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Abstract

Despite significant progress in text generation
models, a serious limitation is their tendency
to produce text that is factually inconsistent
with information in the input. Recent work
has studied whether textual entailment systems
can be used to identify factual errors; how-
ever, these sentence-level entailment models
are trained to solve a different problem than
generation filtering and they do not localize
which part of a generation is non-factual. In
this paper, we propose a new formulation of
entailment that decomposes it at the level of
dependency arcs. Rather than focusing on ag-
gregate decisions, we instead ask whether the
semantic relationship manifested by individ-
ual dependency arcs in the generated output is
supported by the input. Human judgments on
this task are difficult to obtain; we therefore
propose a method to automatically create data
based on existing entailment or paraphrase cor-
pora. Experiments show that our dependency
arc entailment model trained on this data can
identify factual inconsistencies in paraphras-
ing and summarization better than sentence-
level methods or those based on question gen-
eration, while additionally localizing the erro-
neous parts of the generation.1

1 Introduction

The rise of pre-trained language models (Devlin
et al., 2019; Radford et al., 2019) has led to strong
text generation models for applications including
summarization (Dong et al., 2019; Lewis et al.,
2020), paraphrasing (Goyal and Durrett, 2020;
Shen et al., 2020), story generation (Mao et al.,
2019), and data augmentation (Yu et al., 2018;
Zhang and Bansal, 2019). However, while these
models generate fluent and grammatical text, they
are prone to making factual errors that contradict

1Data and code available at https://github.com/
tagoyal/dae-factuality
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Figure 1: Overview of our dependency arc entailment
formulation using a filtered set of Stanford Enhanced
Dependencies. The DAE model makes independent
factuality decisions for each dependency arc from the
two generated hypotheses.

the input text (Cao et al., 2018). Automatic metrics
used to evaluate text generation, such as ROUGE
and BERTScore (Zhang et al., 2020), are not corre-
lated with the factual consistency or faithfulness of
the generated text (Falke et al., 2019; Kryściński
et al., 2019). To address this, recent work has stud-
ied the use of textual entailment models to rank and
filter non-factual generations (Falke et al., 2019;
Maynez et al., 2020). However, these models suf-
fer from issues such as dataset biases (Gururangan
et al., 2018; Zhou and Bansal, 2020) and a mis-
match between the training data (entailment) and
the test data (model generations).

In this paper, we propose to decompose entail-
ment decisions in a sentence to evaluate the faith-
fulness of generated text in a more fine-grained
way. Rather than making a sentence-level entail-
ment decision, we instead evaluate the entailment
of dependency arcs of the generated sentence, as
illustrated in Figure 1. This approach views depen-
dency arcs as semantic units that can be interpreted
in isolation. Each arc is therefore judged indepen-

https://github.com/tagoyal/dae-factuality
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dently based on whether the relation it implies is
entailed by the source sentence. This is helpful
in localizing generation errors and consequently
providing more interpretable model decisions.

Decomposing the factuality evaluation over com-
ponents of structured representations can also be
extended to other formalisms like AMR (Banarescu
et al., 2013), UDS (White et al., 2016), and more.
The chief advantage of dependency parsing over
these is that pre-existing tools for dependency pars-
ing report very high performance. Another line of
work focuses on question answering-based seman-
tic representations (FitzGerald et al., 2018; Michael
et al., 2018) or generating freeform questions to
capture factuality (Wang et al., 2020; Durmus et al.,
2020). However, these systems require a separate
question generation step at inference time, so gen-
eration is baked into their formalisms in a heavy-
weight way whereas we only require dependencies.
A final advantage of our approach is that depen-
dency arcs can be produced in an online fashion
during inference, and hence, factuality can be en-
forced incrementally.

We evaluate our proposed dependency arc en-
tailment approach in both summarization and para-
phrase settings. In both settings, we show that we
can automatically derive labels from actual gen-
eration data rather than rely on human annotation
of dependency arc entailment, which is challeng-
ing to collect at scale. Nevertheless, our results
show that our system’s performance on factuality
classification surpasses both sentence-level entail-
ment and question generation and answering mod-
els. Our derived labels from actual generation data
provide much better task-specific supervision com-
pared to general entailment datasets. Finally, we
demonstrate that predicted entailment scores for
individual dependency arcs are meaningful and can
be leveraged to understand and localize errors in
system generations.

