additional Implementation Details

Additional Training Details: We found it useful
to add certain regularizers.  Following Yao
et al. (2019), we add a temporal L2 penalty on
successive hidden state representations of LSTM.
Additionally, we block stopwords from being
sampled from the posterior since we are more
interested in inducing generation plans. We use
NLTK'’s English stop-words list for this purpose.
During model training (after pretraining inference
network), we also use KL thresholding / free-bits
(Pelsmaeker and Aziz, 2020) which thresholds
each component of the KL term to help prevent
posterior collapse.

Hyperparameters We perform model selection
based on best dev split performance as per NLL.
(In case of latent variable models, we use the up-
per bound on NLL). The final model and training
configuration for LAP-CINF-UDEC is as follows:
batch size of 20, temporal regularization weight of
1.0, smoothing factor for moving average baseline
for reinforce reward is 0.1, dimension of hidden
embedding is 1000, input and output token em-
beddings are tied. A summary of the decoder and
inference network for the final configuration of
LAP-CINF-UDEC model is shown in Figure 5.

Datasets: We use ROC data * splits from (Yao
etal., 2019) 4. We also used Visual Story Dataset >

B. Generated Samples and Qualitative
Analysis

Some additional generated samples from various
models are shown in Table 8. We note that LAP-
CINF-UDEC plans often exhibits good control over
the generated story. For example, samples S3 and
S4 samples in Table 8 for the same title by-and-
large follow the generated plan. We do observe a
certain degree of repetition in some samples e.g in
sample S2, the first and third sentences both discuss
mowing the lawn.

Sample S6 further demonstrates the generation
order for LAP-CINF-CDEC. Each sentence begins

3https ://cs.rochester.edu/nlp/
rocstories/

*nttps://bitbucket.org/VioletPeng/
language-model/src/master/

‘http://visionandlanguage.net/VIST/

Decoder:
(lockdrop): LockedDropout()
(idrop): Dropout(p=0.4)
(hdrop): Dropout(p=0.25)
(drop): Dropout(p=0.4)
(token_encoder): Embedding(37905, 1000)
(rnns): ModuleList(
(@): WeightDrop(
(module): LSTM(1000, 1000)
)
(1): WeightDrop(
(module): LSTM(1000, 1000)
)
(2): WeightDrop(
(module): LSTM(1000, 1000)
)
)
(token_decoder): Linear(in_features=1000,
out_features=37905, bias=True)

InferenceNw
(token_encoder): Embedding(37905, 1000)
(contextualizer): LSTM(1000, 1000,
bidirectional=True)
(scorer): Linear(in_features=2000,
out_features=1, bias=True)
(softmax): Softmax()

Figure 5: Summary of model architecture.

by copying the corresponding anchor word, gen-
erating words to the left and then to the right of
it. Thus LAP-CINF-CDEC model commits to us-
ing the corresponding anchor words. In contrast
LAP-CINF-UDEC has more flexibility in using the
anchor words, and sometimes anchor words get
dropped or get used in a paraphrased manner. e.g.
for sample S2, the model did not use the word
‘tired’ in the last story sentence, though the second
last sentence evokes similar understanding. How-
ever, this also means the control of the story via
the plan is somewhat weaker. e.g. for S4, the story
does not use the anchor word ‘boiled’. Finally,
compared to outputs from LAP-CINF-UDEC and
LAP-CINF-CDEC, we observe that SUPERVPLAN
outputs demonstrate much weaker control of the
plan on the story, and generate plans less relevant
to the title.

Table 9 shows samples from various models
trained on (text part of) visual story data.
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S.no. Method Title Story
1 LAP-CINF-UDEC  TITLE: race
ANCHOR WORDS: participate high challenged sure won
STORY: Jill wanted to participate in a race. She was in high school and had no idea how
to race. Jill challenged her friend to a race. She wasn’t sure if she would win.
Ultimately she won the race.
2 LAP-CINF-UDEC  TITLE: lawn
ANCHOR WORDS: mowing lawn mowed every tired
STORY: I was mowing my lawn one day. I was on the lawn by myself. I mowed the lawn.
I worked on it for hours. Eventually I was able to go back to work.
3 LAP-CINF-UDEC TITLE: the dryer
ANCHOR WORDS: load cold wash everything long
STORY: A girl got a load of laundry. She put everything in the dryer. She wanted to wash
it off. She did everything but the washing machine was not so good. She had to
take a long time to clean it up.
4 LAP-CINF-UDEC  TITLE: the dryer
ANCHOR WORDS:  cooking boiled dried put cooking
STORY: There was a pot of beans in the microwave. The pot was piled on the table. They
dried it and cooked it. They put the noodles in the oven. The kids were all
cooking dinner.
5 LAP-CINF-UDEC TITLE: lost phone
ANCHOR WORDS:  bar opened someone left found
STORY: Tim was at the bar. He opened the door to find a phone. It was of a person. Tim
left for a couple of minutes. He took it home and it turned out that he lost it.
6 LAP-CINF-CDEC  TITLE: race
ANCHOR WORDS: entered win losing trained win
STORY: entered tim <start> a local gym. win to wanted he <start>. losing up wound
he <start> the race. trained tim <start> to get an extra. win to decided tim
<start> the race.
STORY (reordered): Tim entered a local gym. He wanted to win. He wound up losing the race. Tim
trained to get an extra. Tim decided to win the race.
7 LAP-UINF-UDEC TITLE: race
ANCHOR WORDS: forms forms forms forms forms
STORY: Cathy and his friends decided to go to the fair. Cathy was worried about the
show that she was having to be on the track team. Cathy was worried that the
race would have to be over. Cathy was nervous to win by a point of winning the
race. Cathy caught the race.
8 SUPERVPLAN TITLE: race
ANCHOR WORDS: today good day race race
STORY: I was the fastest runner on my high school track team. It was very hard to win,
but my friend convinced me to do it. I practiced with the runners and practiced
every day. I practiced every day after school. I can go to the race every day.
9 SUPERVPLAN TITLE: lost phone
ANCHOR WORDS: package wanted found battery missed
STORY: Tom was getting a new phone. He wanted to buy a new one. When he found it it

was still a broken battery. Tom was sad because it was broken. Tom tried to save
it but it wasn’t enough.

Table 8: Samples from different methods (with minor edits such as captalization)
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LAP-CINF-UDEC  TITLE: n/a
ANCHOR WORDS: reunion together way together members
STORY: We got together to have a reunion. We went to a small town. We had a lot of fun. We
took many pictures. Then we all got together to talk to some families.
LAP-CINF-UDEC  TITLE: n/a
ANCHOR WORDS: wedding wedding people food beautiful
STORY: I went to the wedding last weekend. There were a ton of people at the wedding. There
were a lot of people there. The food was delicious. The cake was beautiful .
NOPLAN-LM TITLE: n/a
ANCHOR WORDS: n/a
STORY: This is the first day of my vacation. I like to have a trip to location. I have never been to
location. Here is my apartment. I’ve been hoping to be there. I'm so excited.
SUPERVPLAN TITLE: n/a
ANCHOR WORDS: big man none sat showed
STORY: The big day. And the man was playing. And the flowers were laid out. Then they sat on
the floor. They were all very happy
SUPERVPLAN TITLE: n/a
ANCHOR WORDS: big wedding table party people
STORY: It was a big day for a wedding. The wedding party all gathered around the table. The

tables were set and ready to be served. People arrived and chatted with each other. The
table was set.

Table 9: Samples from different methods for visual story data
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