2 Dependency Arc Entailment (DAE)

Defining arc entailment Our notion of entail-
ment starts by assuming a rough correspondence
between predicates and arguments in two sentences.
In natural language inference (NLI) annotation ef-
forts, this has taken the form of anchoring judg-
ments in an underlying imagined scene (Bowman
et al., 2015). We make a similar assumption, that
events and actors in the source and target sentences
are in correspondence unless there is direct evi-

dence to the contrary. For instance, in Figure 1,
the military coup in the target sentence and its cor-
responding amod(coup→military) arc should be
evaluated with respect to the military takeover in
the source, giving coreference of the two the benefit
of the doubt here.

With this assumption, we say that a dependency
arc in the target sentence is entailed by the source
if the semantic relationship it implies between its
head and child is entailed by the source sentence.
There is precedent for such a syntax-semantics cor-
respondence: certain formalisms like meaning-text
theory (Mel’čuk, 1988) have historically made this
mapping more or less explicit. Consider the first
hypothesis in Figure 1. Many of the arcs here either
contain information analogous to that in semantic
roles, or they specify nominal modifiers capturing
important entity properties.2 In our implementa-
tion, we exclude certain arc types which are not
strongly tied to semantics, such as arcs involving
punctuation; see the Appendix for details. Note
that our method does not support commenting on
arcs of the input that do not exist in the output; we
discuss this later in Section 7.2.

In some ways, our view of entailment is equiva-
lent with the entailment of NLI settings (Bowman
et al., 2015; Williams et al., 2018): if a hypothesis
is entailed under the NLI definition, then all depen-
dency arcs of the hypothesis must be entailed by
our DAE definition. However, in our formulation,
arc entailment is a 2-class classification task with
labels ∈ {entailed, non-entailed}. This means
that arcs that would be neutral or contradiction in
the generic entailment formulation are considered
non-entailed in our scenario.

Annotating arc entailment To model this for-
mulation, we require entailment annotations at the
dependency arc level. However, there are several
challenges associated with human annotation of arc
entailment data. (1) Entailment is not truly a binary
decision and is inherently subjective (Pavlick and
Kwiatkowski, 2019). (2) Entailment of an arc may
be fundamentally unknowable or undefined if, for
example, too much of the context has changed for
such a judgment to make sense. (3) Annotators
would need to understand the meaning of depen-
dency labels and to be able to isolate the semantics
of these individual arcs in sentences.

2We use enhanced dependencies in our experiments; modi-
fiers with prepositions, augmented conjuncts provide a more
useful semantic representation.
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Figure 2: Overview of our dependency arc entailment model. The input (premise) sentence and output (or prefix
of the output) are encoded with a pre-trained model. The embeddings of the head and tail of an arc are selected,
concatenated with an encoding of the dependency label, and fed to a classification layer to render the judgment.

P: Australian Prime Minister, John Howard, has made an
unannounced visit to Iraq, according to the office of Iraqi
transitional Prime Minister Ibrahim al-Jaafari.
H: Howard is a political representative of Australia.

Table 1: Example of premise (P) and hypothesis (H)
with label entailment from the dev set of entailment
dataset RTE-2 (Bar-Heim et al., 2006).

Therefore, in this work, we take another ap-
proach, which is to automatically label data from
existing sources and outputs of generation models,
which lets us collect large-scale data in a variety of
domains. Specifically, we use paraphrase data to
construct our dataset. Note however, that there is a
fundamental difference between paraphrase pairs,
which should be entailed in both directions, and
past NLI data, which is forward-entailed by defi-
nition. For instance, the premise and hypothesis
in Table 1 would classically be judged as entailed
because political representative is a hypernym of
prime minister, but the hypothesis is not a para-
phrase of (even part of) the premise.

As a result, our automatically-derived dataset
captures a more restricted notion of entailment, pri-
marily consisting of entailment relations that are
symmetric in nature: arcs in the target sentence en-
tailed by a source sentence also entail some part of
the source. However, this is actually closer to what
is acceptable for generation models to produce in
tasks such as summarization, and the dataset col-
lected in such a manner is useful for downstream
tasks, as we show in Section 6. Moreover, because
our training and evaluation data will typically come
from closely related sentences, we can sidestep the

cases where judgments in our formalism become
most difficult to define.

3 Model

Let x be the input context, h be a hypothesis pro-
duced by a generation model G, and d(h) be the
set of arcs in the dependency parse of h. We
want to predict the entailment decision for each arc
a ∈ d(h) with respect to the input x, i.e. Fa(a, x).

The overall model architecture of this depen-
dency arc entailment model Fa is outlined in Fig-
ure 2. First, we concatenate the input and the hy-
pothesis. We use a pre-trained encoder model E to
obtain contextual representations for each token in
the concatenated sequence. From these token level
representations, we derive a representation for each
dependency arc a ∈ d(h):

ra = [E(x;h)ah ;E(x;h)ac ;E(ad)]

as shown in the inset in the figure. Here, ah, ac are
the token indices corresponding to the head word
and the child word of dependency arc a, and ad
is their corresponding dependency label, which is
also embedded with E (non-contextually).

Next, these arc representations are passed
through a linear layer, followed by a softmax layer
to obtain entailment label probabilities correspond-
ing to each arc: p(y | a;x) = softmax(Wra)).

This DAE network is trained using standard bi-
nary cross entropy loss and requires supervision
on the arc entailment labels y∗ ∈ {entailed, non-
entailed} for the dependency arcs. Examples do
not need to be fully labeled; training can use partial
sets of annotations of arcs in d(h). However, while
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using the DAE model in downstream tasks such as
hypotheses reranking, entailment decisions for all
arcs in the candidate hypothesis are required.

Sentence-level factuality from dependency-
level judgments We want to evaluate the factual
consistency of each hypothesis h with respect to
input x, i.e. F(h, x). This is computed by combin-
ing arc-level entailment scores over the dependency
arcs set d(h) of the generated hypothesis:

F(h, x) = 1

|d(h)|
∑

a∈d(h)

Fa(a, x)

We use the sentence-level score F(h, x) to rerank
the generated hypotheses in Section 6.3

4 Automatic Dataset Creation

We now describe our method for automatically col-
lecting dependency-level DAE annotations from
paraphrase or entailment corpora, avoiding man-
ual annotation. In this creation process, we want
data featuring a range of paraphrasing phenomenon,
such as passivization, clausal reordering, synonym
replacement, and more. Furthermore, we want a
natural distribution of errors produced by genera-
tion models, such as wrong subject or objects for a
verb or hallucination of new content.

We represent a single example in our dataset
as a tuple

(
x, h,

{
(ai, y

∗
i )
}
ai∈d(h)

)
. Here, x is

the input, h is the hypothesis, ai denotes a single
dependency arc in the hypothesis, and yi refers
to the gold entailment label for that arc. To con-
struct data of this form, we assume access to a
paraphrase dataset D, containing pairs (x, h∗) of
input sentences and their corresponding gold para-
phrases.4 Additionally, we employ a paraphrase
generation model Gp, which can output k candidate
paraphrases {h1, h2, ...hk} given an input x. These
noisy paraphrases will be used to derive realistic
examples of generation errors to contrast with gold
paraphrases, using the following techniques.

Positive labels from gold paraphrases Given a
ground truth paraphrase, we assume that every
arc in the target side of the paraphrase h∗ is en-
tailed by the source side x. This is in line with

3According to DAE definition, an output is non-factual if
any of its arcs is non-entailed. However, min-pooling was very
unstable, so we instead use mean-pooling in our experiments.

4The paraphrase corpora we use in this work may come
from automatic methods like backtranslation; however, we
still assume that these are reliable gold-standard paraphrases.

our definition of arc entailment in Section 2 and
allows us to propagate sentence-level paraphrase
judgements to arc-level entailment judgements. Be-
cause paraphrase datasets feature diverse linguistic
phenomena, this approach leads to a range of posi-
tive examples. However, as described in Section 2,
it is less likely to include arcs which are forward-
entailed only (e.g., Table 1).

Auto-derived labels from model generations
To find negative examples for entailment, we lever-
age the output generations {h1, h2, ...hk} of an au-
tomatic paraphrase model Gp. These generations
will include unseen arcs, which may be positively
or negatively entailed.

Our key assumption here is that the outputs at
the top of the beam are more likely to be factu-
ally correct, whereas outputs at the bottom of the
beam are of lower quality and more prone to hav-
ing factual inconsistencies. We assume that new
arcs introduced in bad model generations (i.e.,
bottom-most generations of the beam) are not
entailed by the input.

We can then noisily label the generated para-
phrases with a mix of positive (entailed) and nega-
tive (non-entailed) labels. We first construct a set
of entailed dependency arcs: this is a set containing
all dependency arcs of the input and the gold para-
phrase, i.e., d(x) ∪ d(h∗). Next, we annotate the
dependency arcs of the bottom-most generations of
the beam, say {hk, hk−1, hk−2}, in the following
way:

yi =


1 if ai ∈ d(x) ∪ d(h∗)

not labeled if ai ∈ d(h1)\d(x) ∪ d(h∗)

0 otherwise

The middle case here leaves arcs that are in h1
but not x or h∗ as unannotated. Such arcs are
possibly factual under the model, coming from a
high-quality generated output, but we do not have
enough confidence to assign them a label. During
model training, such unannotated arcs are ignored.

Finally, we also include the positive arcs
from the 1-best hypothesis in our DAE data:
(x, h1, {ai, 1}) for arcs ai ∈ d(x) ∪ d(h∗). This
provides another source of hypothesis sentences
with a slightly different distribution during model
training.

5 Intrinsic Evaluation of DAE

Our experimental evaluation focuses on the follow-
ing questions: (1) Does the automatic data collec-
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tion result in a high quality training dataset? (2)
Is the DAE model we train a good classifier? (3)
Does DAE allow us to filter model generations and
improve reliability of a generation system?

We construct our DAE training dataset using the
methodology defined in Section 4. For this, we
leverage the paraphrase pair dataset PARANMT-
50M (Wieting and Gimpel, 2018) as the base
dataset D. We use the transformer-based encoder-
decoder model for paraphrase generation from
Goyal and Durrett (2020) as Gp. We use the para-
phrase model to generate 10 outputs for 20k sen-
tence pairs from D. We use the Stanford CoreNLP
library (Manning et al., 2014) to extract enhanced
dependencies from the outputs sentences. Then,
using the strategy outlined in Section 4, we gener-
ate 100k training samples (sentence pairs), 3k dev
samples and 3k test samples. From this dataset,
we derive 520k training, 14k dev, and 22k depen-
dency level annotations, which we evaluate on in
Section 5.2. The entailed to not-entailed ratio is
roughly 70-30 in this dataset.

5.1 Dataset Quality

Before evaluating our modeling approach, we first
evaluate whether the arc annotations in the training
data follow the theoretical definition of DAE, out-
lined in Section 2. Figure 3 showcases examples
from the dev set, corresponding to the same input
example. We show positive entailed arcs (in green),
negative non-entailed arcs (in red), and one unla-
beled arc (in gray). Here, we can see that the gold
paraphrase is important as it provides examples
of valid synonym replacements, as well as other
rephrasing of the input sentence. For negative ex-
amples, the examples from the bottom of the beam
do indeed contain bad output and non-entailed arcs.

Input: can you people guarantee the liquidation of Bluestar ?
Output (from gold 
paraphrase) can you guarantee Bluestar's disposal ?

Output (from 
hypothesis h1)

Output (from 
hypothesis  h10)

can you guarantee Bluestar's liquidation ?

can you guarantee liquidation Bluestar's death ? 

+ +
++

+ + +

+ +
—— —

Figure 3: Arc annotations from the automatic labelling
strategy of Section 4. Green (+) arcs are labelled en-
tailed, red (-) arcs are non-entailed, and the gray arcs
are unannotated.

Agreement with human labels Next, we want
to evaluate the quality of the auto-derived dataset
by measuring its agreement with human annota-
tions. For this, we manually annotated the depen-
dency arc entailment labels for 100 sentence pairs
from the dev set (consisting of 20 gold paraphrases
and 80 generated paraphrases), according to our
theoretical definition. We compared these manual
annotations (gold) with the auto-derived annota-
tions for this set, and observed that the two annota-
tions agreed 82% of the time. This indicates that
the automatic annotation strategy from Section 4
results in a high quality dataset. Further investi-
gation into the disagreements between the manual
and automatic labels revealed that false negatives
included paraphrasing phenomena like synonym re-
placement, anaphora resolution during reordering,
etc. We describe how to produce additional data
to handle some of these cases later. On the other
hand, false positives mainly consisted of exact arc
matches in incorrect contexts.

5.2 Intrinsic Evaluation: DAE Classification

Model Accuracy F1

Majority label 72.7 84.2
Lexical-match 74.2 78.1

BERT 86.9 91.0
ELECTRA 88.4 92.1

Table 2: Dependency-level performance of the differ-
ent models on our held-out DAE examples constructed
from paraphrase data. Results show that transformer
based models outperform the baseline models.

Next, we intrinsically evaluate the performance of
the dependency arc entailment model, outlined in
Section 3, on held-out data from our automatic
labeling method. We test the performance of
two pre-trained models: BERT (bert-base-uncased,
110M parameters) (Devlin et al., 2019) and ELEC-
TRA (electra-base-discriminator, 110M parame-
ters) (Clark et al., 2020). We compare these
models against a majority label baseline (entail-
ment) and an lexical-match baseline that predicts
y = entailment if the arc (head, child and label) in
the output constitute a dependency arc in the input
as well, and non-entailed otherwise.

The performance of the different models is out-
lined in Table 2. Our pre-trained transformer mod-
els perform substantially better than the baselines,
with BERT achieving 86.9% accuracy, and ELEC-
TRA with 88.4%. These models also outperform
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the lexical-match baseline, showing that the DAE
models learn to do more than simple dependency
arc matching. Henceforth, we use the best perform-
ing ELECTRA model in all our experiments.

5.3 Other Data Generation Methods

Besides the data generation procedure we proposed,
there are other ways to synthetically generate noisy
annotations for premise-hypothesis pairs (Zhang
et al.). We investigate these from two perspectives:
first, does our data generation process cover these
phenomena well, and second, can these additional
sources of data prove useful?

First, we explore a word-swapping technique
similar to Zhang et al.. Given a premise x, we form
a hypothesis x′ by randomly swapping tokens that
share a common part-of-speech tag to introduce
errors. The intersection of the arcs in d(x) and the
modified sentence d(x′) are annotated as positive
arcs (y = entailment), whereas the newly created
or changed arcs are annotated as negative (y =
non-entailed).

Our synonym data is noisily constructed in the
same manner as the gold paraphrases, but targets
synonym replacements specifically. We extract
pairs (x, h∗) from D that generally maintain simi-
lar sentence structure between the two sentences,5

but with small lexical changes like synonym re-
placement. We assign a positive entailment label
to all arcs:

(
x, h∗, {(a, 1) ∀a ∈ d(h∗)}

)
.

To construct data with hallucinations, we mod-
ify an input sentence x, which we take as the hy-
pothesis by removing a randomly sampled span
of contiguous tokens to derive a premise sentence
x′. Then, the following DAE model annotations
are derived:

(
x′, x, {(ai, 0) ∀ ai ∈ d(x)\d(x′)}

)
.

Additionally, for each input sentence x, we ex-
tract another sentence x′ with the highest 1-gram
overlap in the dataset. From this we derive,(
x, x′, {(ai, 0) ∀ ai ∈ d(x′)}

)
.

Table 3 shows a comparison of word-swapping
with our method (AD), and variants of our method
augmented with synonyms and hallucinations.
Note that the model trained on word swapped data
performs well on a similarly constructed held-out
set, but not on the test data for synonym data and
auto-derived data. This indicates that artificially
constructed data with rule based error introduction

5We follow prior work (Goyal and Durrett, 2020) and cal-
culate structure similarity by aligning words in the input and
target using GloVe (Pennington et al., 2014) and computing
the average displacement of each word.

Test set
Model Training Source WS AD S H

Word-swapping (WS) 98.5 71.6 29.6 80.0
Auto-derived (AD) 90.2 88.4 82.9 74.8

+ synonyms (S) 90.5 88.0 96.0 73.9
+ hallucinations (H) 92.4 87.8 96.9 97.6

Table 3: Comparison of different training data method-
ologies. Our method with augmentations (AD+S+H)
performs well on all categories.

does not cover the space of generation possibili-
ties. On the other hand, the model trained on our
auto-derived dataset performs well across both arti-
ficial and actual generation data, thereby covering
a larger range of entailment possibilities. Addi-
tional augmentation of synonym- and hallucination-
specific data improves the performance further on
the respective test sets while retaining the perfor-
mance on generic entailment data. Henceforth, we
use the (AD + S) model for our experiments.

6 Extrinsic Evaluation: Filtering Bad
Generations

Moving beyond the dependency-level inference
task, we now want to evaluate the sentence-level
performance of our model formulation. Namely,
can it usefully reject erroneous generations pro-
duced by models for summarization (Section 6.1)
and paraphrasing (Section 6.2)?

6.1 Summary Ranking
We perform our evaluation on an abstractive sum-
marization test dataset introduced in Falke et al.
(2019) and used in other previous work. It contains
373 test samples, each containing an input source
sentence from CNN/DM and two summary sen-
tences covering the same content generated using
the model from Chen and Bansal (2018). One of
these summary sentences is factually correct and
the other is factually incorrect. The evaluation pro-
tocol measures how often the correct summary is
scored higher than the incorrect summary for each
candidate scoring technique. We compare against
the following baselines:

1. NLI models: Following Falke et al. (2019),
we use entailment predictions of NLI models
to rerank candidates. We compare the perfor-
mance of pretrained encoders (BERT, ROBERTA

and ELECTRA) fine-tuned on the MNLI dataset
(Williams et al., 2018).6

6We fine-tune the BERT and ELECTRA models ourselves
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Model Reranking Acc.

BERT (MNLI) 72.3
ROBERTA (MNLI) 78.3
ELECTRA (MNLI) 82.0

QAGS 72.1

Rule-based dependency 74.8
DAE (ours) 83.6

Human 83.9

Table 4: Performance of the different models at the
summary reranking task. The human baseline is re-
ported in Falke et al. (2019). The proposed DAE model
performs on par or better than prior works and comes
close to human performance.

2. Question Generation and Answering: Wang
et al. (2020) propose an automatic evaluation
metric QAGS that scores each summary by first
generating questions pertaining to the summary
content, and then comparing the answers to
those questions in both the source sentence and
the generated summary.

3. Rule-based: We score each summary sentence
as the fraction of dependency arcs in the output
that are common with the input sentence. In
case both the correct and the incorrect sentence
get the same score, we break ties randomly.

Table 4 outlines the performance of the different
models. The results show that the dependency arc
entailment model outperforms the sentence-level
NLI models and also the question generation and
answering formulation (QAGS). Furthermore, the
performance of our DAE model is close to the hu-
man performance reported in Falke et al. (2019). In-
terestingly, the rule-based dependency model also
outperforms certain NLI models and QAGS, indi-
cating that these more complex models may fail to
capture straightforward lexical relations.

During our experimentation, we observed large
variance in the performance of the NLI models at
the reranking task with respect to their performance
at the intrinsic entailment task. To illustrate this,
in Figure 4, we plot the summarization reranking
performance of the two model against the intrinsic
task performance at different stages of the training.
For DAE, the intrinsic task performance is reported
by the dependency-level entailment classification
accuracy, and for the MNLI model, we report the

(details in the Appendix), improving on the results from Falke
et al. (2019). We use the fine-tuned ROBERTA model released
by AllenNLP (https://allennlp.org/).
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Figure 4: Performance of the ELECTRA-based MNLI
model and the DAE model. The figure shows a much
higher variance in reranking accuracy for the MNLI
model, suggesting that the task-specific performance is
not correlated with reranking performance.

classification accuracy on the sentence-level MNLI
entailment task. The graph shows a high variance
in the summary reranking performance, with stable
increase in the MNLI intrinsic task performance
at different time steps.7 This indicates that the
general entailment task solves a fundamentally dif-
ferent problem than factuality. By contrast, the
DAE model performance on the summarization
reranking task is more stable.

6.2 Paraphrase Ranking

Next, we evaluate the DAE model in the paraphras-
ing setting. To do this, first, we create a test set,
similar to the summarization test set from Falke
et al. (2019). We use the transformer based seq2seq
model (Goyal and Durrett, 2020) to obtain 10 can-
didate paraphrases for 100 input sentences from
the PARANMT-50M dataset. We manually assign
a label y ∈ {factual, not factual} to each input,
candidate pair. Then for each input sentence, we
randomly selected one correct and one incorrect
paraphrase. This sentence triplet is used for our
reranking experiments.

Model Reranking Acc

MNLI (ELECTRA) 79.0
DAE (ELECTRA) 79.0

Table 5: Performance on the paraphrase reranking task.
The DAE performs on par with the NLI based model.

Table 5 compares the performance of the MNLI-
based model and the DAE models. Here, both are
ELECTRA based models; these are shown to be
the best performing models in the previous sec-

7Note that the best performance of the MNLI model on
summary reranking is better than the best performance of the
DAE model; however, it did not coincide with the task-level
best performance for our particular hyperparameter choice.

https://allennlp.org/


3599

tions. The results show that in this setting, the
MNLI model and the DAE model perform simi-
larly. Closer inspection of this data revealed that
our model is biased towards predicting the label
entailment for arcs that are common with the in-
put, possibly because we are evaluating the same
generation model that was used to produce our arc
entailment data, and our model is therefore biased
towards predicting non-entailed for arcs that are
not present in the input. This poses a somewhat
adversarial setting for our DAE model.

7 Analysis

7.1 Dependency- vs. sentence-level modeling

Although our DAE model has shown strong perfor-
mance, we have not yet performed a direct apples-
to-apples comparison of DAE versus a sentence-
level model when trained on the same sentences.

For MNLI We construct DAE data from the
sentence-level entailment data as follows. First, we
extract 10k examples from the MNLI data which
have the label entailment. This is considered as
the source data D′. We use a paraphrase model
(transformer seq2seq (Goyal and Durrett, 2020))
and the technique outlined in Section 4 to extract
auto-derived labels from D′. This gives us 42k
training examples for training the DAE model. We
compare this against an MNLI model trained on
the original sentence-level entailment task with the
same number of examples (42k).

For PARANMT For this dataset, we do not have
negative (y = contradiction) annotations at the
sentence-level. We derive these from our DAE
training data as follows: we consider all pairs of
sentences in the original dataset (x, h∗) as positive
sentences (y = 1), in addition to any pair of the
form (x, x). We treat the three generated sentences
at the bottom of the beam as negative sentences,
meaning that the model is trained to distinguish
gold paraphrases from model generations.

Table 6 outlines these results. For the para-
phrase dataset, we see that the artificially con-
structed sentence-level dataset does not yield a
good sentence-level discriminator. However, our
dependency-level annotations can form an effective
training set. The results on MNLI show that our
dependency-level formulation performs better than
sentence-level when trained on the same amount
of data and is therefore more closely related to the
factuality task than past entailment formulations.

Model ParaNMT MNLI

Summ Para Summ Para

sent-level 73.9 58.0 68.8 64.0
dep-level 83.6 79.0 78.5 79.0

Table 6: Comparison of the sentence-level and
dependency-level formulations. On similarly sized
training datasets, the dependency-level formulation out-
performs the sentence-level formulation for both types
of data sources considered.

7.2 Qualitative Evaluation

Error Localization Since the DAE formulation
computes individual entailment scores for all arcs
in the dependency tree structure, it is possible to
localize errors in the generated summary or para-
phrase. We present examples of input sentences,
generated text, and arc entailment scores for a few
examples in Figure 5. For each input and output
pair, we show the individual scores for the depen-
dency arcs in the output sentence. Additionally, we
report the MNLI score for the same example.

The illustrative examples show that the DAE
model is capable of localizing errors where erro-
neous subject-object pairs were constructed, even
when these are the only errors. These errors are
tougher for the MNLI model to catch, which eval-
uates the whole sentence and is prone to lexical
overlap biases (Zhou and Bansal, 2020). In the
third example, from our paraphrase setting, we
see that the model is able to recognize synonym
replacement as a valid re-writing. However, for
the last example, the model cannot perform this
same judgement for the variations→ changes re-
placement. Although, note that the model scores it
higher than a erroneous replacement of the same
word (variations → latter). This shows that the
DAE model is able to rank sentences that incorpo-
rate the similar type of re-writing/editing. However,
we observed that the model has different error rates
for different types of re-writing changes. For ex-
ample, it is better at identifying text hallucination,
or cases where the subject object relation between
words change, but has comparatively lesser accu-
racy over changes such as synonym replacements.
Therefore, it may not be ideal for settings where
different re-writing types need to be compared.

Limitations We comment on a few limitations of
our approach. First, arcs in our dependency-based
formalism are not marked with negation or quan-
tification; these must be handled via the contextu-



3600

Input Text: Visitors to the Isle of Lewis will be hoping the clouds stay away on Friday for the solar eclipse.

Output:

Visitors to the Isle of Lewis will be hoping to stay away on Friday.

64.1—

99.1+ 99.7+ 90.9+
87.4+ MNLI entailment prob. = 99.5

subject-object relation

Input Text: Former Manchester City boss Roberto Mancini has turned up the heat on successor Manuel Pellegrini by 
claiming the Chilean should be winning a trophy every year.
Output:

Roberto Mancini has turned up the heat for Manuel Pellegrini's successor.

Input Text: However, such variations must be notified.
Outputs:

However, the changes must be notified. However, the latter must be notified
25.0+

99.1+ 98.7+ 7.2—

hallucination, synonym 

Input Text: American banks have incurred more than half of these massive penalties.
Output:

More than half of those massive sanctions were incurred by U.S. banks.

99.6+
99.4+

98.3+ 96.6+
98.5+98.6+

98.2+

99.9+ 98.5+
97.6+ 99.6+ 76.2—

26.9—
MNLI entailment prob. = 99.5

MNLI entailment prob. = 99.4 / 98.4 

48.6— 83.0+

MNLI entailment prob. = 99.7

synonym, phrase reordering

subject-object relation

Figure 5: Individual arc entailment probabilities for arcs in output sentences from the summarization test set (Falke
et al., 2019) and the paraphrase test set. The +/− superscript signifies the gold label for that arc. Our DAE model
is able to localize errors in the output. Compared to this, the MNLI model computes a high entailment score for
all arcs that are lexically similar.

alization of the hypothesis sentence rather than in
the semantic representation. Second, our method
cannot identify arcs that are missing from the input.
For instance, consider the following premise: In
the morning, he goes jogging and hypothesis: In
the morning. Here, the hypothesis does not contain
critical information from the source sentence; how-
ever, since all the present arcs are entailed by the
source, our model would give this a high score.

Furthermore, our model is trained on the
PARANMT-50M dataset, which itself is con-
structed through a noisy backtranslation process.
Therefore, we rely on noisy gold data for construct-
ing our model. We believe that better quality para-
phrase pairs would lead to a better quality model.

8 Related Work

Recent work in addressing faithfulness of text gen-
erations can be broadly divided into three groups:
structured information based, multi-task formu-
lations, and post-processing methods. The first
group leverages structured knowledge, like Open
IE triples (Cao et al., 2018; Goodrich et al., 2019),
dependency trees (Song et al., 2018), or generated
semantic roles (Fan et al., 2018) as additional input
for generation. However, incorporation of these as
additional embeddings in model architectures does
not explain how these influence model generations.
The second group leverages multi-task formula-
tions and trains the generation model jointly with

other factuality-related tasks, such as NLI entail-
ment and question generation (Guo et al., 2018).
Other work additionally incorporates a reward for
generating summaries entailed by the the input (Li
et al., 2018; Pasunuru and Bansal, 2018). Our ap-
proach can be used to rank/filter outputs from any
generation model in a black-box way, without ad-
ditional augmentation or retraining.

In post-processing approaches, recent work has
explored NLI-based (Falke et al., 2019; Maynez
et al., 2020) post-generation filtering or ranking
of output summaries. Our dependency-level mod-
els perform on par with these approaches, while
additionally localizing the error in the generations.
Other work (Durmus et al., 2020; Wang et al., 2020)
has looked at using question generation and answer-
ing to reveal factual inconsistencies in generated
text. However, more work is needed to figure out
how to make these approaches reliable and broad
coverage, as they primarily focus on specific fac-
tors like noun phrases and named entities.

9 Conclusion

In this work, we propose the dependency arc en-
tailment formulation to identify factual errors in
generated text in a more fine-grained manner. We
show that the proposed formulation outperforms
past approaches, while additionally providing an
interpretable error analysis.
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A Dependency Label Set

As outlined in Section 2, we restrict our analysis
to a subset of dependency arcs which are more
strongly connected to semantics. For each of hy-
pothesis h corresponding to the input x, we ex-
tract Enhanced Dependencies using the Stanford
CoreNLP tool, and assign entailment labels to this
dependency arc set d(h) using the strategy outlined
in Section 4. We exclude the following arcs from
our analysis: punct, det, case, aux, auxpass, dep,
cop, mark. This same subset of arcs are ignored
while computing sentence-level factuality.

B Examples from Synonym Test Set

As outlined in Section 5.2, we additionally augment
our auto-derived training data (AD) with synonym
data (S) and show that this improves the model
performance on the held out synonym only test
set. Figure 6 provides some examples showing the
predicted entailment probability for each arc using
this augmented training data. The predictions show
that our model learns some bias to recognize syn-
onym replacements and small phrasal substitutions
as arcs that are entailed by the input.

Input: you'd be a great inspiration to your fellow warriors.
Output

you'd be a great inspiration to the other soldiers.

99.2
99.3 60.8

83.5

Input: Turkey is a complicated country, with multiple dilemmas.
Output:

Turkey is a complex country with many dilemmas.

99.2
77.9 69.079.9

Figure 6: Example from the held-out synonym dataset.
The scores are the arc entailment probabilities assigned
by the (AD + S) model.

C Implementation Details

To train our DAE model, we fine-tune the
pre-trained encoders BERT (bert-base-uncased,
110M parameters) and ELECTRA (electra-base-
discriminator, 110M parameters), as outlined in
Section 5. We perform 5 hyperparameter trials,
varying only the learning rate using manual tuning.
The models with the best dev set accuracy are used.
The final hyperparameters used are:

Implementation Library transformers (Wolf et al., 2019)
Computing Infrastructure 32GB NVIDIA V100 GPU
Max Seq Length 128
Linear Layer Size (2304, 2)
Optimizer Adam
Optimizer Params β = (0.9, 0.999), ε = 10−8

Learning Rate Decay Linear
Learning rate 1e-5
Weight Decay 0
Warmup Steps 0
Maximum Gradient Norm 1
Batch size 32
Epochs 3

Table 7: Hyperparameters used for fine-tuning both the
BERT and ELECTRA based DAE models.

Additionally, we fine-tune (bert-base-uncased,
110M parameters) and ELECTRA (electra-base-
discriminator, 110M parameters) models on the
MNLI dataset. We fine-tuned the model using 3 hy-
perparameter trials, varying only the learning rate
using manual tuning. The models with the best dev
set accuracy are used. The final hyperparameters
used are shown in Table 8.

Implementation Library transformers (Wolf et al., 2019)
Computing Infrastructure 32GB NVIDIA V100 GPU
Max Seq Length 256
Linear Layer Size (768, 2)
Optimizer Adam
Optimizer Params β = (0.9, 0.999), ε = 10−8

Learning Rate Decay Linear
Learning rate 2e-5
Weight Decay 0
Warmup Steps 0
Maximum Gradient Norm 1
Batch size 32
Epochs 3

Table 8: Hyperparameters used for fine-tuning both the
BERT and ELECTRA based entailment models.

We get a dev accuracy of 84.5% and 89.0% for
the BERT and ELECTRA models respectively.
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